
uGEMM: Unary Computing Architecture for
GEMM Applications

Di Wu
Department of ECE

University of Wisconsin–Madison
Madison, WI, USA
di.wu@ece.wisc.edu

Hsuan Hsiao
Department of ECE
University of Toronto
Toronto, ON, CA

julie.hsiao@mail.utoronto.ca

Jingjie Li
Department of ECE

University of Wisconsin–Madison
Madison, WI, USA
jingjie.li@wisc.edu

Younghyun Kim
Department of ECE

University of Wisconsin–Madison
Madison, WI, USA

younghyun.kim@wisc.edu

Ruokai Yin
Department of ECE

University of Wisconsin–Madison
Madison, WI, USA
ryin25@wisc.edu

Joshua San Miguel
Department of ECE

University of Wisconsin–Madison
Madison, WI, USA
jsanmiguel@wisc.edu

Abstract—General matrix multiplication (GEMM) is universal
in various applications, such as signal processing, machine
learning, and computer vision. Conventional GEMM hardware
architectures based on binary computing exhibit low area and
energy efficiency as they scale due to the spatial nature of number
representation and computing. Unary computing, on the other
hand, can be performed with extremely simple processing units,
often just with a single logic gate. But currently there exist no
efficient architectures for unary GEMM.

In this paper, we present uGEMM, an area- and energy-efficient
unary GEMM architecture enabled by novel arithmetic units.
The proposed design relaxes previously-imposed constraints on
input bit streams—low correlation and long stream length—
and achieves superior area and energy efficiency over existing
unary systems. Furthermore, uGEMM’s output bit streams ex-
hibit higher accuracy and faster convergence, enabling dynamic
energy-accuracy scaling on resource-constrained systems.

I. Introduction
General matrix multiplication (GEMM) is a ubiquitous

operation essential in many emerging applications, particularly
deep neural networks (DNNs). Though traditionally imple-
mented as software libraries for CPUs and GPUs [29, 46–
48], recent works strive for improved energy efficiency via
hardware acceleration exploiting parallel multiplications [11,
22, 28, 36, 37, 52, 64, 71]. However, as we maximize par-
allelism, conventional binary computing where numbers are
represented and computed in parallel multiple bits suffers from
poor hardware area and energy efficiency due to exponentially
growing wire congestion [66].
Unary computing is a promising solution to improve the area

and energy efficiency of massively parallel computing by rep-
resenting numbers as serial bit streams computed by extremely
area- and energy-efficient processing units [6]. Benefits of
unary computing over non-unary computing have already been
proven in prior works [7, 33, 41, 57]. Given analog input from
sensors [3, 63], unary computing can directly process sensor
data converted by simple analog-to-stochastic converters in a
fully-streaming manner, mitigating the energy overheads of

Rate-coded

or
Temporal-coded

Rate &Temporal-
coding compatibility

Input

uGEMM uGEMM…
Layer 1 Layer N
Model Pipeline

Efficient hardware
computing kernels

Cat
(95%)

Reliable
early

termination

Cat
(99%)

Accurate
final

results

Fig. 1. An illustrative example of uGEMM.

conversion and storage in binary computing. Provided binary
input and sufficiently high computational intensity, unary
computing can embrace orders of magnitude more energy
efficiency than binary [31]. Our goal in this work is not
to argue superiority over binary systems but rather enable
unparalleled efficiency for unary computing, since it has shown
promise in recent years.
Unfortunately, existing unary computing systems based on

rate coding, namely stochastic computing [14], fail to fully
realize the benefit of high area and energy efficiency because
processing units require uncorrelated bit streams or long, re-
peated bit streams as input. As a result, they suffer from either
costly random number generators (RNGs) or long latency, both
of which result in low energy efficiency. Unary computing
systems based on temporal coding, like race logic [38], have
been proposed more recently to mitigate these limitations, but
no efficient adder and multiplier units are available, making it
inapplicable to GEMM applications.
In this work, we take a novel unary computing approach

to enable efficient GEMM processing on extremely area-
and energy-constrained devices, overcoming the limitations
of existing unary systems. We argue that an ideal unary
computing system should not be confined to only either rate
or temporal encoding schemes but rather strive for the best of
all worlds. We propose a unified unary GEMM architecture,
dubbed uGEMM, that works with both rate and temporal

encoding schemes and overcomes the above weaknesses of
current unary computing systems as illustrated in Figure 1. It is
the first to support fully streaming execution and reliable early
termination, where bit streams are processed in a continuous
pipeline (without conversion between binary and unary), and
the output accuracy stabilizes early. This offers unprecedented
flexibility to dynamically trade off accuracy for latency to meet
hard constraints on energy efficiency.

In this paper, we describe how to overcome the fundamental
challenges of building a unified unary computing system and
present novel encoding-insensitive arithmetic units for unary
GEMM. The contributions are summarized as follows:
• We present novel unified unary computing units for
multiplication, scaled addition, and non-scaled addition
that support both rate and temporal representations.

• We characterize state-of-the-art unary computing units
based on robustness regarding stability—a new metric
introduced in this paper—and insensitivity to correlation.

• We build the first unified unary GEMM architecture
(uGEMM), demonstrating high accuracy, energy efficiency
and low latency. uGEMM saves up to 98% energy (72%
on average) compared to the most accurate state-of-the-
art unary approaches, with accuracy loss less than 0.5%
from the ideal output.

• We enable support for early termination, showing that
uGEMM can reach >95% accuracy in up to 84% fewer
cycles compared to the best rate-coded baseline and
up to 99.6% fewer cycles to reach satisfactory stability
compared to the best temporal-coded baseline.

• We develop an open-source PyTorch-based cycle-accurate
simulator for unary computing [68]. We evaluate uGEMM
at an application level via a multilayer perceptron case
study, which shows 7% higher classification accuracy
compared to conventional unary approaches and demon-
strates support for early termination to save latency by
72% while maintaining accuracy.

II. Background and Related Work
In this section, we review key unary computing and GEMM

concepts necessary for understanding our uGEMM design.
First, we present a taxonomy of unary computing according to
their data encoding methods: rate coding [2, 61] and temporal
coding [60], shown in Figure 2. Then we review state-of-the-
art implementations of GEMM architectures.

A. Rate Coding-Based Unary Computing
Rate coding is a coding scheme where information is

contained in the frequency of an event. Rate coding is
adopted in stochastic computing, which finds application in
low-density parity-check (LDPC) decoding [62, 66], image
processing [3, 45] and DNNs [34, 53, 58].

a) Data representation: Rate-coded data relies on the
frequency of 1s and 0s in the bit stream to represent its
value. There are various encoding schemes, the most widely
used being unipolar and bipolar formats [14]. In the unipolar
format, a value in the range of [0, 1] is encoded as the

1 1 0 1 0 0 1 0
(4×1)/8=0.5Value:

0 0 0 1 1 1 1 1
5Value:

Representation
1 1 0 1 0 0 1 0
1 1 0 1 0 0 1 0

× 0.5 (actual)
0.25 (ideal)

Limitation

Biased result due to correlation

Lack of operations in race logic

MAX ADD
?

MUL
?

MIN

Rate
Coding

Temporal
Coding

Fig. 2. Unary computing data representations and limitations.

probability of a bit being 1 in the corresponding bit stream.
More specifically, to represent a value V ∈ [0, 1], the bit stream
must satisfy P(S = 1) = V , where S refers to a sampled bit
in the bit stream, as shown in Figure 2. The bipolar format
extends the value range to [−1, 1], and the bit stream follows
P(S = 1) = (V + 1)/2. Given these formats, any real number
can be scaled and mapped into a rate-coded bit stream.

b) Stochastic computing: Stochastic computing performs
computation by manipulating input bit streams statistically.
The majority of functions in binary computing are also
supported in stochastic computing [14, 50, 67], and some
examples of widely-used linear functional units are listed in
Table I. In stochastic computing, an adder with two inputs
A and B can be implemented by a two-input multiplexer
(MUX) whose select signal is a stochastic bit stream with
P(S = 1) = 0.5. This computes Vout = (VA + VB)/2, where a
scaling factor of 2 is introduced to prevent overflow. Besides
the scaled addition using MUX, nonscaled addition can be
done with an OR gate. Multiplication can be achieved using
an AND gate for unipolar bit streams and an XNOR gate for
bipolar bit streams. Recent work focuses on designing efficient
nonlinear functional units as well [9, 67].

c) Limitation — correlation problem: Since stochastic
computing operates on the basis of statistics, the distribution
of 1s in the input bit streams can strongly impact the output
accuracy, known as the correlation problem. For example,
an AND gate can only accurately compute the product of
two input streams when they are not correlated; that is,
the ratio of paired 1s/0s and unpaired 1s/0s across the two
streams is set according to input values. Otherwise, if there
are more paired 1s than expectation, it ends up computing the
minimum function [67]. To alleviate the impact of correlation,
researchers have proposed to 1) use costly RNGs to suppress
correlation [35], 2) control correlation [32] or 3) leverage
correlation when computing [4, 9, 67].
One proposal to circumvent this problem is isolating

stochastic computing from correlation with a deterministic
approach [19], where two input bit streams are expanded via
different styles of repetition in order to mimic the convolution
of two bit streams. Because every bit of one bit stream interacts
with every bit of the other, the computation no longer depends
on the distribution of 1s. While this method enables the use of
typical stochastic computing units with high accuracy, it suffers
from long computation latency: 22n cycles for inputs of two n-
bit binary numbers, compared to 2n cycles in typical stochastic
computing. Follow-on work of this determinstic approach [42]

2

TABLE I
Functional units available in unary computing.

Function Rate coding Temporal coding
Add [14, 16, 19, 25], uGEMM uGEMM
Multiply [14, 16, 19, 57], uGEMM uGEMM
Add constant [39, 63]
Minimum [4, 32] [38, 63]
Maximum [4, 32] [38, 63]
Inhibit [59, 63]

reduces the long latency back to 2n cycles by scrambling the
bit stream, at the expense of degraded accuracy.

B. Temporal Coding-Based Unary Computing
Temporal coding is a coding scheme where the timing rela-

tion of events contains information. Unary computing using
temporal-coded data has been used in various applications
such as DNA sequence alignment [38], decision trees [63],
and median filter/sorting networks [43, 44].

a) Data representation: Temporal coding encodes data
into the timing of a signal’s transition (or edge), with the bit
stream as a chain of 1s followed by a chain of 0s. The value
can be embedded into the generation of the bit stream [43,
44], or into the path a signal takes, i.e., a longer path will
delay the edge observed at the downstream computing unit for
longer [38], alternatively referred to as race logic.

b) Temporal computing: Unlike conventional stochastic
computing [14], temporal computing performs computations
deterministically and bit streams can be generated without
RNGs. Table I lists all existing functional units available in
temporal computing. For example, the minimum function can
be performed using a simple AND gate by detecting the first ar-
riving edge (i.e., less delay). Similarly, the maximum function
is implemented by an OR gate to detect the most delayed edge.
Addition with a constant operand can be performed by adding
delay units [39, 63]. Furthermore, race logic can imitate the
behavior of winner-take-all inhibition of a multi-input neuron,
which only passes the first incoming edge [59].

c) Limitation — lack of essential functional units: Prior
to our work, some essential functional units, such as adders and
multipliers, have never been proposed for temporal computing.
In order to fully exploit the benefit of temporal computing,
an area- and energy-efficient implementation of addition and
multiplication is necessary.

C. Challenge of a Unified Unary Architecture
Though both rate coding and temporal coding are funda-

mental forms in unary computing system, the wide range of
their existing implementations are highly disparate in a couple
aspects. First, there is an inconsistent level of accuracy among
rate-coded and temporal-coded implementations, depending on
the operations performed. Second, current implementations are
specialized and would require expensive regeneration of bit
streams in order to support operations that are best with rate
coding along with those that are best with temporal coding
in the same architecture. This motivates an important research
question for unary computing – can we build unified unary

designs that achieve high accuracy, low hardware complexity
and short latency for both representations simultaneously?

D. General Matrix Multiplication in DNNs
GEMM is part of the Basic Linear Algebra Subprograms

(BLAS) library that performs matrix multiplication:

O = αAB + βC, (1)

where A, B and C are input matrices and α and β are
scaling factors. In DNNs, the most computation-intensive
layers are fully connected layers and convolution layers [27].
Fully connected layers are naturally suitable for GEMM,
while convolution layers require transformation before GEMM
computation [12, 13, 18], supported in popular software deep
learning frameworks [1, 21, 51]. However, as evaluated in [20],
95% of GPU runtime and 89% of CPU runtime are spent
on software-configured GEMM operations for fully connected
layers and convolution layers, and therefore it is critical to
reduce its energy consumption by using dedicated energy-
efficient GEMM hardware [26, 53, 56, 57].

III. A Systematic View of Unary Bit Streams
In this section, we present two metrics for bit streams that

characterize how their distributions of 1s and 0s affect the
quality of unary computing results. The first is the correlation
between two bit streams, which measures how aligned (or
dependent) two bit streams are. The second is the stability of
a bit stream, which measures how fast a bit stream stabilizes.
These two metrics are applicable for any style of unary bit
streams and enables systematic analysis of arbitrary unary
computing architectures.

a) Correlation: The first metric, correlation, is the cross
correlation [4] between two unary bit streams X and Y of
length L, defined as:

corr(X,Y) =
ad − bc

L ×min(a + b, a + c) − (a + b)(a + c), if ad > bc

ad − bc
(a + b)(a + c) − L ×max(a − d, 0), otherwise

(2)

Here, a is the number of bit pairs where {Xi,Yi} = {1, 1} (i
denotes the bit position in a stream), b is number of pairs
where {Xi,Yi} = {1, 0}, c is number of pairs where {Xi,Yi} =
{0, 1}, and d is number of pairs where {Xi,Yi} = {0, 0}. In a
nutshell, the correlation between two bit streams reflects the
extent of overlapping 0s and 1s in the bit streams and hints at
the achievable accuracy of an operation based on these input
bit streams [4]. Correlation is bound to the range [−1,+1].

b) Stability: Rate-coded bit streams inherently have the
progressive precision property [5] where an increase in the
stream length leads to an increase in accuracy. A partial output
bit stream still represents the same value as the full bit stream
but with low accuracy, i.e., an early-terminated bit stream is a
low-accuracy version of the full bit stream. Early termination,
a common concept in approximate computing [8, 15, 54, 65],

3

TABLE II
Distribution metrics in unary computing.

Metric Rate coding Temporal coding

Correlation Optimal 0 +1
Actual [-1,+1] +1

Stability Optimal 1 Min
Actual (0,1] Min

is essential for time- and energy-constrained devices. Stability
is a new metric we propose in this work to measure how early
a bit stream’s progressive precision [5] stabilizes/converges.

For a bit stream of length L, VL represents its final value
and Vl represents the progressive precision value of the partial
bit stream based on the first l bits (l ≤ L). If starting from the
l-th bit, the bias ∆Vl = |Vl −VL | is consistently smaller than a
user-defined threshold VTHD, then stability is calculated as:

Stability = 1 − max{l |∆Vl−1 > VTHD}
L

(3)

Stability ranges between 0 and 1, with a higher value indicating
an earlier progressive precision convergence, implying better
adaptiveness to early termination. This metric can be applied
to temporal-coded bit streams if we consider the bit streams
within a certain time range as Bernoulli sequences in stochastic
computing, but will generally yield low stability as temporal-
coded data lacks the progressive precision property.

c) Challenge — distribution-sensitiveness: Table II lists
the optimal and realistic value ranges for correlation and
stability in different coding schemes. Having the optimal input
correlation leads to higher final accuracy, while having the
optimal stability indicates a higher potential for lowering
computation latency with minimal accuracy loss. Current
stochastic computing schemes provide no guarantees for either
metric, with the exception of the deterministic approach of
stochastic computing that guarantees zero correlation at the
cost of long latency. In temporal computing, because bit
streams always start with a chain of 1s followed by a chain
of 0s, the bit stream cannot stabilize until all 1s have been
observed. Both correlation and stability are important metrics
not only for the input bit streams of unary computing units,
but also for the output bit streams of these computing units.
This is especially the case for a hierarchical system such as
GEMM where an output bit stream can be directly used as the
input stream of other components.

IV. uGEMM Architecture
In this section, we present our uGEMM architecture and

novel linear functional unit designs: uMUL, uSADD, and uN-
SADD. uGEMM overcomes the challenges of existing unary
approaches in Section II. uGEMM features high parallelism,
input insensitivity, and early termination, owing to our novel
functional units, which outstrip prior designs because:
• They are free of the correlation problem and achieve high
accuracy with rate-coded input.

• They are distribution-insensitive, seamlessly accepting in-
puts represented in either rate coding or temporal coding
without costly data conversion.

• They produce highly stable and accurate output bit
streams, without trading off latency, for early termination.

We will first introduce uMUL, uSADD, and uNSADD, followed
by the integrated uGEMM architecture. For each functional unit
design, we theorize its behavior then map the mathematical for-
mulation onto the microarchitecture in Figure 3, accompanied
by a walkthrough example in Table III.

A. uMUL: Unary Multiplication
Analyzing the multiplication of two values, we reorganize

the probability equation according to the effective operations
each logic gate performs, from which we obtain the most
concise and practical unipolar/bipolar unary multiplier that
1) produces accurate results without excessive RNGs and 2) is
insensitive to input distribution.
1) Mathematical Expression

a) Unipolar: For multiplying two unipolar streams, the
theoretical output value, Vout, is expressed as the product of
two input values, Vin,0 and Vin,1:

Vout = Vin,0 · Vin,1,

P(Sout = 1) = P(Sin,0 = 1) · P(Sin,1 = 1), (4)

where S∗ refers to the input or output bit stream. Gaines
uses an AND gate to approximate the desired probability
in Eq. 4 [14]. However, this AND-gate multiplier actually
implements the joint probability in Eq. 5 instead. This joint
probability only matches Eq. 4 perfectly when two input bit
streams are independent (i.e., have zero correlation), which is
not ensured using conventional bit stream generation.

P(Sout = 1) = P(Sin,0 = 1, Sin,1 = 1)
= P(Sin,0 = 1) · P(Sin,1 = 1|Sin,0 = 1) (5)

To accurately implement Eq. 4 yet still benefit from a simple
AND-gate design, we embed the requirement of zero correla-
tion into uMUL’s bit stream generation by enforcing Eq. 6,

P(Sin,1 = 1|Sin,0 = 1) == P(Sin,1 = 1), (6)

Since the AND-gate multiplication only cares about the
input of bit stream Sin,1 when Sin,0 = 1, we define

P
(
Seff
in,1 = 1

)
= P(Sin,1 = 1|Sin,0 = 1), (7)

where Seff
in,1 is the effective bits for AND gate (i.e., when

Sin,0 = 1), with which we regulate the following discussion
for implementation.
Eq. 6 gives us insight into how to build an accurate

multiplier. Recalling the notation in Eq. 2, let a, b, c and
d represent the counts of (1, 1), (1, 0), (0, 1) and (0, 0) pairs
for two input bit streams (Sin,0, Sin,1). The marginal probability
is P(Sin,1 = 1) = (a + c)/(a + b + c + d) and the conditional
probability is P(Sin,1 = 1|Sin,0 = 1) = a/(a+b). Eq. 2 states that
if correlation is zero, then ad = bc. Plugging this in, we get
(a+c)/(a+b+c+d) = a/(a+b); thus, zero correlation implies
that the conditional probability in uMUL equals the marginal
probability. Therefore, the output of uMUL is accurate.

4

(c) N-input uSADD (d) N-input uNSADD(a) Unipolar uMUL

GC
en

Sin,0
<latexit sha1_base64="yVuLVWh7buqCBjt0IwPhKQe/xXk=">AAACEHicbVDLTgJBEJzFF+IL9ehlI5p4IGQXTfRI4sUjRkES2JDZoRcmzM5uZnoVQvgJrvoh3oxX/8Dv8AccFg4CVtJJpao7qS4/Flyj43xbmbX1jc2t7HZuZ3dv/yB/eFTXUaIY1FgkItXwqQbBJdSQo4BGrICGvoAnv3879Z+eQWkeyUccxuCFtCt5wBlFIzUe2iMui864nS84JSeFvUrcOSmQOart/E+rE7EkBIlMUK2brhOjN6IKORMwzrUSDTFlfdqFpqGShqC9UZp3bJ8bpWMHkTIj0U7VvxcjGmo9DH2zGVLs6WVvKv7rSXjBAcIAiylL9xajYHDjmZfjBEGyWZIgETZG9rQdu8MVMBRDQyhT3Dxjsx5VlKHpMGdacpc7WSX1csm9LJXvrwqVs3lfWXJCTskFcck1qZA7UiU1woggE/JK3qyJ9W59WJ+z1Yw1vzkmC7C+fgHoPJ3R</latexit>

Sin,1
<latexit sha1_base64="HfwrBJUtQjncXML9KQBIfswTsGw=">AAACEHicbVDLTgJBEJzFF+IL9ehlI5p4IGQXTfRI4sUjRkES2JDZoRcmzM5uZnoVQvgJrvoh3oxX/8Dv8AccFg4CVtJJpao7qS4/Flyj43xbmbX1jc2t7HZuZ3dv/yB/eFTXUaIY1FgkItXwqQbBJdSQo4BGrICGvoAnv3879Z+eQWkeyUccxuCFtCt5wBlFIzUe2iMui+64nS84JSeFvUrcOSmQOart/E+rE7EkBIlMUK2brhOjN6IKORMwzrUSDTFlfdqFpqGShqC9UZp3bJ8bpWMHkTIj0U7VvxcjGmo9DH2zGVLs6WVvKv7rSXjBAcIAiylL9xajYHDjmZfjBEGyWZIgETZG9rQdu8MVMBRDQyhT3Dxjsx5VlKHpMGdacpc7WSX1csm9LJXvrwqVs3lfWXJCTskFcck1qZA7UiU1woggE/JK3qyJ9W59WJ+z1Yw1vzkmC7C+fgHp4p3S</latexit>

Sout
<latexit sha1_base64="VPhmsR/L6ZMjyuR7KawnoibpzFs=">AAACD3icbVDNTsJAGNziH+If6tFLI5p4MKRFEz2SePGIUX4SIGS7fMCG7bbZ/aqQhofgqg/izXj1EXwOX8Cl9CDgJJtMZuZLZscLBdfoON9WZm19Y3Mru53b2d3bP8gfHtV0ECkGVRaIQDU8qkFwCVXkKKARKqC+J6DuDe9mfv0ZlOaBfMJxCG2f9iXvcUbRSPXHThxEOOnkC07RSWCvEjclBZKi0sn/tLoBi3yQyATVuuk6IbZjqpAzAZNcK9IQUjakfWgaKqkPuh0ndSf2uVG6di9Q5km0E/XvRUx9rce+Z5I+xYFe9mbiv56EFxwhjPAyYUlusQr2btsxl2GEINm8SS8SNgb2bBy7yxUwFGNDKFPcfMZmA6ooQzNhzqzkLm+ySmqlontVLD1cF8pn6V5ZckJOyQVxyQ0pk3tSIVXCyJBMySt5s6bWu/Vhfc6jGSu9OSYLsL5+Af4Mnew=</latexit>

(b) Bipolar uMUL

C
en

en
G

G

Sin,0
<latexit sha1_base64="yVuLVWh7buqCBjt0IwPhKQe/xXk=">AAACEHicbVDLTgJBEJzFF+IL9ehlI5p4IGQXTfRI4sUjRkES2JDZoRcmzM5uZnoVQvgJrvoh3oxX/8Dv8AccFg4CVtJJpao7qS4/Flyj43xbmbX1jc2t7HZuZ3dv/yB/eFTXUaIY1FgkItXwqQbBJdSQo4BGrICGvoAnv3879Z+eQWkeyUccxuCFtCt5wBlFIzUe2iMui864nS84JSeFvUrcOSmQOart/E+rE7EkBIlMUK2brhOjN6IKORMwzrUSDTFlfdqFpqGShqC9UZp3bJ8bpWMHkTIj0U7VvxcjGmo9DH2zGVLs6WVvKv7rSXjBAcIAiylL9xajYHDjmZfjBEGyWZIgETZG9rQdu8MVMBRDQyhT3Dxjsx5VlKHpMGdacpc7WSX1csm9LJXvrwqVs3lfWXJCTskFcck1qZA7UiU1woggE/JK3qyJ9W59WJ+z1Yw1vzkmC7C+fgHoPJ3R</latexit>

Sin,1
<latexit sha1_base64="HfwrBJUtQjncXML9KQBIfswTsGw=">AAACEHicbVDLTgJBEJzFF+IL9ehlI5p4IGQXTfRI4sUjRkES2JDZoRcmzM5uZnoVQvgJrvoh3oxX/8Dv8AccFg4CVtJJpao7qS4/Flyj43xbmbX1jc2t7HZuZ3dv/yB/eFTXUaIY1FgkItXwqQbBJdSQo4BGrICGvoAnv3879Z+eQWkeyUccxuCFtCt5wBlFIzUe2iMui+64nS84JSeFvUrcOSmQOart/E+rE7EkBIlMUK2brhOjN6IKORMwzrUSDTFlfdqFpqGShqC9UZp3bJ8bpWMHkTIj0U7VvxcjGmo9DH2zGVLs6WVvKv7rSXjBAcIAiylL9xajYHDjmZfjBEGyWZIgETZG9rQdu8MVMBRDQyhT3Dxjsx5VlKHpMGdacpc7WSX1csm9LJXvrwqVs3lfWXJCTskFcck1qZA7UiU1woggE/JK3qyJ9W59WJ+z1Yw1vzkmC7C+fgHp4p3S</latexit>

Sout
<latexit sha1_base64="VPhmsR/L6ZMjyuR7KawnoibpzFs=">AAACD3icbVDNTsJAGNziH+If6tFLI5p4MKRFEz2SePGIUX4SIGS7fMCG7bbZ/aqQhofgqg/izXj1EXwOX8Cl9CDgJJtMZuZLZscLBdfoON9WZm19Y3Mru53b2d3bP8gfHtV0ECkGVRaIQDU8qkFwCVXkKKARKqC+J6DuDe9mfv0ZlOaBfMJxCG2f9iXvcUbRSPXHThxEOOnkC07RSWCvEjclBZKi0sn/tLoBi3yQyATVuuk6IbZjqpAzAZNcK9IQUjakfWgaKqkPuh0ndSf2uVG6di9Q5km0E/XvRUx9rce+Z5I+xYFe9mbiv56EFxwhjPAyYUlusQr2btsxl2GEINm8SS8SNgb2bBy7yxUwFGNDKFPcfMZmA6ooQzNhzqzkLm+ySmqlontVLD1cF8pn6V5ZckJOyQVxyQ0pk3tSIVXCyJBMySt5s6bWu/Vhfc6jGSu9OSYLsL5+Af4Mnew=</latexit> PC A

carry

Sin,N�1
<latexit sha1_base64="KHMgV5xqPti/ScNxGa0Ns7P/roA=">AAACEnicbVDLTgJBEJzFF+IL9ehlI5p4QLKLJnok8eLJYJRHBEJmhwYmzM5uZnoVQvgLrvoh3oxXf8Dv8AccFg4CVtJJpao7qS4vFFyj43xbiZXVtfWN5GZqa3tndy+9f1DWQaQYlFggAlX1qAbBJZSQo4BqqID6noCK17uZ+JVnUJoH8hEHITR82pG8zRlFIz09NIdcZu/O3VEznXFyTgx7mbgzkiEzFJvpn3orYJEPEpmgWtdcJ8TGkCrkTMAoVY80hJT1aAdqhkrqg24M48Qj+9QoLbsdKDMS7Vj9ezGkvtYD3zObPsWuXvQm4r+ehBfsI/QxG7N4bz4Ktq8b5ukwQpBsmqQdCRsDe9KP3eIKGIqBIZQpbp6xWZcqytC0mDItuYudLJNyPude5PL3l5nCyayvJDkix+SMuOSKFMgtKZISYUSSMXklb9bYerc+rM/pasKa3RySOVhfvwQTnmE=</latexit>

Sin,0
<latexit sha1_base64="yVuLVWh7buqCBjt0IwPhKQe/xXk=">AAACEHicbVDLTgJBEJzFF+IL9ehlI5p4IGQXTfRI4sUjRkES2JDZoRcmzM5uZnoVQvgJrvoh3oxX/8Dv8AccFg4CVtJJpao7qS4/Flyj43xbmbX1jc2t7HZuZ3dv/yB/eFTXUaIY1FgkItXwqQbBJdSQo4BGrICGvoAnv3879Z+eQWkeyUccxuCFtCt5wBlFIzUe2iMui864nS84JSeFvUrcOSmQOart/E+rE7EkBIlMUK2brhOjN6IKORMwzrUSDTFlfdqFpqGShqC9UZp3bJ8bpWMHkTIj0U7VvxcjGmo9DH2zGVLs6WVvKv7rSXjBAcIAiylL9xajYHDjmZfjBEGyWZIgETZG9rQdu8MVMBRDQyhT3Dxjsx5VlKHpMGdacpc7WSX1csm9LJXvrwqVs3lfWXJCTskFcck1qZA7UiU1woggE/JK3qyJ9W59WJ+z1Yw1vzkmC7C+fgHoPJ3R</latexit>

Sin,1
<latexit sha1_base64="HfwrBJUtQjncXML9KQBIfswTsGw=">AAACEHicbVDLTgJBEJzFF+IL9ehlI5p4IGQXTfRI4sUjRkES2JDZoRcmzM5uZnoVQvgJrvoh3oxX/8Dv8AccFg4CVtJJpao7qS4/Flyj43xbmbX1jc2t7HZuZ3dv/yB/eFTXUaIY1FgkItXwqQbBJdSQo4BGrICGvoAnv3879Z+eQWkeyUccxuCFtCt5wBlFIzUe2iMui+64nS84JSeFvUrcOSmQOart/E+rE7EkBIlMUK2brhOjN6IKORMwzrUSDTFlfdqFpqGShqC9UZp3bJ8bpWMHkTIj0U7VvxcjGmo9DH2zGVLs6WVvKv7rSXjBAcIAiylL9xajYHDjmZfjBEGyWZIgETZG9rQdu8MVMBRDQyhT3Dxjsx5VlKHpMGdacpc7WSX1csm9LJXvrwqVs3lfWXJCTskFcck1qZA7UiU1woggE/JK3qyJ9W59WJ+z1Yw1vzkmC7C+fgHp4p3S</latexit> Sout

<latexit sha1_base64="VPhmsR/L6ZMjyuR7KawnoibpzFs=">AAACD3icbVDNTsJAGNziH+If6tFLI5p4MKRFEz2SePGIUX4SIGS7fMCG7bbZ/aqQhofgqg/izXj1EXwOX8Cl9CDgJJtMZuZLZscLBdfoON9WZm19Y3Mru53b2d3bP8gfHtV0ECkGVRaIQDU8qkFwCVXkKKARKqC+J6DuDe9mfv0ZlOaBfMJxCG2f9iXvcUbRSPXHThxEOOnkC07RSWCvEjclBZKi0sn/tLoBi3yQyATVuuk6IbZjqpAzAZNcK9IQUjakfWgaKqkPuh0ndSf2uVG6di9Q5km0E/XvRUx9rce+Z5I+xYFe9mbiv56EFxwhjPAyYUlusQr2btsxl2GEINm8SS8SNgb2bBy7yxUwFGNDKFPcfMZmA6ooQzNhzqzkLm+ySmqlontVLD1cF8pn6V5ZckJOyQVxyQ0pk3tSIVXCyJBMySt5s6bWu/Vhfc6jGSu9OSYLsL5+Af4Mnew=</latexit>

...
<latexit sha1_base64="RO8Ws9nmRzhGYciFOr2ouJnndLo=">AAACDnicbVDNTsJAGNz6i/iHevTSiCYeDGnRRI8kXjxiIj8JELLdfoWV7bbZ/YoQwjtw1QfxZrz6Cj6HL+BSOAg4ySaTmfmS2fFiwTU6zre1tr6xubWd2cnu7u0fHOaOjqs6ShSDCotEpOoe1SC4hApyFFCPFdDQE1DzevdTv9YHpXkkn3AYQyukHckDzigaqdrs+xHqdi7vFJwU9ipx5yRP5ii3cz9NP2JJCBKZoFo3XCfG1ogq5EzAONtMNMSU9WgHGoZKGoJujdK2Y/vCKL4dRMo8iXaq/r0Y0VDrYeiZZEixq5e9qfivJ+EFBwgDvEpZmlusgsFda8RlnCBINmsSJMLGyJ5uY/tcAUMxNIQyxc1nbNalijI0C2bNSu7yJqukWiy414Xi402+dD7fK0NOyRm5JC65JSXyQMqkQhh5JhPySt6sifVufVifs+iaNb85IQuwvn4BFK2dbA==</latexit>

Aoffset
A

> Sout
<latexit sha1_base64="VPhmsR/L6ZMjyuR7KawnoibpzFs=">AAACD3icbVDNTsJAGNziH+If6tFLI5p4MKRFEz2SePGIUX4SIGS7fMCG7bbZ/aqQhofgqg/izXj1EXwOX8Cl9CDgJJtMZuZLZscLBdfoON9WZm19Y3Mru53b2d3bP8gfHtV0ECkGVRaIQDU8qkFwCVXkKKARKqC+J6DuDe9mfv0ZlOaBfMJxCG2f9iXvcUbRSPXHThxEOOnkC07RSWCvEjclBZKi0sn/tLoBi3yQyATVuuk6IbZjqpAzAZNcK9IQUjakfWgaKqkPuh0ndSf2uVG6di9Q5km0E/XvRUx9rce+Z5I+xYFe9mbiv56EFxwhjPAyYUlusQr2btsxl2GEINm8SS8SNgb2bBy7yxUwFGNDKFPcfMZmA6ooQzNhzqzkLm+ySmqlontVLD1cF8pn6V5ZckJOyQVxyQ0pk3tSIVXCyJBMySt5s6bWu/Vhfc6jGSu9OSYLsL5+Af4Mnew=</latexit>

PC
A

Sin,N�1
<latexit sha1_base64="KHMgV5xqPti/ScNxGa0Ns7P/roA=">AAACEnicbVDLTgJBEJzFF+IL9ehlI5p4QLKLJnok8eLJYJRHBEJmhwYmzM5uZnoVQvgLrvoh3oxXf8Dv8AccFg4CVtJJpao7qS4vFFyj43xbiZXVtfWN5GZqa3tndy+9f1DWQaQYlFggAlX1qAbBJZSQo4BqqID6noCK17uZ+JVnUJoH8hEHITR82pG8zRlFIz09NIdcZu/O3VEznXFyTgx7mbgzkiEzFJvpn3orYJEPEpmgWtdcJ8TGkCrkTMAoVY80hJT1aAdqhkrqg24M48Qj+9QoLbsdKDMS7Vj9ezGkvtYD3zObPsWuXvQm4r+ehBfsI/QxG7N4bz4Ktq8b5ukwQpBsmqQdCRsDe9KP3eIKGIqBIZQpbp6xWZcqytC0mDItuYudLJNyPude5PL3l5nCyayvJDkix+SMuOSKFMgtKZISYUSSMXklb9bYerc+rM/pasKa3RySOVhfvwQTnmE=</latexit>

Sin,0
<latexit sha1_base64="yVuLVWh7buqCBjt0IwPhKQe/xXk=">AAACEHicbVDLTgJBEJzFF+IL9ehlI5p4IGQXTfRI4sUjRkES2JDZoRcmzM5uZnoVQvgJrvoh3oxX/8Dv8AccFg4CVtJJpao7qS4/Flyj43xbmbX1jc2t7HZuZ3dv/yB/eFTXUaIY1FgkItXwqQbBJdSQo4BGrICGvoAnv3879Z+eQWkeyUccxuCFtCt5wBlFIzUe2iMui864nS84JSeFvUrcOSmQOart/E+rE7EkBIlMUK2brhOjN6IKORMwzrUSDTFlfdqFpqGShqC9UZp3bJ8bpWMHkTIj0U7VvxcjGmo9DH2zGVLs6WVvKv7rSXjBAcIAiylL9xajYHDjmZfjBEGyWZIgETZG9rQdu8MVMBRDQyhT3Dxjsx5VlKHpMGdacpc7WSX1csm9LJXvrwqVs3lfWXJCTskFcck1qZA7UiU1woggE/JK3qyJ9W59WJ+z1Yw1vzkmC7C+fgHoPJ3R</latexit>

Sin,1
<latexit sha1_base64="HfwrBJUtQjncXML9KQBIfswTsGw=">AAACEHicbVDLTgJBEJzFF+IL9ehlI5p4IGQXTfRI4sUjRkES2JDZoRcmzM5uZnoVQvgJrvoh3oxX/8Dv8AccFg4CVtJJpao7qS4/Flyj43xbmbX1jc2t7HZuZ3dv/yB/eFTXUaIY1FgkItXwqQbBJdSQo4BGrICGvoAnv3879Z+eQWkeyUccxuCFtCt5wBlFIzUe2iMui+64nS84JSeFvUrcOSmQOart/E+rE7EkBIlMUK2brhOjN6IKORMwzrUSDTFlfdqFpqGShqC9UZp3bJ8bpWMHkTIj0U7VvxcjGmo9DH2zGVLs6WVvKv7rSXjBAcIAiylL9xajYHDjmZfjBEGyWZIgETZG9rQdu8MVMBRDQyhT3Dxjsx5VlKHpMGdacpc7WSX1csm9LJXvrwqVs3lfWXJCTskFcck1qZA7UiU1woggE/JK3qyJ9W59WJ+z1Yw1vzkmC7C+fgHp4p3S</latexit>

...
<latexit sha1_base64="RO8Ws9nmRzhGYciFOr2ouJnndLo=">AAACDnicbVDNTsJAGNz6i/iHevTSiCYeDGnRRI8kXjxiIj8JELLdfoWV7bbZ/YoQwjtw1QfxZrz6Cj6HL+BSOAg4ySaTmfmS2fFiwTU6zre1tr6xubWd2cnu7u0fHOaOjqs6ShSDCotEpOoe1SC4hApyFFCPFdDQE1DzevdTv9YHpXkkn3AYQyukHckDzigaqdrs+xHqdi7vFJwU9ipx5yRP5ii3cz9NP2JJCBKZoFo3XCfG1ogq5EzAONtMNMSU9WgHGoZKGoJujdK2Y/vCKL4dRMo8iXaq/r0Y0VDrYeiZZEixq5e9qfivJ+EFBwgDvEpZmlusgsFda8RlnCBINmsSJMLGyJ5uY/tcAUMxNIQyxc1nbNalijI0C2bNSu7yJqukWiy414Xi402+dD7fK0NOyRm5JC65JSXyQMqkQhh5JhPySt6sifVufVifs+iaNb85IQuwvn4BFK2dbA==</latexit>

� � � �

�

�
� Conditional bit stream
generation (Eq. 6)
� ANDMUL (Eq. 5)

� Conditional bit stream generation
(Eq. 10)
� Decomposed XNORMUL (Eq. 9)

� Accumulation

� �
N�1X

n=0

Cin,n

<latexit sha1_base64="Mz3132PqFpfUq8ngKSTwuXM0bT8=">AAACH3icbVC7TsMwFHXKq5RXgAWJJbQggQRVUgZYQJW6MKEi0YfUhshx3NbUcSLbQaqizHwHCxsrfAIbYu0X8Bs4bQfaciVLx+fc6+tz3JASIU1zqGUWFpeWV7KrubX1jc0tfXunLoKII1xDAQ1404UCU8JwTRJJcTPkGPouxQ23X0n1xhPmggTsXg5CbPuwy0iHICgV5egHbRH5D/HtmZU4Mbsyk7YPZc8TcUXdCTtliaMXzKI5KmMeWBNQKJ/I1/z13mPV0X/aXoAiHzOJKBSiZZmhtGPIJUEUJ7l2JHAIUR92cUtBBn0s7HhkJTGOFOMZnYCrw6QxYv9OxNAXYuC7qjP9qJjVUvJfzRPpg0luer3sXNrKZhhJzNB4eyeihgyMNCzDIxwjSQcKQMSJMmCgHuQQSRVpTiVjzeYwD+qlonVeLN2piA7BuLJgH+TBMbDABSiDG1AFNYDAM3gD7+BDe9E+tS/te9ya0SYzu2CqtOEvhoOljg==</latexit>(in Eq. 12)
� Average by N (in Eq. 12)

� Accumulation
N�1X

n=0

Cin,n

<latexit sha1_base64="Mz3132PqFpfUq8ngKSTwuXM0bT8=">AAACH3icbVC7TsMwFHXKq5RXgAWJJbQggQRVUgZYQJW6MKEi0YfUhshx3NbUcSLbQaqizHwHCxsrfAIbYu0X8Bs4bQfaciVLx+fc6+tz3JASIU1zqGUWFpeWV7KrubX1jc0tfXunLoKII1xDAQ1404UCU8JwTRJJcTPkGPouxQ23X0n1xhPmggTsXg5CbPuwy0iHICgV5egHbRH5D/HtmZU4Mbsyk7YPZc8TcUXdCTtliaMXzKI5KmMeWBNQKJ/I1/z13mPV0X/aXoAiHzOJKBSiZZmhtGPIJUEUJ7l2JHAIUR92cUtBBn0s7HhkJTGOFOMZnYCrw6QxYv9OxNAXYuC7qjP9qJjVUvJfzRPpg0luer3sXNrKZhhJzNB4eyeihgyMNCzDIxwjSQcKQMSJMmCgHuQQSRVpTiVjzeYwD+qlonVeLN2piA7BuLJgH+TBMbDABSiDG1AFNYDAM3gD7+BDe9E+tS/te9ya0SYzu2CqtOEvhoOljg==</latexit>

(in Eq. 17)

�

� Offset subtraction (in Eq. 17)Coffset
<latexit sha1_base64="JrDi+s1RWJDcOEya2fCdM12yeq4=">AAACEXicbVDLSsNAFJ3UR2t8Rbt0M1gFVyWpC10W6kJXtmAfYEOYTCbt0MmDmYkQQr7CD9ClfoI7cesXuBf8DSdtF7b1wMDhnPua48aMCmmaX1ppbX1js1zZ0rd3dvf2jYPDnogSjkkXRyziAxcJwmhIupJKRgYxJyhwGem7k1bh9x8IFzQK72QaEztAo5D6FCOpJMeoDgMkx57IWrmTRb4viMwdo2bWzSngKrHmpNYs33zfPneu2o7xM/QinAQklJghIe4tM5Z2hrikmJFcHyaCxAhP0IjcKxqigAg7mx6fw1OleNCPuHqhhFP1b0eGAiHSwFWVxali2SvEfz1PFANzfXG99C/tjIZxIkmIZ9v9hEEZwSIe6FFOsGSpIghzqj4A8RhxhKUKUVfJWMs5rJJeo26d1xsdFdEJmKECjsAxOAMWuABNcA3aoAswSMETeAGv2qP2pr1rH7PSkjbvqYIFaJ+/Gwegxg==</latexit>

� MIN operation (in Eq. 17)

–

C Counter G Bit stream generator PC Parallel counter A Accumulator

Fig. 3. uGEMM functional units. Thick line: binary signal; and thin line: unary signal.

b) Bipolar: Similar to Eq. 4 and 5 for unipolar, we derive
the expression for bipolar data representation in Eq. 8 and 9:

Vout = Vin,0 · Vin,1

2 · P(Sout = 1) − 1 =
(
2 · P(Sin,0 = 1) − 1

) · (2 · P(Sin,1 = 1) − 1
)

P(Sout = 1) = P(Sin,0 = 1) · P(Sin,1 = 1)+
P(Sin,0 = 0) · P(Sin,1 = 0)

(8)
P(Sout = 1) = P(Sin,0 = 1, Sin,1 = 1) + P(Sin,0 = 0, Sin,1 = 0)

= P(Sin,0 = 1) · P(Sin,1 = 1|Sin,0 = 1)+
P(Sin,0 = 0) · P(Sin,1 = 0|Sin,0 = 0)

(9)
Following the same reasoning as for Eq. 6, accurate multi-

plication can be achieved by forcing both effective bits as

P(Sin,1 = 1|Sin,0 = 1) == P(Sin,1 = 1)
P(Sin,1 = 0|Sin,0 = 0) == P(Sin,1 = 0) (10)

2) Implementation
a) Unipolar: As shown in Figure 3(a), the circuit con-

struction based on Eq. 6 to attain the distribution-insensitive
multiplier is straightforward. First, the counter is responsible
for holding the probability value for input Sin,1. This data
can be either streamed as serial bits or prestored as a bi-
nary value into the counter, both supporting fully streaming
dataflow. The former works in an in-stream manner, thus
denoted as uMUL-IS. The latter, which prestores data statically,
named uMUL-ST, is well-suited for neural networks with static
weights. A bit stream generator based on Sobol sequence [35]
is then adopted to enforce that the desired probability is
generated during Sin,0 = 1, which enables the conditional bit
stream generation of Seff

in,1. The generated bit is logic one if
the Sobol sequence number is smaller than the probability;
otherwise it is logic zero. At the end, an AND gate is adopted
to multiply Sin,0 and Seff

in,1.
b) Bipolar: For the bipolar architecture in Figure 3(b),

we extend the unipolar circuit so that it behaves as an XNOR
(decomposed in the figure). The bottom half of Figure 3(b)
generates the effective bits when Sin,0 = 1, as in the unipolar
circuit, producing P(Sin,0 = 1) · P(Sin,1 = 1|Sin,0 = 1). The top
half takes the inverse and produces P(Sin,0 = 0) · P(Sin,1 =
0|Sin,0 = 0). The partial results are sent through an OR gate
to attain the final bit stream. Note that as uMUL is now free

TABLE III
Functional example of uGEMM units (unipolar). Values are in decimal.

G
Current Value

2
C

2
2
2

1
3
3
3

1
0
0
1

1
0
0
0

1
0
0
0

&in,0
<latexit sha1_base64="bGv6XCr8yVYUe4u7TwPhImA3FE4=">AAACEXicbVDLTgJBEJzFF+IL9ehlI2o8ELKLJnok8eIRE3kYIGR26IUJs7ObmV6FEL6Cq36IN+PVL/A7/AGHhYOAlXRSqepOqsuLBNfoON9Wam19Y3MrvZ3Z2d3bP8geHlV1GCsGFRaKUNU9qkFwCRXkKKAeKaCBJ6Dm9e+mfu0ZlOahfMRhBK2AdiX3OaNopKfmRXvEZd4Zt7M5p+AksFeJOyc5Mke5nf1pdkIWByCRCap1w3UibI2oQs4EjDPNWENEWZ92oWGopAHo1igJPLbPjdKx/VCZkWgn6t+LEQ20Hgae2Qwo9vSyNxX/9SS84ABhgPmEJXuLUdC/bZmXoxhBslkSPxY2hva0HrvDFTAUQ0MoU9w8Y7MeVZShKTFjWnKXO1kl1WLBvSoUH65zpbN5X2lyQk7JJXHJDSmRe1ImFcJIQCbklbxZE+vd+rA+Z6spa35zTBZgff0CXE6eCg==</latexit>

&in,1
<latexit sha1_base64="Z4Ol5Kr9sFtixXAVzZIkx5gjxTw=">AAACEXicbVDLTgJBEJzFF+IL9ehlI2o8ELKLJnok8eIRE3kYIGR26IUJs7ObmV6FEL6Cq36IN+PVL/A7/AGHhYOAlXRSqepOqsuLBNfoON9Wam19Y3MrvZ3Z2d3bP8geHlV1GCsGFRaKUNU9qkFwCRXkKKAeKaCBJ6Dm9e+mfu0ZlOahfMRhBK2AdiX3OaNopKfmRXvEZd4dt7M5p+AksFeJOyc5Mke5nf1pdkIWByCRCap1w3UibI2oQs4EjDPNWENEWZ92oWGopAHo1igJPLbPjdKx/VCZkWgn6t+LEQ20Hgae2Qwo9vSyNxX/9SS84ABhgPmEJXuLUdC/bZmXoxhBslkSPxY2hva0HrvDFTAUQ0MoU9w8Y7MeVZShKTFjWnKXO1kl1WLBvSoUH65zpbN5X2lyQk7JJXHJDSmRe1ImFcJIQCbklbxZE+vd+rA+Z6spa35zTBZgff0CXfSeCw==</latexit>

0
1
2
3

A
4
1
2
1

0
1
3
0

1
0
0
1

4
1
2
1

4
5
7
8

0
1
2
3

PCout
<latexit sha1_base64="LRJoPSSTWENUSwXeqkJCjEliGRs=">AAACEHicbVDNTsJAGNziH+If6tFLI5p4MKRFEz2ScPGIifwkQMh2+YAN222z+1UhDS/BVR/Em/HqG/gcvoBL6UHASTaZzMyXzI4XCq7Rcb6tzMbm1vZOdje3t39weJQ/PqnrIFIMaiwQgWp6VIPgEmrIUUAzVEB9T0DDG1XmfuMZlOaBfMJJCB2fDiTvc0bRSM1qpRsHEU67+YJTdBLY68RNSYGkqHbzP+1ewCIfJDJBtW65ToidmCrkTMA01440hJSN6ABahkrqg+7ESd+pfWmUnt0PlHkS7UT9exFTX+uJ75mkT3GoV725+K8n4QXHCGO8TliSW66C/ftOzGUYIUi2aNKPhI2BPV/H7nEFDMXEEMoUN5+x2ZAqytBsmDMruaubrJN6qejeFEuPt4XyRbpXlpyRc3JFXHJHyuSBVEmNMCLIjLySN2tmvVsf1ucimrHSm1OyBOvrF448njY=</latexit>

Sout
<latexit sha1_base64="VPhmsR/L6ZMjyuR7KawnoibpzFs=">AAACD3icbVDNTsJAGNziH+If6tFLI5p4MKRFEz2SePGIUX4SIGS7fMCG7bbZ/aqQhofgqg/izXj1EXwOX8Cl9CDgJJtMZuZLZscLBdfoON9WZm19Y3Mru53b2d3bP8gfHtV0ECkGVRaIQDU8qkFwCVXkKKARKqC+J6DuDe9mfv0ZlOaBfMJxCG2f9iXvcUbRSPXHThxEOOnkC07RSWCvEjclBZKi0sn/tLoBi3yQyATVuuk6IbZjqpAzAZNcK9IQUjakfWgaKqkPuh0ndSf2uVG6di9Q5km0E/XvRUx9rce+Z5I+xYFe9mbiv56EFxwhjPAyYUlusQr2btsxl2GEINm8SS8SNgb2bBy7yxUwFGNDKFPcfMZmA6ooQzNhzqzkLm+ySmqlontVLD1cF8pn6V5ZckJOyQVxyQ0pk3tSIVXCyJBMySt5s6bWu/Vhfc6jGSu9OSYLsL5+Af4Mnew=</latexit>

1
1
1
1

>in,0
<latexit sha1_base64="zC5HNiwF0wt86YPrlEQY4o3ESEM=">AAACEHicbVDLTgJBEJzFF+IL9ehlI5p4IGQXTfRkSLx4xESQBDZkdmhgwuzsZqZXIRt+gqt+iDfj1T/wO/wBh4WDgJV0UqnqTqrLjwTX6DjfVmZtfWNzK7ud29nd2z/IHx7VdRgrBjUWilA1fKpBcAk15CigESmggS/gyR/cTf2nZ1Cah/IRRxF4Ae1J3uWMopEat+2Ey6IzbucLTslJYa8Sd04KZI5qO//T6oQsDkAiE1TrputE6CVUIWcCxrlWrCGibEB70DRU0gC0l6R5x/a5UTp2N1RmJNqp+vcioYHWo8A3mwHFvl72puK/noQXHCIMsZiydG8xCnZvPPNyFCNINkvSjYWNoT1tx+5wBQzFyBDKFDfP2KxPFWVoOsyZltzlTlZJvVxyL0vlh6tC5WzeV5ackFNyQVxyTSrknlRJjTAiyIS8kjdrYr1bH9bnbDVjzW+OyQKsr1/FIJ28</latexit>

>in,1
<latexit sha1_base64="HA9c+xPdvEzgvRfnTljCsPtE+zE=">AAACEHicbVDLTgJBEJzFF+IL9ehlI5p4IGQXTfRkSLx4xESQBDZkdmhgwuzsZqZXIRt+gqt+iDfj1T/wO/wBh4WDgJV0UqnqTqrLjwTX6DjfVmZtfWNzK7ud29nd2z/IHx7VdRgrBjUWilA1fKpBcAk15CigESmggS/gyR/cTf2nZ1Cah/IRRxF4Ae1J3uWMopEat+2Ey6I7bucLTslJYa8Sd04KZI5qO//T6oQsDkAiE1TrputE6CVUIWcCxrlWrCGibEB70DRU0gC0l6R5x/a5UTp2N1RmJNqp+vcioYHWo8A3mwHFvl72puK/noQXHCIMsZiydG8xCnZvPPNyFCNINkvSjYWNoT1tx+5wBQzFyBDKFDfP2KxPFWVoOsyZltzlTlZJvVxyL0vlh6tC5WzeV5ackFNyQVxyTSrknlRJjTAiyIS8kjdrYr1bH9bnbDVjzW+OyQKsr1/Gxp29</latexit>

Vout
<latexit sha1_base64="xPOWTNJ4jXLaRX3BUDnbM3P2Tqc=">AAACD3icbVDNSsNAGNz4W+tf1aOXYBU8SEmqoMeCF48V7A+0oWy2X9ulm03Y/aItoQ/Rqz6IN/HqI/gcvoDbNAfbOrAwzMwHs+NHgmt0nG9rbX1jc2s7t5Pf3ds/OCwcHdd1GCsGNRaKUDV9qkFwCTXkKKAZKaCBL6DhD+9nfuMZlOahfMJxBF5A+5L3OKNopEa9k4QxTjqFolNyUtirxM1IkWSodgo/7W7I4gAkMkG1brlOhF5CFXImYJJvxxoiyoa0Dy1DJQ1Ae0lad2JfGKVr90JlnkQ7Vf9eJDTQehz4JhlQHOhlbyb+60l4wRHCCK9SluYWq2Dvzku4jGIEyeZNerGwMbRn49hdroChGBtCmeLmMzYbUEUZmgnzZiV3eZNVUi+X3OtS+fGmWDnP9sqRU3JGLolLbkmFPJAqqRFGhmRKXsmbNbXerQ/rcx5ds7KbE7IA6+sXAxyd7w==</latexit> 1/4 2/4 4/4
Vexp

<latexit sha1_base64="Wqhi0K7vaxGZVj0u83avfelYdf8=">AAACD3icbVC9SgNBGNzzLxr/opY2i1GwkHAXCy0DWmilgvmB5Ah7my+6ZG/v2P1OE448RFptfAs7sfUR7H0DX8DNxcKoAwvDzHwwO0EshUHXfXdmZufmF3KLS/nlldW19cLGZs1EieZQ5ZGMdCNgBqRQUEWBEhqxBhYGEupB72Ts1+9AGxGpaxzE4IfsRomu4AytVK+1U+jHw3ah6JbcDPQv8b5JsZI7/7h4ujq9bBc+W52IJyEo5JIZ0/TcGP2UaRRcwjDfSgzEjPfYDTQtVSwE46dZ3SHds0qHdiNtn0KaqT8vUhYaMwgDmwwZ3prf3lj811Nwj32EPh5kLMtNV8HusZ8KFScIik+adBNJMaLjcWhHaOAoB5YwroX9DOW3TDOOdsK8Xcn7vclfUiuXvMNS+corVnbJBItkm+yQfeKRI1IhZ+SSVAknPTIiD+TRGTnPzovzOonOON83W2QKztsXT+qg2Q==</latexit> 1/4=(2/4)×(2/4) 2/4=(3+2+
1+2)/(4×4)

4/4=MIN{4,
(3+2+1+2)}/4

MUL uMUL uSADD uNSADD

Cyc

1
0
0
1

1
0
0
0

1
0
1
0

1
1
1
0

-
-
-
-

1
0
0
1

PCout
<latexit sha1_base64="LRJoPSSTWENUSwXeqkJCjEliGRs=">AAACEHicbVDNTsJAGNziH+If6tFLI5p4MKRFEz2ScPGIifwkQMh2+YAN222z+1UhDS/BVR/Em/HqG/gcvoBL6UHASTaZzMyXzI4XCq7Rcb6tzMbm1vZOdje3t39weJQ/PqnrIFIMaiwQgWp6VIPgEmrIUUAzVEB9T0DDG1XmfuMZlOaBfMJJCB2fDiTvc0bRSM1qpRsHEU67+YJTdBLY68RNSYGkqHbzP+1ewCIfJDJBtW65ToidmCrkTMA01440hJSN6ABahkrqg+7ESd+pfWmUnt0PlHkS7UT9exFTX+uJ75mkT3GoV725+K8n4QXHCGO8TliSW66C/ftOzGUYIUi2aNKPhI2BPV/H7nEFDMXEEMoUN5+x2ZAqytBsmDMruaubrJN6qejeFEuPt4XyRbpXlpyRc3JFXHJHyuSBVEmNMCLIjLySN2tmvVsf1ucimrHSm1OyBOvrF448njY=</latexit>

Sout
<latexit sha1_base64="VPhmsR/L6ZMjyuR7KawnoibpzFs=">AAACD3icbVDNTsJAGNziH+If6tFLI5p4MKRFEz2SePGIUX4SIGS7fMCG7bbZ/aqQhofgqg/izXj1EXwOX8Cl9CDgJJtMZuZLZscLBdfoON9WZm19Y3Mru53b2d3bP8gfHtV0ECkGVRaIQDU8qkFwCVXkKKARKqC+J6DuDe9mfv0ZlOaBfMJxCG2f9iXvcUbRSPXHThxEOOnkC07RSWCvEjclBZKi0sn/tLoBi3yQyATVuuk6IbZjqpAzAZNcK9IQUjakfWgaKqkPuh0ndSf2uVG6di9Q5km0E/XvRUx9rce+Z5I+xYFe9mbiv56EFxwhjPAyYUlusQr2btsxl2GEINm8SS8SNgb2bBy7yxUwFGNDKFPcfMZmA6ooQzNhzqzkLm+ySmqlontVLD1cF8pn6V5ZckJOyQVxyQ0pk3tSIVXCyJBMySt5s6bWu/Vhfc6jGSu9OSYLsL5+Af4Mnew=</latexit>

Sout
<latexit sha1_base64="VPhmsR/L6ZMjyuR7KawnoibpzFs=">AAACD3icbVDNTsJAGNziH+If6tFLI5p4MKRFEz2SePGIUX4SIGS7fMCG7bbZ/aqQhofgqg/izXj1EXwOX8Cl9CDgJJtMZuZLZscLBdfoON9WZm19Y3Mru53b2d3bP8gfHtV0ECkGVRaIQDU8qkFwCVXkKKARKqC+J6DuDe9mfv0ZlOaBfMJxCG2f9iXvcUbRSPXHThxEOOnkC07RSWCvEjclBZKi0sn/tLoBi3yQyATVuuk6IbZjqpAzAZNcK9IQUjakfWgaKqkPuh0ndSf2uVG6di9Q5km0E/XvRUx9rce+Z5I+xYFe9mbiv56EFxwhjPAyYUlusQr2btsxl2GEINm8SS8SNgb2bBy7yxUwFGNDKFPcfMZmA6ooQzNhzqzkLm+ySmqlontVLD1cF8pn6V5ZckJOyQVxyQ0pk3tSIVXCyJBMySt5s6bWu/Vhfc6jGSu9OSYLsL5+Af4Mnew=</latexit>

Sin,0
<latexit sha1_base64="FlAARNweUuwwArei9nEW8w5C4WA=">AAACEHicbVC7TsNAEDyHRyC8ApQ0FgGJIorsUEAZCQqoAEEeEkTR+bJOTjmfrbs1JLLyE7RQ8Bl0iJY/oOcP+AEuTgpCGGml0cyuNDteJLhGx/m0MnPzC4vZpeXcyura+kZ+c6umw1gxqLJQhKrhUQ2CS6giRwGNSAENPAF1r3cy8uv3oDQP5Q0OImgGtCO5zxlFIzWuWwmXRWfYyheckpPCniXuhBQq2fOvi5er08tW/vuuHbI4AIlMUK1vXSfCZkIVciZgmLuLNUSU9WgHbg2VNADdTNK8Q3vfKG3bD5UZiXaq/r5IaKD1IPDMZkCxq/96I/FfT8ID9hH6WExZujcdBf3jpnk5ihEkGyfxY2FjaI/asdtcAUMxMIQyxc0zNutSRRmaDnOmJfdvJ7OkVi65h6XylVuo7JExlsgO2SUHxCVHpELOyCWpEkYEeSRP5Nl6tF6tN+t9vJqxJjfbZArWxw9HTKDG</latexit>

Sin,1
<latexit sha1_base64="LIryVieVpgAVkLPHvsksNnXftz0=">AAACEHicbVC7TsNAEDzzDOEVoKSxCEgUUWSHAspIUEBFIgiJRKzofFknJ85n624NRFZ+Ii0UfAYdouUP6PkDfoCLQwGBkVYazexKs+PHgmt0nHdrZnZufmExt5RfXlldWy9sbF7pKFEMGiwSkWr5VIPgEhrIUUArVkBDX0DTvzke+81bUJpH8hIHMXgh7UkecEbRSK2LTsplyR12CkWn7GSw/xL3mxSri2cf50/1k1qn8NnuRiwJQSITVOtr14nRS6lCzgQM8+1EQ0zZDe3BtaGShqC9NMs7tPeM0rWDSJmRaGfqz4uUhloPQt9shhT7etobi/96Eu7wHuEeSxnL9n5HweDIMy/HCYJkkyRBImyM7HE7dpcrYCgGhlCmuHnGZn2qKEPTYd605E538pdcVcruQblSd4vVXTJBjmyTHbJPXHJIquSU1EiDMCLIiDyQR2tkPVsv1utkdcb6vtkiv2C9fQFI8qDH</latexit>

Sin,2
<latexit sha1_base64="qhVjdLi64mPFj5Qh0HyZvDbgfyY=">AAACEHicbVC7TgJBFJ3FF+ILtbTZiCYWhOxioSWJFloJUYRECJkd7sKE2dnNzF2VbPgJWi38DDtj6x/Y+wf+gMNioehJbnJyzr3JuceLBNfoOO9WZm5+YXEpu5xbWV1b38hvbl3rMFYM6iwUoWp6VIPgEurIUUAzUkADT0DDG5xM/MYtKM1DeYXDCNoB7Unuc0bRSM3LTsJlsTzq5AtOyUlh/yXuNylUls4/Lp5qp9VO/rPVDVkcgEQmqNY3rhNhO6EKORMwyrViDRFlA9qDG0MlDUC3kzTvyN43Stf2Q2VGop2qPy8SGmg9DDyzGVDs61lvIv7rSbjDe4R7LKYs3fsdBf3jtnk5ihEkmybxY2FjaE/asbtcAUMxNIQyxc0zNutTRRmaDnOmJXe2k7/kulxyD0vlmluo7JEpsmSH7JID4pIjUiFnpErqhBFBxuSBPFpj69l6sV6nqxnr+2ab/IL19gVKmKDI</latexit>

Sin,3
<latexit sha1_base64="lzxff3t4Qp/2evEvugEJz7E4t84=">AAACEHicbVC7TgJBFJ3FB4ov1NJmI5pYELILhZYkWmilRHkkQMjscIEJs7ObmbsqIfyErRZ+hp2x9Q/s/QN/wGGhEPAkNzk5597k3OOFgmt0nC8rsbS8sppcW09tbG5t76R39yo6iBSDMgtEoGoe1SC4hDJyFFALFVDfE1D1+udjv3oPSvNA3uEghKZPu5J3OKNopNpta8hltjBqpTNOzolhLxJ3SjLF5NX39Wvp4qaV/mm0Axb5IJEJqnXddUJsDqlCzgSMUo1IQ0hZn3ahbqikPujmMM47so+N0rY7gTIj0Y7VvxdD6ms98D2z6VPs6XlvLP7rSXjAR4RHzMYs3puNgp2zpnk5jBAkmyTpRMLGwB63Y7e5AoZiYAhliptnbNajijI0HaZMS+58J4ukks+5hVy+5GaKR2SCNXJADskJcckpKZJLckPKhBFBnsgzebGerDfr3fqYrCas6c0+mYH1+QtMPqDJ</latexit>

Sin,0
<latexit sha1_base64="FlAARNweUuwwArei9nEW8w5C4WA=">AAACEHicbVC7TsNAEDyHRyC8ApQ0FgGJIorsUEAZCQqoAEEeEkTR+bJOTjmfrbs1JLLyE7RQ8Bl0iJY/oOcP+AEuTgpCGGml0cyuNDteJLhGx/m0MnPzC4vZpeXcyura+kZ+c6umw1gxqLJQhKrhUQ2CS6giRwGNSAENPAF1r3cy8uv3oDQP5Q0OImgGtCO5zxlFIzWuWwmXRWfYyheckpPCniXuhBQq2fOvi5er08tW/vuuHbI4AIlMUK1vXSfCZkIVciZgmLuLNUSU9WgHbg2VNADdTNK8Q3vfKG3bD5UZiXaq/r5IaKD1IPDMZkCxq/96I/FfT8ID9hH6WExZujcdBf3jpnk5ihEkGyfxY2FjaI/asdtcAUMxMIQyxc0zNutSRRmaDnOmJfdvJ7OkVi65h6XylVuo7JExlsgO2SUHxCVHpELOyCWpEkYEeSRP5Nl6tF6tN+t9vJqxJjfbZArWxw9HTKDG</latexit>

Sin,1
<latexit sha1_base64="LIryVieVpgAVkLPHvsksNnXftz0=">AAACEHicbVC7TsNAEDzzDOEVoKSxCEgUUWSHAspIUEBFIgiJRKzofFknJ85n624NRFZ+Ii0UfAYdouUP6PkDfoCLQwGBkVYazexKs+PHgmt0nHdrZnZufmExt5RfXlldWy9sbF7pKFEMGiwSkWr5VIPgEhrIUUArVkBDX0DTvzke+81bUJpH8hIHMXgh7UkecEbRSK2LTsplyR12CkWn7GSw/xL3mxSri2cf50/1k1qn8NnuRiwJQSITVOtr14nRS6lCzgQM8+1EQ0zZDe3BtaGShqC9NMs7tPeM0rWDSJmRaGfqz4uUhloPQt9shhT7etobi/96Eu7wHuEeSxnL9n5HweDIMy/HCYJkkyRBImyM7HE7dpcrYCgGhlCmuHnGZn2qKEPTYd605E538pdcVcruQblSd4vVXTJBjmyTHbJPXHJIquSU1EiDMCLIiDyQR2tkPVsv1utkdcb6vtkiv2C9fQFI8qDH</latexit>

Vout
<latexit sha1_base64="xPOWTNJ4jXLaRX3BUDnbM3P2Tqc=">AAACD3icbVDNSsNAGNz4W+tf1aOXYBU8SEmqoMeCF48V7A+0oWy2X9ulm03Y/aItoQ/Rqz6IN/HqI/gcvoDbNAfbOrAwzMwHs+NHgmt0nG9rbX1jc2s7t5Pf3ds/OCwcHdd1GCsGNRaKUDV9qkFwCTXkKKAZKaCBL6DhD+9nfuMZlOahfMJxBF5A+5L3OKNopEa9k4QxTjqFolNyUtirxM1IkWSodgo/7W7I4gAkMkG1brlOhF5CFXImYJJvxxoiyoa0Dy1DJQ1Ae0lad2JfGKVr90JlnkQ7Vf9eJDTQehz4JhlQHOhlbyb+60l4wRHCCK9SluYWq2Dvzku4jGIEyeZNerGwMbRn49hdroChGBtCmeLmMzYbUEUZmgnzZiV3eZNVUi+X3OtS+fGmWDnP9sqRU3JGLolLbkmFPJAqqRFGhmRKXsmbNbXerQ/rcx5ds7KbE7IA6+sXAxyd7w==</latexit>

Vexp
<latexit sha1_base64="Wqhi0K7vaxGZVj0u83avfelYdf8=">AAACD3icbVC9SgNBGNzzLxr/opY2i1GwkHAXCy0DWmilgvmB5Ah7my+6ZG/v2P1OE448RFptfAs7sfUR7H0DX8DNxcKoAwvDzHwwO0EshUHXfXdmZufmF3KLS/nlldW19cLGZs1EieZQ5ZGMdCNgBqRQUEWBEhqxBhYGEupB72Ts1+9AGxGpaxzE4IfsRomu4AytVK+1U+jHw3ah6JbcDPQv8b5JsZI7/7h4ujq9bBc+W52IJyEo5JIZ0/TcGP2UaRRcwjDfSgzEjPfYDTQtVSwE46dZ3SHds0qHdiNtn0KaqT8vUhYaMwgDmwwZ3prf3lj811Nwj32EPh5kLMtNV8HusZ8KFScIik+adBNJMaLjcWhHaOAoB5YwroX9DOW3TDOOdsK8Xcn7vclfUiuXvMNS+corVnbJBItkm+yQfeKRI1IhZ+SSVAknPTIiD+TRGTnPzovzOonOON83W2QKztsXT+qg2Q==</latexit>

ADD
andSin

<latexit sha1_base64="G0/hCjVjxpQeiGf4Kwpctt3CWuk=">AAACDnicbVC7TgJBFJ3FF+ILtbCw2YgmFobsYqGdJDSWGOWRICGzw0VHZmc3M3cVQvgHWv0QrYythaWNn2BtY+mwUAh6kpucnHNvcu7xQsE1Os6HlZiZnZtfSC6mlpZXVtfS6xtlHUSKQYkFIlBVj2oQXEIJOQqohgqo7wmoeO3C0K/cgtI8kBfYDaHu0yvJW5xRNFL5vNHjst9IZ5ysE8P+S9wxyZx8vz29bxU+i43012UzYJEPEpmgWtdcJ8R6jyrkTEA/dRlpCClr0yuoGSqpD7rei9P27T2jNO1WoMxItGP190WP+lp3fc9s+hSv9bQ3FP/1JNxhB6GDBzGL9yajYOu4bh4OIwTJRklakbAxsIfd2E2ugKHoGkKZ4uYZm11TRRmaBlOmJXe6k7+knMu6h9ncmZvJ75IRkmSb7JB94pIjkienpEhKhJEbMiD35MEaWI/Ws/UyWk1Y45tNMgHr9QccXaIv</latexit>

Sout
<latexit sha1_base64="skMsnIHpXwFdMXumPSStfmEllCs=">AAACD3icbVA7SwNBGNyLrxhfUQsLm8MoWEi400I7hTSWiuYBeoS9zXfJkr29Y/c7NRz5Ebb6Q+zEVrC08SdY21i6uaQw0YGFYWY+mB0/Flyj43xYuanpmdm5/HxhYXFpeaW4ulbTUaIYVFkkItXwqQbBJVSRo4BGrICGvoC6360M/PoNKM0jeYm9GLyQtiUPOKNopPpFM40S7DeLJafsZLD/EndESsffb0/vG5XPs2bx67oVsSQEiUxQra9cJ0YvpQo5E9AvXCcaYsq6tA1XhkoagvbSrG7f3jFKyw4iZZ5EO1N/X6Q01LoX+iYZUuzoSW8g/utJuMU7hDvcy1iWG6+CwZGXchknCJINmwSJsDGyB+PYLa6AoegZQpni5jM261BFGZoJC2Yld3KTv6S2X3YPyvvnbulkmwyRJ5tki+wSlxySE3JKzkiVMNIl9+SBPFr31pP1bL0MozlrdLNOxmC9/gAYOKK6</latexit>

denote the bitstream input and output; C, G, A represent counter, bit
stream generator, and accumulator; PC

<latexit sha1_base64="0IjMupI6sCKHp03ds5iOSPaU0Y8=">AAACCnicbVDNSsNAGPziv/Wv6tFLsAoepCT1oDcFLx6rWBU0lM32S7u42YTdL2oJfYNeFfQNvHoTr76Ez+ELuE09WHVgYZiZD2YnTKUw5Hkfztj4xOTU9MxsaW5+YXGpvLxyZpJMc2zwRCb6ImQGpVDYIEESL1KNLA4lnofXhwP//Aa1EYk6pW6KQczaSkSCM7LSSf2wWa54Va+A+5f436Sy//w4wFO9Wf68aiU8i1ERl8yYS99LKciZJsEl9kpXmcGU8WvWxktLFYvRBHnRtOduWqXlRom2T5FbqD8vchYb041Dm4wZdcxvbyD+6ym8pTvCO9ouWJEbrULRXpALlWaEig+bRJl0KXEHu7gtoZGT7FrCuBb2My7vMM042fVKdiX/9yZ/yVmt6u9Ua8d+5WADhpiBNViHLfBhFw7gCOrQAA4R9OEeHpy+8+K8Om/D6JjzfbMKI3DevwDblJ/H</latexit>

, , and&
<latexit sha1_base64="l/+Yvbuz0Z1p9imthcyvEsWsYNo=">AAACCnicbVC9SgNBGPzO3xj/opY2h1GxkHCnhXYGbCyjmERIguxtvtPFvb1j9zs1hLxBWgV9A1s7sfUlfA5fwM0lhVEHFoaZ+WB2gkQKQ5736UxMTk3PzObm8vMLi0vLhZXVmolTzbHKYxnri4AZlEJhlQRJvEg0siiQWA9ujgd+/Ra1EbE6p06CrYhdKREKzshKZ83ty0LRK3kZ3L/EH5Hi0cvTAM+Vy8JXsx3zNEJFXDJjGr6XUKvLNAkusZdvpgYTxm/YFTYsVSxC0+pmTXvullXabhhr+xS5mfrzossiYzpRYJMRo2vz2xuI/3oK7+ie8J52M5blxqtQeNjqCpWkhIoPm4SpdCl2B7u4baGRk+xYwrgW9jMuv2aacbLr5e1K/u9N/pLaXsnfL+2d+sXyJgyRg3XYgB3w4QDKcAIVqAKHEPrwAI9O33l13pz3YXTCGd2swRicj2+/q5+2</latexit>

>
<latexit sha1_base64="TAWQkqcdfV2DWAvui/Bulp2zHGQ=">AAACCXicbVDNSsNAGPxS/2r9q3r0EqyCiJZED+pFBRE8KlgtaJDN9qsu3WzC7he1hD6BHvVBvIlXn0LwLXwBt6kHbR1YGGbmg9kJEykMed6HUxgaHhkdK46XJianpmfKs3NnJk41xxqPZazrITMohcIaCZJYTzSyKJR4HrYOuv75LWojYnVK7QSDiF0r0RSckZVOdq/KFa/q5XAHif9DKnufO8Prj6uHx1flr8tGzNMIFXHJjLnwvYSCjGkSXGKndJkaTBhvsWu8sFSxCE2Q5UU77rJVGm4z1vYpcnP190XGImPaUWiTEaMb0+91xX89hXd0T3hPaznLc3+rUHM7yIRKUkLFe02aqXQpdruzuA2hkZNsW8K4FvYzLr9hmnGy45XsSn7/JoPkbKPqb1Y3TvzK/hL0UIQFWIQV8GEL9uEIjqEGHBAe4AmenQfnxXl13nrRgvNzMw9/4Lx/AzrwnWk=</latexit>

are parallel counter, accumulator,
and comparator. Note that here in uMUL-ST, the 1-count of is prestored in C.Sin,1

<latexit sha1_base64="LIryVieVpgAVkLPHvsksNnXftz0=">AAACEHicbVC7TsNAEDzzDOEVoKSxCEgUUWSHAspIUEBFIgiJRKzofFknJ85n624NRFZ+Ii0UfAYdouUP6PkDfoCLQwGBkVYazexKs+PHgmt0nHdrZnZufmExt5RfXlldWy9sbF7pKFEMGiwSkWr5VIPgEhrIUUArVkBDX0DTvzke+81bUJpH8hIHMXgh7UkecEbRSK2LTsplyR12CkWn7GSw/xL3mxSri2cf50/1k1qn8NnuRiwJQSITVOtr14nRS6lCzgQM8+1EQ0zZDe3BtaGShqC9NMs7tPeM0rWDSJmRaGfqz4uUhloPQt9shhT7etobi/96Eu7wHuEeSxnL9n5HweDIMy/HCYJkkyRBImyM7HE7dpcrYCgGhlCmuHnGZn2qKEPTYd605E538pdcVcruQblSd4vVXTJBjmyTHbJPXHJIquSU1EiDMCLIiDyQR2tkPVsv1utkdcb6vtkiv2C9fQFI8qDH</latexit>

from the correlation problem, it is feasible to share bit stream
generators in uGEMM with no additional effort [70].
As uMUL exclusively applies conditional probability to

generate those effective bits in Sin,1, the distribution in the
output bit stream actually depends on the distribution in the
input bit stream Sin,0. In other words, if the input to uMUL
is generated by conventional stochastic computing units, the
output of uMUL can be consumed by subsequent conventional
stochastic computing units seamlessly with no additional error.
In Table III’s example, we show that unipolar uMUL’s output
value Vout exactly matches the expected value Vexp thanks to
the conditional bit stream generation at cycles 0, which then
stops updating the generation if observing Sin,0 = 0, for the
AND gate.

B. uSADD: Unary Scaled Addition

For an N-input unary scaled addition, we derive a unified
expression for both unipolar and bipolar representations based
on probabilities and describe the cycle-level operation.

1) Mathematical Expression
The goal of a scaled ADD is to calculate the mean value

Vout among N inputs Vin,n as in Eq. 11, where C denotes the
number of 1s in the bit stream, m is 1 for unipolar and 2 for
bipolar, k is 0 for unipolar and 1 for bipolar. The same notation
holds for all equations below. Then we divide the total count
of both input stream Sin,n and output stream Sout by length
L for unipolar data, or scale it by 2

L then subtract by 1 for
bipolar data, according to data representation. To stay within

5

the value range, the added inputs are scaled by N to obtain the
final output value. Despite their differences, both unipolar and
bipolar representations reduce to the same simplified operation
of counting the number of 1s as in Eq. 12.

Vout =
1
N
·
N−1∑
n=0

Vin,n

m · Cout

L
− k =

N−1∑
n=0

(
m · Cin,n

L
− k

)
N

(11)

Cout =
1
N
·
N−1∑
n=0

Cin,n (12)

2) Implementation
The architecture of uSADD for unipolar/bipolar bit streams

is shown in Figure 3(c). First, N input streams are fed into a N-
bit parallel counter [49], producing a count every cycle. This is
then accumulated, and the accumulator asserts its carry signal
whenever it overflows, i.e., exceeds N . This signal is returned
as the output of uSADD, effectively normalizing the sum of
input 1s by N across all input bit streams.

As for the output, uSADD outputs bit streams accord-
ing to the inputs. Therefore, like uMUL, if uSADD directly
takes inputs from conventional stochastic computing units, the
output can also be fed to conventional stochastic comput-
ing units without extra error. As shown in the example in
Table III, unipolar uSADD generates, taking these four unipo-
lar inputs, scaled results correctly via its accumulator, only
emitting a one when the accumulator reaches four.

3) Proof of Error Bound
This section proves that regardless of rate or temporal

coding, the maximum error for uSADD is N−1
L ·N for unipolar and

2·(N−1)
L ·N for bipolar, which is negligible for large bit streams.
Eq. 13 first shows the error ∆C between uSADD’s input

count of 1s (Cin) and the actual output count C̃out. The
takeaway is that the error is always between [0, N − 1]; this
error is the leftover value of the accumulator at the end of the
bit streams.

∆C =

N−1∑
n=0

Cin,n − N · C̃out

=

(
N−1∑
n=0

Cin,n − N · C̃out

)
mod(N) ∈ [0, N − 1]

(13)

Eq. 14 then shows the error ∆Vout between uSADD’s ideal
output value Vout and the actual output value Ṽout.

∆Vout = Vout − Ṽout =
m

L · N ·
(
N−1∑
n=0

Cin,n − N · C̃out

)
(14)

Combining Eq. 13 and 14, Eq. 15 shows that the error bound
of uSADD for both unipolar and bipolar.

∆Vout = Vout − Ṽout =
m

L · N · ∆C ∈
[
0,

m · (N − 1)
L · N

]
(15)

C. uNSADD: Unary Non-Scaled Addition
Besides the scaled addition [3, 45], many application sce-

narios also require identical scale between the inputs and
outputs [53, 57]. However, conventional OR-gate based non-
scaled addition is inaccurate even with special up-scaling logic
or bit stream regeneration [53, 67], and is not practical for
realistic application. We present uNSADD to perform non-
scaled addition with better accuracy. Our uNSADD signifi-
cantly improves the accuracy of unipolar non-scaled addition,
and it is the first design to support bipolar non-scaled addition.
1) Mathematical Expression
We formulate the behavior of uNSADD in Eq. 16, 17 and 18.

If overflowing outside [0, 1] in unipolar mode and [−1, 1] in
bipolar mode, the output value of uNSADD, Vout, is always
clipped to [−k, 1] as in Eq. 16, where m is 1 for unipolar and
2 for bipolar, k is 0 for unipolar and 1 for bipolar. In terms
of output bit count, which is always non-negative, both modes
have the same format as in Eq. 17 with the offset value in
Eq. 18. We clip the bit count to the maximum value of output
length L when the sum overflows. Furthermore, the result can
be simplified as a minimum function due to the fact that 0 is
the lower bound of clipping.

Vout = clip

(
N−1∑
n=0

Vin,n,−k, 1

)
m · Cout

L
− k = clip

(
N−1∑
n=0

(
m · Cin,n

L
− k

)
,−k, 1

) (16)

Therefore we have the unified form,

Cout = clip

(
N−1∑
n=0

Cin,n − L · k
m
· (N − 1), 0, L · k + 1

m

)
= min

(
N−1∑
n=0

Cin,n − L · Coffset, L

) (17)

where,
Coffset =

k
m
· (N − 1) (18)

2) Implementation
Figure 3(d) shows the architecture of uNSADD for unipo-

lar/bipolar bit streams. Likewise, uNSADD adopts a parallel
counter to count the bits at each cycle then stores it in the
accumulator. Then, the accumulated offset is subtracted from
the accumulated input bit count at this cycle, resulting the
current anticipated output bit count. When this bit count is
greater than the historical bit count, the output is 1; otherwise
0. Table III shows unipolar uNSADD’s operation. The output is
strictly forced by the difference between the anticipated (>in,0)
and historical (>in,1) output bit counts, with larger anticipated
bit count leading to a one as output.

D. Integrated uGEMM Architecture
We now describe how our novel functional unit designs are

integrated together to form a holistic architecture for GEMM
applications. Without loss of generality, we assume α = 1 and

6

1, 1 1, 2 1, n

2, 1 2, 2 2, n

m, 1 m, 2 m, n

A1,1...1,k
<latexit sha1_base64="irp8nXZ8VJfuGg3yGFzXI4Fw68M=">AAACGnicbVDNSgMxGMzW//q36tFLsAoeStmtgh4rXjwqWCvYUrLpVw3NZpfk29qy9E161QfxJl69+By+gOm6B9s6EBhm5oPJBLEUBj3vyyksLC4tr6yuFdc3Nre23Z3dOxMlmkOdRzLS9wEzIIWCOgqUcB9rYGEgoRH0Lid+ow/aiEjd4jCGVsgelegKztBKbde9aKd+2W92IjTUL/dGbbfkVbwMdJ74OSmRHNdt99se8yQEhVwyYx58L8ZWyjQKLmFUbCYGYsZ77BEeLFUsBNNKs+YjemSVDu1G2j6FNFP/XqQsNGYYBjYZMnwys95E/NdT8IwDhAGWM5blpqtg97yVChUnCIr/NukmkmJEJzvRjtDAUQ4tYVwL+xnKn5hmHO2aRbuSP7vJPLmrVvyTSvXmtFQ7zPdaJfvkgBwTn5yRGrki16ROOOmTMXkhr87YeXPenY/faMHJb/bIFJzPH2csoJk=</latexit>

A2,1...2,k
<latexit sha1_base64="N/JRV/ZFS4D+U71ITIYHk0SPPuw=">AAACGnicbVDNSgMxGMzWv1r/Vj16CVbBQym7q6DHihePFWwr2FKy6VcNzWaX5Fu1LH2TXvVBvIlXLz6HL2C67UGrA4FhZj6YTJhIYdDzPp3CwuLS8kpxtbS2vrG55W7vNE2cag4NHstY34TMgBQKGihQwk2igUWhhFY4uJj4rQfQRsTqGocJdCJ2p0RfcIZW6rrueTcLKn67F6OhQWUw6rplr+rloH+JPyNlMkO9637ZY55GoJBLZsyt7yXYyZhGwSWMSu3UQML4gN3BraWKRWA6Wd58RA+t0qP9WNunkObqz4uMRcYMo9AmI4b3Zt6biP96Ch7xCeEJKznLc7+rYP+skwmVpAiKT5v0U0kxppOdaE9o4CiHljCuhf0M5fdMM452zZJdyZ/f5C9pBlX/uBpcnZRrB7O9imSP7JMj4pNTUiOXpE4ahJMHMibP5MUZO6/Om/M+jRac2c0u+QXn4xtqhaCb</latexit>

Am,1...m,k
<latexit sha1_base64="q96civ0tISNkSt4fKV0tiV56tJQ=">AAACGnicbVDNSgMxGMz6b/1b9eglWAUPpexWQY+KF48KVgttKdn0axuaZJfkW7UsfROv+iDexKsXn8MXMF33oNWBwDAzH0wmSqSwGAQf3szs3PzC4tJyaWV1bX3D39y6sXFqONR5LGPTiJgFKTTUUaCERmKAqUjCbTQ8n/i3d2CsiPU1jhJoK9bXoic4Qyd1fP+sk6lK2OrGaKmqDMcdvxxUgxz0LwkLUiYFLjv+pzvmqQKNXDJrm2GQYDtjBgWXMC61UgsJ40PWh6ajmimw7SxvPqb7TunSXmzc00hz9edFxpS1IxW5pGI4sNPeRPzX03CPDwgPWMlZnvtdBXsn7UzoJEXQ/LtJL5UUYzrZiXaFAY5y5AjjRrjPUD5ghnF0a5bcSuH0Jn/JTa0aHlZrV0fl071iryWyQ3bJAQnJMTklF+SS1Aknd+SRPJFn79F78V69t+/ojFfcbJNf8N6/ADAXoRE=</latexit>

B1,2
...k

,2

<latexit sha1_base64="YIrqJnuQaoO6q6VnGwhJ+zb3qWQ=">AAACG3icbVDNTgIxGOziH+If6tFLI5p4IGQXTfRo9OIRE0ESIKRbPqSh29203wpkw6Nw1QfxZrx68Dl8AcvCQcRJmkxm5kum40dSGHTdLyezsrq2vpHdzG1t7+zu5fcPaiaMNYcqD2Wo6z4zIIWCKgqUUI80sMCX8Oj3b6f+4zNoI0L1gKMIWgF7UqIrOEMrtfP7N+3EK5ZpsxOiof1iedzOF9ySm4IuE29OCmSOSjv/bY95HIBCLpkxDc+NsJUwjYJLGOeasYGI8T57goaligVgWklafUxPrdKh3VDbp5Cm6u+LhAXGjALfJgOGPfPXm4r/egoGOEQYYjFlaW6xCnavWolQUYyg+KxJN5YUQzodinaEBo5yZAnjWtjPUN5jmnG0c+bsSt7fTZZJrVzyzkvl+4vC9cl8ryw5IsfkjHjkklyTO1IhVcLJgEzIC3l1Js6b8+58zKIZZ35zSBbgfP4AyXagxg==</latexit>

B1,n
...k

,n

<latexit sha1_base64="6TSdUksahaqTD1LxjVdyvn/hll4=">AAACG3icbVDNSgMxGMzWv1r/qh69BKvgoZTdKuhR9OJRwVahXZZs+rUNzWaX5Fu1LH2UXvVBvIlXDz6HL2C69mCrA4FhZj6YTJhIYdB1P53CwuLS8kpxtbS2vrG5Vd7eaZo41RwaPJaxvg+ZASkUNFCghPtEA4tCCXfh4HLi3z2ANiJWtzhMwI9YT4mu4AytFJS3L4LMqyra7sRo6KCqRkG54tbcHPQv8aakQqa4Dspf9pinESjkkhnT8twE/YxpFFzCqNRODSSMD1gPWpYqFoHxs7z6iB5apUO7sbZPIc3V3xcZi4wZRqFNRgz7Zt6biP96Ch7xCeEJqznLc7NVsHvmZ0IlKYLiP026qaQY08lQtCM0cJRDSxjXwn6G8j7TjKOds2RX8uY3+Uua9Zp3XKvfnFTOD6Z7Fcke2SdHxCOn5JxckWvSIJw8kjF5Ji/O2Hl13pz3n2jBmd7skhk4H9+RraE+</latexit>

C1,2
...k

,2

<latexit sha1_base64="utwcQxVZzVLg8OEd+OMPZfULMWY=">AAACG3icbVDNSgMxGMz6b/1r9eglWAUPpexWQY+FXjwqWFtol5JNv2poNrsk39qWpY/Sqz6IN/HqwefwBUzXPah1IDDMzAeTCWIpDLruh7O0vLK6tr6xWdja3tndK5b270yUaA5NHslItwNmQAoFTRQooR1rYGEgoRUMG3O/9QjaiEjd4iQGP2T3SgwEZ2ilXrHU6KVepUa7/QgNHVZq016x7FbdDHSReDkpkxzXveKnPeZJCAq5ZMZ0PDdGP2UaBZcwLXQTAzHjQ3YPHUsVC8H4aVZ9Sk+s0qeDSNunkGbqz4uUhcZMwsAmQ4YP5q83F//1FIxwjDDGSsay3O8qOLj0U6HiBEHx7yaDRFKM6Hwo2hcaOMqJJYxrYT9D+QPTjKOds2BX8v5uskjualXvrFq7OS/Xj/O9NsghOSKnxCMXpE6uyDVpEk5GZEaeyLMzc16cV+ftO7rk5DcH5Bec9y/LK6DH</latexit>

C1,n
...k

,n

<latexit sha1_base64="yWTAQSKgpIt3zM76iHD8z1MIbZE=">AAACG3icbVDNSgMxGMz6W+tfq0cvwSp4KGW3Cnos9OKxgq2CLks2/aqh2eySfGstSx+lV30Qb+LVg8/hC5hue7DVgcAwMx9MJkykMOi6X87S8srq2npho7i5tb2zWyrvdUycag5tHstY34bMgBQK2ihQwm2igUWhhJuw35z4N0+gjYjVNQ4T8CP2oERPcIZWCkrlZpB5VUXvuzEa2q+qUVCquDU3B/1LvBmpkBlaQenbHvM0AoVcMmPuPDdBP2MaBZcwKt6nBhLG++wB7ixVLALjZ3n1ET22Spf2Ym2fQpqrvy8yFhkzjEKbjBg+mkVvIv7rKRjgM8IzVnOW5+arYO/Cz4RKUgTFp016qaQY08lQtCs0cJRDSxjXwn6G8kemGUc7Z9Gu5C1u8pd06jXvtFa/Oqs0jmZ7FcgBOSQnxCPnpEEuSYu0CScDMiYv5NUZO2/Ou/MxjS45s5t9Mgfn8weTYqE/</latexit>

O1,1...1,n
<latexit sha1_base64="K0Lv6sfvGvjOoeiuzcm+c1qZMDc=">AAACG3icbVDNSgMxGMz6b/1b9eglWAUPpWxU0GPBizcVrBZqKdn0qwaz2SX51rYsfZRe9UG8iVcPPocvYLruwVoHAsPMfDCZMFHSYhB8ejOzc/MLi0vLpZXVtfUNf3PrxsapEVAXsYpNI+QWlNRQR4kKGokBHoUKbsPHs7F/+wTGylhf4yCBVsTvtexKwdFJbX/zop2xCqN3nRgtZRU9bPvloBrkoNOEFaRMCly2/S93LNIINArFrW2yIMFWxg1KoWBYukstJFw88ntoOqp5BLaV5dWHdN8pHdqNjXsaaa7+vsh4ZO0gCl0y4vhg/3pj8V9PQw/7CH2s5CzPTVbB7mkrkzpJEbT4adJNFcWYjoeiHWlAoBo4woWR7jNUPHDDBbo5S24l9neTaXJzWGVH1cOr43Jtr9hrieyQXXJAGDkhNXJOLkmdCNIjI/JMXryR9+q9ee8/0RmvuNkmE/A+vgHgz6DU</latexit>

O2,1...2,n
<latexit sha1_base64="8M2bX37alcfpwx3yn2tAo1kpW2Q=">AAACG3icbVDNTgIxGOz6i/gHevTSiCYeCNlFEz2SePEmJoIkSEi3fEBjt7tpvxXIhkfhqg/izXj14HP4ApaFg4iTNJnMzJdMx4+kMOi6X87K6tr6xmZmK7u9s7u3n8sf1E0Yaw41HspQN3xmQAoFNRQooRFpYIEv4cF/up76D8+gjQjVPY4iaAWsp0RXcIZWaufyt+2kXPToYydEQ8tFNW7nCm7JTUGXiTcnBTJHtZ37tsc8DkAhl8yYpudG2EqYRsEljLOPsYGI8SfWg6aligVgWklafUxPrdKh3VDbp5Cm6u+LhAXGjALfJgOGffPXm4r/egoGOEQYYjFlaW6xCnavWolQUYyg+KxJN5YUQzodinaEBo5yZAnjWtjPUN5nmnG0c2btSt7fTZZJvVzyzkvlu4tC5WS+V4YckWNyRjxySSrkhlRJjXAyIBPyQl6difPmvDsfs+iKM785JAtwPn8A5Cmg1g==</latexit>

Om,1...m,n
<latexit sha1_base64="GSGU6ijF7BC9UxkzL2R0UwTOq4g=">AAACG3icbVDNSgMxGMzWv1r/qh69BKvgoZRdFfQoePFmBVsLbSnZ9KuGJtkl+da2LH0Ur/og3sSrB5/DFzDd9qDVgcAwMx9MJoylsOj7n15uYXFpeSW/Wlhb39jcKm7v1G2UGA41HsnINEJmQQoNNRQooREbYCqUcBf2Lyf+3SMYKyJ9i6MY2orda9ETnKGTOsXt606qygFtdSO0VJX1uFMs+RU/A/1LghkpkRmqneKXO+aJAo1cMmubgR9jO2UGBZcwLrQSCzHjfXYPTUc1U2DbaVZ9TA+d0qW9yLinkWbqz4uUKWtHKnRJxfDBznsT8V9PwwCHCEMsZyzL/a6CvfN2KnScIGg+bdJLJMWIToaiXWGAoxw5wrgR7jOUPzDDOLo5C26lYH6Tv6R+XAlOKsc3p6WLg9leebJH9skRCcgZuSBXpEpqhJMBeSLP5MV78l69N+99Gs15s5td8gvexzep9qFM</latexit>

Ai,1...i,k
<latexit sha1_base64="3HKffd9wSx1DlbX4au+Pwv8G/ZQ=">AAACGnicbVDNSgMxGMzW//q36tFLsAoeStmtgh4rXjwqWCvYUrLpVw3NZpfk29qy9E161QfxJl69+By+gOm6B9s6EBhm5oPJBLEUBj3vyyksLC4tr6yuFdc3Nre23Z3dOxMlmkOdRzLS9wEzIIWCOgqUcB9rYGEgoRH0Lid+ow/aiEjd4jCGVsgelegKztBKbde9aKei7Dc7ERoqyr1R2y15FS8DnSd+Tkokx3Xb/bbHPAlBIZfMmAffi7GVMo2CSxgVm4mBmPEee4QHSxULwbTSrPmIHlmlQ7uRtk8hzdS/FykLjRmGgU2GDJ/MrDcR//UUPOMAYYDljGW56SrYPW+lQsUJguK/TbqJpBjRyU60IzRwlENLGNfCfobyJ6YZR7tm0a7kz24yT+6qFf+kUr05LdUO871WyT45IMfEJ2ekRq7INakTTvpkTF7IqzN23px35+M3WnDymz0yBefzByKzoQk=</latexit>

PE (i, j)

B1, j
<latexit sha1_base64="IuKsK3N3mM3cJZ2cdbK8aH3Ssb0=">AAACD3icbVBLTgJBFOzBH+IPdelmIpq4IGQGTXRJdOMSE/kkQEhP84CWnp5J9xuFTDgEWz2IO+PWI3gOL2AzsBCwkk4qVfWS6vJCwTU6zreVWlvf2NxKb2d2dvf2D7KHR1UdRIpBhQUiUHWPahBcQgU5CqiHCqjvCah5g7upX3sGpXkgH3EUQsunPcm7nFE0Uu22Hbv5p3E7m3MKTgJ7lbhzkiNzlNvZn2YnYJEPEpmgWjdcJ8RWTBVyJmCcaUYaQsoGtAcNQyX1QbfipO7YPjdKx+4GyjyJdqL+vYipr/XI90zSp9jXy95U/NeT8IJDhCHmE5bkFqtg96YVcxlGCJLNmnQjYWNgT8exO1wBQzEyhDLFzWds1qeKMjQTZsxK7vImq6RaLLiXheLDVa50Nt8rTU7IKbkgLrkmJXJPyqRCGBmQCXklb9bEerc+rM9ZNGXNb47JAqyvX/HXnUo=</latexit>

B2, j
<latexit sha1_base64="Uoe0ew+KgRPyflQKDjTfBk3BMsA=">AAACD3icbVBLTgJBFOzBH+IPdelmIpq4IGQGTXRJdOMSE/kkQEhP84CWnp5J9xuFTDgEWz2IO+PWI3gOL2AzsBCwkk4qVfWS6vJCwTU6zreVWlvf2NxKb2d2dvf2D7KHR1UdRIpBhQUiUHWPahBcQgU5CqiHCqjvCah5g7upX3sGpXkgH3EUQsunPcm7nFE0Uu22HRfzT+N2NucUnAT2KnHnJEfmKLezP81OwCIfJDJBtW64ToitmCrkTMA404w0hJQNaA8ahkrqg27FSd2xfW6Ujt0NlHkS7UT9exFTX+uR75mkT7Gvl72p+K8n4QWHCEPMJyzJLVbB7k0r5jKMECSbNelGwsbAno5jd7gChmJkCGWKm8/YrE8VZWgmzJiV3OVNVkm1WHAvC8WHq1zpbL5XmpyQU3JBXHJNSuSelEmFMDIgE/JK3qyJ9W59WJ+zaMqa3xyTBVhfv/N/nUs=</latexit>

B3, j
<latexit sha1_base64="gbs0xxNvZaMgI/y5cIP2Li9le9c=">AAACD3icbVBLTgJBFOzxi/hDXbqZiCYuCJkBE10S3bjERD4JENLTPKClp2fS/UYhEw7BVg/izrj1CJ7DC9gMLASspJNKVb2kurxQcI2O822trW9sbm2ndtK7e/sHh5mj46oOIsWgwgIRqLpHNQguoYIcBdRDBdT3BNS8wd3Urz2D0jyQjzgKoeXTnuRdzigaqXbbjou5p3E7k3XyTgJ7lbhzkiVzlNuZn2YnYJEPEpmgWjdcJ8RWTBVyJmCcbkYaQsoGtAcNQyX1QbfipO7YvjBKx+4GyjyJdqL+vYipr/XI90zSp9jXy95U/NeT8IJDhCHmEpbkFqtg96YVcxlGCJLNmnQjYWNgT8exO1wBQzEyhDLFzWds1qeKMjQTps1K7vImq6RayLvFfOHhKls6n++VIqfkjFwSl1yTErknZVIhjAzIhLySN2tivVsf1ucsumbNb07IAqyvX/UnnUw=</latexit>

Ai,1
<latexit sha1_base64="IZGb9LakFnL/WtuQ+VxEtqQIxWU=">AAACD3icbVDNTsJAGNz6i/iHevTSiCYeCGnRRI8YLx4xkZ8ECNkuH7Bhu212vyqk4SG46oN4M159BJ/DF3ApPQg4ySaTmfmS2fFCwTU6zre1tr6xubWd2cnu7u0fHOaOjms6iBSDKgtEoBoe1SC4hCpyFNAIFVDfE1D3hvczv/4MSvNAPuE4hLZP+5L3OKNopPpdJ+YFd9LJ5Z2ik8BeJW5K8iRFpZP7aXUDFvkgkQmqddN1QmzHVCFnAibZVqQhpGxI+9A0VFIfdDtO6k7sC6N07V6gzJNoJ+rfi5j6Wo99zyR9igO97M3Efz0JLzhCGGEhYUlusQr2btsxl2GEINm8SS8SNgb2bBy7yxUwFGNDKFPcfMZmA6ooQzNh1qzkLm+ySmqlontVLD1e58vn6V4ZckrOyCVxyQ0pkwdSIVXCyJBMySt5s6bWu/Vhfc6ja1Z6c0IWYH39Au72nUg=</latexit>

Ai,2
<latexit sha1_base64="TLcUaTDciUOu04mJbumU5tjdBjo=">AAACD3icbVDNTsJAGNz6i/iHevTSiCYeCGnRRI8YLx4xkZ8ECNkuH7Bhu212vyqk4SG46oN4M159BJ/DF3ApPQg4ySaTmfmS2fFCwTU6zre1tr6xubWd2cnu7u0fHOaOjms6iBSDKgtEoBoe1SC4hCpyFNAIFVDfE1D3hvczv/4MSvNAPuE4hLZP+5L3OKNopPpdJ+aF0qSTyztFJ4G9StyU5EmKSif30+oGLPJBIhNU66brhNiOqULOBEyyrUhDSNmQ9qFpqKQ+6Hac1J3YF0bp2r1AmSfRTtS/FzH1tR77nkn6FAd62ZuJ/3oSXnCEMMJCwpLcYhXs3bZjLsMIQbJ5k14kbAzs2Th2lytgKMaGUKa4+YzNBlRRhmbCrFnJXd5kldRKRfeqWHq8zpfP070y5JSckUvikhtSJg+kQqqEkSGZklfyZk2td+vD+pxH16z05oQswPr6BfCcnUk=</latexit>

Ai,3
<latexit sha1_base64="6groGUr79yigJqEz7Ai+Dhm5MuU=">AAACD3icbVBLTgJBFOzBH+IPdelmIpq4IGQGTHSJceMSE/kkQEhP84AOPT2T7jcKmXAItnoQd8atR/AcXsBmYCFgJZ1Uquol1eWFgmt0nG8rtbG5tb2T3s3s7R8cHmWPT2o6iBSDKgtEoBoe1SC4hCpyFNAIFVDfE1D3hvczv/4MSvNAPuE4hLZP+5L3OKNopPpdJ+b50qSTzTkFJ4G9TtwFyZEFKp3sT6sbsMgHiUxQrZuuE2I7pgo5EzDJtCINIWVD2oemoZL6oNtxUndiXxqla/cCZZ5EO1H/XsTU13rseybpUxzoVW8m/utJeMERwgjzCUtyy1Wwd9uOuQwjBMnmTXqRsDGwZ+PYXa6AoRgbQpni5jM2G1BFGZoJM2Yld3WTdVIrFtxSofh4nStfLPZKkzNyTq6IS25ImTyQCqkSRoZkSl7JmzW13q0P63MeTVmLm1OyBOvrF/JCnUo=</latexit>

Ai,k
<latexit sha1_base64="Eqs8fjieStBbFY5YyPz6uRHbUH0=">AAACD3icbVDNTsJAGNz6i/iHevTSiCYeCGnRRI8YLx4xkZ8ECNkuH7Bhu212vyqk4SG46oN4M159BJ/DF3ApPQg4ySaTmfmS2fFCwTU6zre1tr6xubWd2cnu7u0fHOaOjms6iBSDKgtEoBoe1SC4hCpyFNAIFVDfE1D3hvczv/4MSvNAPuE4hLZP+5L3OKNopPpdJ+aF4aSTyztFJ4G9StyU5EmKSif30+oGLPJBIhNU66brhNiOqULOBEyyrUhDSNmQ9qFpqKQ+6Hac1J3YF0bp2r1AmSfRTtS/FzH1tR77nkn6FAd62ZuJ/3oSXnCEMMJCwpLcYhXs3bZjLsMIQbJ5k14kbAzs2Th2lytgKMaGUKa4+YzNBlRRhmbCrFnJXd5kldRKRfeqWHq8zpfP070y5JSckUvikhtSJg+kQqqEkSGZklfyZk2td+vD+pxH16z05oQswPr6BU6hnYI=</latexit>

Bk , j
<latexit sha1_base64="ftMcjYcglAIlH5/UabRcdkeVaT0=">AAACD3icbVBLTgJBFOzBH+IPdelmIpq4IGQGTXRJdOMSE/kkQEhP84CWnp5J9xuFTDgEWz2IO+PWI3gOL2AzsBCwkk4qVfWS6vJCwTU6zreVWlvf2NxKb2d2dvf2D7KHR1UdRIpBhQUiUHWPahBcQgU5CqiHCqjvCah5g7upX3sGpXkgH3EUQsunPcm7nFE0Uu22HQ/yT+N2NucUnAT2KnHnJEfmKLezP81OwCIfJDJBtW64ToitmCrkTMA404w0hJQNaA8ahkrqg27FSd2xfW6Ujt0NlHkS7UT9exFTX+uR75mkT7Gvl72p+K8n4QWHCEPMJyzJLVbB7k0r5jKMECSbNelGwsbAno5jd7gChmJkCGWKm8/YrE8VZWgmzJiV3OVNVkm1WHAvC8WHq1zpbL5XmpyQU3JBXHJNSuSelEmFMDIgE/JK3qyJ9W59WJ+zaMqa3xyTBVhfv1H2nYQ=</latexit>

Ci, j
<latexit sha1_base64="udq8Mi6Y6bhuUF5DA6TGPwAYBSU=">AAACD3icbVBLTgJBFOzBH+IPdelmIpq4IGQGTXRJwsYlJvJJgJCe5gEtPT2T7jcKmXAItnoQd8atR/AcXsBmYCFgJZ1Uquol1eWFgmt0nG8rtbG5tb2T3s3s7R8cHmWPT2o6iBSDKgtEoBoe1SC4hCpyFNAIFVDfE1D3huWZX38GpXkgH3EcQtunfcl7nFE0Ur3ciXn+adLJ5pyCk8BeJ+6C5MgClU72p9UNWOSDRCao1k3XCbEdU4WcCZhkWpGGkLIh7UPTUEl90O04qTuxL43StXuBMk+inah/L2Lqaz32PZP0KQ70qjcT//UkvOAIYYT5hCW55SrYu2vHXIYRgmTzJr1I2BjYs3HsLlfAUIwNoUxx8xmbDaiiDM2EGbOSu7rJOqkVC+51ofhwkytdLPZKkzNyTq6IS25JidyTCqkSRoZkSl7JmzW13q0P63MeTVmLm1OyBOvrF1BRnYM=</latexit>

⠇

B1, j...k , j
<latexit sha1_base64="mjahWoSsolFuIqJSzbCQ515E49A=">AAACG3icbVDNTgIxGOz6L/6hHr00ookHQnbRRI9GLx4xESEBQrrlAyvd7qb9ViQbHsWrPog349WDz+ELWJY9CDhJk8nMfMl0/EgKg6777SwsLi2vrK6t5zY2t7Z38rt79yaMNYcqD2Wo6z4zIIWCKgqUUI80sMCXUPP712O/9gTaiFDd4TCCVsB6SnQFZ2ildn73qp14xUfa7IRoaL/4OGrnC27JTUHniZeRAslQaed/7DGPA1DIJTOm4bkRthKmUXAJo1wzNhAx3mc9aFiqWACmlaTVR/TYKh3aDbV9Cmmq/r1IWGDMMPBtMmD4YGa9sfivp2CAzwjPWExZmpuugt2LViJUFCMoPmnSjSXFkI6Hoh2hgaMcWsK4FvYzlD8wzTjaOXN2JW92k3lyXy55p6Xy7Vnh8ijba40ckENyQjxyTi7JDamQKuFkQF7IK3lzXpx358P5nEQXnOxmn0zB+foFhFWhNg==</latexit>

Oi, j
<latexit sha1_base64="+INBrpqGeIKuMYzpnOfWNzHEP/A=">AAACD3icbVBLTgJBFOzBH+IPdelmIpq4IGQGTXRJ4sadmMgnAUJ6mge09PRMut8oZMIh2OpB3Bm3HsFzeAGbgYWAlXRSqaqXVJcXCq7Rcb6t1Nr6xuZWejuzs7u3f5A9PKrqIFIMKiwQgap7VIPgEirIUUA9VEB9T0DNG9xO/dozKM0D+YijEFo+7Une5YyikWr37Zjnn8btbM4pOAnsVeLOSY7MUW5nf5qdgEU+SGSCat1wnRBbMVXImYBxphlpCCkb0B40DJXUB92Kk7pj+9woHbsbKPMk2on69yKmvtYj3zNJn2JfL3tT8V9PwgsOEYaYT1iSW6yC3ZtWzGUYIUg2a9KNhI2BPR3H7nAFDMXIEMoUN5+xWZ8qytBMmDErucubrJJqseBeFooPV7nS2XyvNDkhp+SCuOSalMgdKZMKYWRAJuSVvFkT6936sD5n0ZQ1vzkmC7C+fgFkVZ2P</latexit>

(a) uGEMM architecture (b) uGEMM PE internals

B1,1
...k

,1

<latexit sha1_base64="f7w4jZt+lsOZXMaF4B0GlmL2NIA=">AAACG3icbVDNTgIxGOz6i/gHevTSiCYeCNlFEz0SvXjERJAECOmWD23odjfttwLZ8Chc9UG8Ga8efA5fwLJwEHGSJpOZ+ZLp+JEUBl33y1lZXVvf2MxsZbd3dvf2c/mDugljzaHGQxnqhs8MSKGghgIlNCINLPAlPPj9m6n/8AzaiFDd4yiCdsAelegJztBKnVz+upN4RY+2uiEa2i96406u4JbcFHSZeHNSIHNUO7lve8zjABRyyYxpem6E7YRpFFzCONuKDUSM99kjNC1VLADTTtLqY3pqlS7thdo+hTRVf18kLDBmFPg2GTB8Mn+9qfivp2CAQ4QhFlOW5harYO+qnQgVxQiKz5r0YkkxpNOhaFdo4ChHljCuhf0M5U9MM452zqxdyfu7yTKpl0veeal8d1GonMz3ypAjckzOiEcuSYXckiqpEU4GZEJeyKszcd6cd+djFl1x5jeHZAHO5w/GIKDE</latexit>

C1,1
...k

,1

<latexit sha1_base64="PNbuK7C3bZydBuUb2G91kzGUpPk=">AAACG3icbVDNSgMxGMz6W+tfq0cvwSp4KGVXBT0WevFYwf6ALks2/aqh2eySfKstSx+lV30Qb+LVg8/hC5hue1DrQGCYmQ8mEyZSGHTdT2dpeWV1bb2wUdzc2t7ZLZX32iZONYcWj2WsuyEzIIWCFgqU0E00sCiU0AkHjanfeQRtRKxucJSAH7F7JfqCM7RSUCo3gsyrevSuF6Ohg6o3DkoVt+bmoIvEm5MKmaMZlL7sMU8jUMglM+bWcxP0M6ZRcAnj4l1qIGF8wO7h1lLFIjB+llcf02Or9Gg/1vYppLn68yJjkTGjKLTJiOGD+etNxX89BU84RBhiNWd57ncV7F/6mVBJiqD4rEk/lRRjOh2K9oQGjnJkCeNa2M9Q/sA042jnLNqVvL+bLJL2ac07q51en1fqR/O9CuSAHJIT4pELUidXpElahJMnMiHP5MWZOK/Om/M+iy4585t98gvOxzfH1aDF</latexit>

...
<latexit sha1_base64="RO8Ws9nmRzhGYciFOr2ouJnndLo=">AAACDnicbVDNTsJAGNz6i/iHevTSiCYeDGnRRI8kXjxiIj8JELLdfoWV7bbZ/YoQwjtw1QfxZrz6Cj6HL+BSOAg4ySaTmfmS2fFiwTU6zre1tr6xubWd2cnu7u0fHOaOjqs6ShSDCotEpOoe1SC4hApyFFCPFdDQE1DzevdTv9YHpXkkn3AYQyukHckDzigaqdrs+xHqdi7vFJwU9ipx5yRP5ii3cz9NP2JJCBKZoFo3XCfG1ogq5EzAONtMNMSU9WgHGoZKGoJujdK2Y/vCKL4dRMo8iXaq/r0Y0VDrYeiZZEixq5e9qfivJ+EFBwgDvEpZmlusgsFda8RlnCBINmsSJMLGyJ5uY/tcAUMxNIQyxc1nbNalijI0C2bNSu7yJqukWiy414Xi402+dD7fK0NOyRm5JC65JSXyQMqkQhh5JhPySt6sifVufVifs+iaNb85IQuwvn4BFK2dbA==</latexit>

...
<latexit sha1_base64="RO8Ws9nmRzhGYciFOr2ouJnndLo=">AAACDnicbVDNTsJAGNz6i/iHevTSiCYeDGnRRI8kXjxiIj8JELLdfoWV7bbZ/YoQwjtw1QfxZrz6Cj6HL+BSOAg4ySaTmfmS2fFiwTU6zre1tr6xubWd2cnu7u0fHOaOjqs6ShSDCotEpOoe1SC4hApyFFCPFdDQE1DzevdTv9YHpXkkn3AYQyukHckDzigaqdrs+xHqdi7vFJwU9ipx5yRP5ii3cz9NP2JJCBKZoFo3XCfG1ogq5EzAONtMNMSU9WgHGoZKGoJujdK2Y/vCKL4dRMo8iXaq/r0Y0VDrYeiZZEixq5e9qfivJ+EFBwgDvEpZmlusgsFda8RlnCBINmsSJMLGyJ5uY/tcAUMxNIQyxc1nbNalijI0C2bNSu7yJqukWiy414Xi402+dD7fK0NOyRm5JC65JSXyQMqkQhh5JhPySt6sifVufVifs+iaNb85IQuwvn4BFK2dbA==</latexit>

...
<latexit sha1_base64="RO8Ws9nmRzhGYciFOr2ouJnndLo=">AAACDnicbVDNTsJAGNz6i/iHevTSiCYeDGnRRI8kXjxiIj8JELLdfoWV7bbZ/YoQwjtw1QfxZrz6Cj6HL+BSOAg4ySaTmfmS2fFiwTU6zre1tr6xubWd2cnu7u0fHOaOjqs6ShSDCotEpOoe1SC4hApyFFCPFdDQE1DzevdTv9YHpXkkn3AYQyukHckDzigaqdrs+xHqdi7vFJwU9ipx5yRP5ii3cz9NP2JJCBKZoFo3XCfG1ogq5EzAONtMNMSU9WgHGoZKGoJujdK2Y/vCKL4dRMo8iXaq/r0Y0VDrYeiZZEixq5e9qfivJ+EFBwgDvEpZmlusgsFda8RlnCBINmsSJMLGyJ5uY/tcAUMxNIQyxc1nbNalijI0C2bNSu7yJqukWiy414Xi402+dD7fK0NOyRm5JC65JSXyQMqkQhh5JhPySt6sifVufVifs+iaNb85IQuwvn4BFK2dbA==</latexit>

. . .
<latexit sha1_base64="RO8Ws9nmRzhGYciFOr2ouJnndLo=">AAACDnicbVDNTsJAGNz6i/iHevTSiCYeDGnRRI8kXjxiIj8JELLdfoWV7bbZ/YoQwjtw1QfxZrz6Cj6HL+BSOAg4ySaTmfmS2fFiwTU6zre1tr6xubWd2cnu7u0fHOaOjqs6ShSDCotEpOoe1SC4hApyFFCPFdDQE1DzevdTv9YHpXkkn3AYQyukHckDzigaqdrs+xHqdi7vFJwU9ipx5yRP5ii3cz9NP2JJCBKZoFo3XCfG1ogq5EzAONtMNMSU9WgHGoZKGoJujdK2Y/vCKL4dRMo8iXaq/r0Y0VDrYeiZZEixq5e9qfivJ+EFBwgDvEpZmlusgsFda8RlnCBINmsSJMLGyJ5uY/tcAUMxNIQyxc1nbNalijI0C2bNSu7yJqukWiy414Xi402+dD7fK0NOyRm5JC65JSXyQMqkQhh5JhPySt6sifVufVifs+iaNb85IQuwvn4BFK2dbA==</latexit>

. . .
<latexit sha1_base64="RO8Ws9nmRzhGYciFOr2ouJnndLo=">AAACDnicbVDNTsJAGNz6i/iHevTSiCYeDGnRRI8kXjxiIj8JELLdfoWV7bbZ/YoQwjtw1QfxZrz6Cj6HL+BSOAg4ySaTmfmS2fFiwTU6zre1tr6xubWd2cnu7u0fHOaOjqs6ShSDCotEpOoe1SC4hApyFFCPFdDQE1DzevdTv9YHpXkkn3AYQyukHckDzigaqdrs+xHqdi7vFJwU9ipx5yRP5ii3cz9NP2JJCBKZoFo3XCfG1ogq5EzAONtMNMSU9WgHGoZKGoJujdK2Y/vCKL4dRMo8iXaq/r0Y0VDrYeiZZEixq5e9qfivJ+EFBwgDvEpZmlusgsFda8RlnCBINmsSJMLGyJ5uY/tcAUMxNIQyxc1nbNalijI0C2bNSu7yJqukWiy414Xi402+dD7fK0NOyRm5JC65JSXyQMqkQhh5JhPySt6sifVufVifs+iaNb85IQuwvn4BFK2dbA==</latexit>

. . .
<latexit sha1_base64="RO8Ws9nmRzhGYciFOr2ouJnndLo=">AAACDnicbVDNTsJAGNz6i/iHevTSiCYeDGnRRI8kXjxiIj8JELLdfoWV7bbZ/YoQwjtw1QfxZrz6Cj6HL+BSOAg4ySaTmfmS2fFiwTU6zre1tr6xubWd2cnu7u0fHOaOjqs6ShSDCotEpOoe1SC4hApyFFCPFdDQE1DzevdTv9YHpXkkn3AYQyukHckDzigaqdrs+xHqdi7vFJwU9ipx5yRP5ii3cz9NP2JJCBKZoFo3XCfG1ogq5EzAONtMNMSU9WgHGoZKGoJujdK2Y/vCKL4dRMo8iXaq/r0Y0VDrYeiZZEixq5e9qfivJ+EFBwgDvEpZmlusgsFda8RlnCBINmsSJMLGyJ5uY/tcAUMxNIQyxc1nbNalijI0C2bNSu7yJqukWiy414Xi402+dD7fK0NOyRm5JC65JSXyQMqkQhh5JhPySt6sifVufVifs+iaNb85IQuwvn4BFK2dbA==</latexit>

+⨉

⨉

⨉
⨉

Fig. 4. uGEMM architecture and its PE. Thick line: multi-bit stream; and thin line: single-bit stream.

β = 1 in Eq. 1. We assume that matrices O, A, B and C are
of the size (m × n), (m × k), (k × n) and (m × n), respectively.
Figure 4(a) shows the architecture of uGEMM. Input A, B, and
C go through the m-by-n processing element (PE) array in the
center of the figure. Each row in the array has n PEs, all fed
by the same row of A (each with k elements), simultaneously
without buffering. Each column in array has m PEs, all input
by the same column of B (each with k elements), at the same
time without buffering, too. Each PE in the array takes only
one element from C. As shown in Figure 4(b), the (i, j)th PE
performs the multiply-accumulate (MAC) of the ith row from
A and the jth column from B, with k elements for each row and
column, then adds the (i, j)th element from C as the result. The
following highlights key advantageous features of the uGEMM
architecture.

a) Highly parallel PE array: Different from traditional
bit-parallel binary architectures that suffer from wire (inter-
connect) congestion and high power overhead [11, 17, 22],
uGEMM’s unary computing units are designed with extremely
simple logic for low wire congestion, thus high parallelism.
At each cycle, the same input bit stream is observed simulta-
neously by all corresponding PEs, and the output of k-by-k
MAC operation is produced in parallel from every PE. Note
that if multiple PEs take in the same input operand, the bit
stream generators (shown in Figure 3(a, b)) for the other non-
shared operands can be shared, saving the area and power
costs of additional generators. Compared to binary systems,
the highly parallel architecture of uGEMM minimizes data
scheduling, resulting in less data movement between the MAC
array and the memory, thus reducing energy consumed on
memory access [10, 11, 69].

b) Accurate input-insensitive uGEMM PE: As shown be-
fore, we re-innovate designs of multiplier (MUL) and adder
(ADD) in stochastic computing to overcome the input corre-
lation problem and achieve high accuracy without the latency
penalty imposed by deterministic approach. This is done by
revisiting the mathematical fundamentals of unary computing.
In addition to correlation insensitivity, uGEMM is coding-
insensitive, compatible with both rate-coded and temporal-

coded data. Being capable of tolerating the different underlying
distributions imposed by the two coding methods with minimal
bit stream manipulation, the entire uGEMM can use only one
type of RNG, which is not possible in prior works.

c) Latency reduction by reliable early termination: Re-
call that the output is sent out from each PE one bit at a time
in a streaming manner, and one of the drawbacks in previous
unary architectures is the extended latency in generating the
bit-serial output. Thanks to uGEMM’s functional unit design,
the high-quality output bit stream ensures fast convergence
to the anticipated value, providing an opportunity for early
terminating uGEMM’s output bit streams when it is precise
enough, which can lead to large reductions in computation
latency while still maintaining accurate results. Moreover,
uGEMM is capable of performing fully in-stream processing
without the delay of binary-unary interconversion adopted in
previous unary computing architectures [57].
With these carefully designed functional units, uGEMM

has higher accuracy than those in conventional stochastic
computing and also supports temporal-coded data. The next
section systematically evaluates uGEMM in terms of accuracy,
stability and hardware efficiency.

V. Evaluation and Results
In this section, based on the two metrics in Section III, we

follow a bottom-up approach to systematically analyze uGEMM
performance from unit level to architecture level.

A. Evaluation Objectives
The following questions will be answered by comparing

uGEMM and its components against proper baselines regarding
the evaluation metrics proposed.

a) Q1: How much do uGEMM’s units improve over other
stochastic MULs and ADDs in output accuracy and stability?
• Accuracy: how close are the outputs of the proposed units
to binary references, measured by root mean square error.

• Output/Input stability ratio (O/I stability): this metric,
calculated by dividing the stability of the output stream
by that of the input, is used for quantifying the effect

7

of one PE. Note that we fix the stabilization threshold
VTHD = 0.05 and saturate the ratio at a maximum of one
if the unit maintains or improves the bit stream stability.

For each component, we vary these factors:
• Input resolution: this factor refers to the correspondent
binary bitwidth before conversion, to which the length of
input unary bit streams is quadratic.

• Input coding type: how will the input representation
influence the accuracy and stability of the output? Recall
the characteristics of two aforementioned representations:
– Ideal rate-coded input (RC input): low correlation

and high stability
– Ideal temporal-coded input (TC input): high correla-

tion and low stability.
Above types are representative of streams with extreme
characteristics for typical stochastic ADD and MUL units
and provide a bound of their accuracy and stability.

In addition, we qualitatively discuss the robustness of uGEMM
functional units to bit flipping errors.

b) Q2: How efficient is the hardware implementation of
individual uGEMM components? We compare the hardware
implementation efficiency in terms of area, power, latency and
energy against previous state-of-the-arts.

c) Q3: How well does uGEMM, under different config-
urations, perform compared to other unary GEMMs? At the
architecture level, we consider these two targets:
• Accuracy: what is the final accuracy of uGEMM and how
the error propagates through functional units?

• Support for early termination: by looking at progressive
precision [5] and stability, we evaluate how well each
unary GEMM design supports early termination.

We investigate the hardware cost of area, power, latency
and energy, which are affected by utilization and shar-
ing of hardware resources. Therefore, we implement differ-
ent configurations of GEMM for various combinations of
data polarities (unipolar/bipolar) and operation requirements
(e.g., scaled/non-scaled addition).

B. Evaluation of uGEMM Functional Units
With an in-house C++-based cycle-accurate unary simulator,

we simulate our uGEMM functional units, as well as prior
stochastic MUL and ADD implementations. For bit stream
generation, we use Sobol sequence generators, which have
shown superior efficiency for stochastic computing [35]. To
mitigate the randomness in bit stream generation [35], the
results are averaged across millions of random trials, as
different input values and different Sobol sequence generators
vary the output accuracy and stability.

1) uMUL
a) Setup: We compare uMUL, including its static and in-

stream implementations (uMUL-ST and uMUL-IS), with previ-
ous ANDMUL/XNORMUL [14] and more recent NMUL by
Najafi et al. [42] for stochastic multiplication. uMUL-ST per-
fectly ensures P

(
Seff
in,1 = 1

)
equal to the expected probability

of input 1 by preloading one multiplicand, e.g. static weights

1.00

0.50
0.25

0O
/I

St
ab

ili
ty

0.75

RC TC
6 Bit

Input:
Bitwidth: 8 Bit 10 Bit

100

80
70A

cc
ur

ac
y

(%
)

90

RC TC RC TC

ANDMULuMUL-ST uMUL-IS NMUL

Fig. 5. Unipolar uMUL accuracy and O/I stability.

1.00

0.50
0.25

0O
/I

St
ab

ili
ty

0.75

RC TC
6 Bit

Input:
Bitwidth: 8 Bit 10 Bit

100

80
70A

cc
ur

ac
y

(%
)

90

RC TC RC TC

XNORMULuMUL-ST uMUL-IS NMUL

Fig. 6. Bipolar uMUL accuracy and O/I stability.

in DNNs, into the counter. uMUL-IS receives both streaming
inputs and computes simultaneously. For each module, we
report the accuracy using unary input streams generated from
6-, 8-, and 10-bit binary data respectively, and results from
unipolar and bipolar input data are shown in Figure 5 and 6.

b) Results: For unipolar input, uMUL-ST has consistently
superior output accuracy and O/I stability ratio among all, even
better than ANDMUL with rate-coded input of almost zero
correlation for each bit width. Input coding poses negligible
impact on uMUL-ST’s accuracy and stability as expected from
the derivation in Section IV-A. With n-bit data, NMUL in [42]
truncates the computation from 22n in [19] back to 2n by
scrambling bit streams. This induces incompatibility with
temporal coding, reintroducing of the correlation problem,
too. As such, NMUL asymptotes uMUL in terms of accu-
racy and stability in most cases but never surpasses uMUL.
Though uMUL-IS slightly weakens the guarantee of probability
integrity, its overall accuracy is comparable to the ideal of
ANDMUL and more robust to temporal-coded input with
high correlation and low stability. Unlike unipolar ANDMUL,
uMUL-ST does not degrade the stability, while uMUL-IS is on
the comparable level as ANDMUL.
Although the accuracy and O/I stability ratio drop in the

bipolar implementation due to lower data resolution, similar
findings are discovered that uMUL-ST shows robust output ac-
curacy and stability for all input compared to XNORMUL, and
bipolar uMUL-IS still achieves acceptable and stable results.

8

100

95

90A
cc

ur
ac

y
(%

)

1.00

0.50
0.25

0O
/I

St
ab

ili
ty

0.75

uSADD MUXADD

RC TC RC TC RC TC RC TC RC TC RC TC
6 Bit

Input:
Bitwidth: 8 Bit 10 Bit 6 Bit 8 Bit 10 Bit

(a) Unipolar (b) Bipolar
Fig. 7. uSADD accuracy and O/I stability.

2) uSADD
a) Setup: We evaluate the uSADD against MUXADD for

stochastic addition in Section II-A. The same setup for bit
width and input representations is used here as before, while
we fix the number of ADD channel to two in the evaluation
of individual functional units.

b) Results: Figures 7(a) and 7(b) shows the uSADD out-
put accuracy and O/I stability ratio for unipolar and bipolar
format respectively. uSADD has almost perfect accuracy re-
gardless of input types unlike the MUXADD whose accuracy
is dependent on input types since uSADD has no stochastic
selection signal to introduce correlation problem in MUX-
ADD. Also, it helps uSADD better retain bit stream stability.
For MUXADD, the final accuracy for temporal-coded input is
higher than rate-coded input because when input bit streams
are maximally correlated, the influence of selection signal is
negligible. Larger input bit widths contribute to performance,
too. For bipolar, we observe the same trend as that of unipolar,
but the accuracy and the ability of maintaining stability reduce
proportionally because of lower input resolution.

3) uNSADD
a) Setup: ORADD in Section II-A is the baseline for

uNSADD’s unipolar non-scaled stochastic addition. Mean-
while, uNSADD is the first to incorporate bipolar non-scaled
stochastic addition by setting the offset. Effects of input type,
bit width, and input channel are still investigated.

b) Results: Figure 8(a) shows the unipolar uNSADD’s
performance, whose accuracy is almost perfect for both in-
put representations compared to ORADD, whose accuracy
degrades greatly with temporal-coded input. uNSADD retains
better stability than ORADD, too. Results also indicate that
uNSADD is stable with different bit widths, while longer input
streams contribute to some improvement.

From Figure 8(b), we conclude that the design of uNSADD
is compatible with bipolar data using rate-coded input data,
too, whose accuracy rates above 90% in all cases and reaches
almost 100% with 10-bit inputs. The stability retainment is
satisfactory as well with rate-coded input. Though, facing
temporal-coded inputs, the accuracy and stability retainment
become less reliable due to less stable input bit streams, the

1.00

0.50
0.25

0O
/I

St
ab

ili
ty

0.75

RC TC RC TC RC TC RC TC RC TC RC TC
6 Bit

Input:
Bitwidth: 8 Bit 10 Bit 6 Bit 8 Bit 10 Bit

(a) Unipolar (b) Bipolar

100

80
70A

cc
ur

ac
y

(%
)

90

uNSADD ORADD

Fig. 8. uNSADD accuracy and O/I stability.

accuracy still shoots almost to 80%. Nevertheless, this worst
case scenario does not apply to uNSADD in uGEMM since the
bipolar uNSADD accepts input of better quality from uMUL’s
output instead of raw highly unstable temporal-coded input.
4) Robustness Analysis
uGEMM functional units leverage register-based logic, like

RNGs in uMUL and counters in uSADD and uNSADD, to en-
sure their precise behavior, which expose higher vulnerability
to hardware errors. Though the robustness might decrease
on the microarchitecture level, the system-level robustness
still maintains similar to prior unary systems, as prior unary
systems require significant amounts of, even more, correlation
manipulating logic [32] to ensure high accuracy.
5) Hardware Implementation

a) Setup: The hardware for unipolar/bipolar multiplier,
scaled adder, non-scaled adder of 8-bit data precision is
synthesized using Synopsys Design Compiler with TSMC
45 nm technology and a clock frequency of 400 MHz.
The results are listed in Table IV. including uGEMM’s

uMUL, uSADD, and uNSADD. Note that all multipliers have
two inputs and adders have eight inputs. We first com-
pare against the well accepted classic stochastic design by
Gaines [14], which supports all operations except the bipolar
non-scaled addition. Sim et al. propose an improved multiplier
that trades off accuracy for energy efficiency [57]. The deter-
ministic approach by Jenson and Riedel [19], which repeats
stochastic bit streams with counters for accuracy, is applied to
existing stochastic functional units. We also consider a latency-
optimized deterministic approach by Najafi et al. [42], where
counters are substituted with linear-feedback shift registers
(LFSRs). We implement the rotation method for both deter-
ministic approaches as described in [19, 42]. We implement
all bit stream generators (excluding the counters in Jenson’s
and LFSRs in Najafi’s) as Sobol sequence generators [35].

b) Results: The unipolar uMUL’s synthesis results in-
dicate that it has better area, power, and energy efficiency
compared to all its counterparts. Note that Jenson’s determin-
istic approach trades off latency for precision via repeating
bit streams. For the scaled addition, uSADD only introduces
minor area and power overhead compared to Gaines’ stochastic

9

TABLE IV
Hardware cost comparison of unary functional units.

Unit Polarity Area Power Latency Energy
(µm2) (µW) (ns) (pJ)

Multiplier

uMUL Unipolar 207.6 60.9 640 39.0
Bipolar 364.3 99.8 640 63.9

Gaines Unipolar 378.7 122.1 640 78.1
Bipolar 377.0 128.2 640 82.0

Sim Unipolar 278.0 80.7 640 51.6
Bipolar 278.7 83.0 640 53.1

Jenson Unipolar 520.2 131.6 163840 21561.3
Bipolar 526.2 137.9 163840 22593.5

Najafi Unipolar 521.4 139.1 640 89.0
Bipolar 514.0 141.4 640 90.5

Scaled adder
uSADD Both 60.5 32.3 640 20.7
Gaines Both 55.7 29.1 640 18.6
Jenson Both 84.5 30.1 163840 4931.6
Najafi Both 86.1 29.0 640 18.6

Non-scaled adder

uNSADD Unipolar 181.7 65.0 640 41.6
Bipolar 196.5 69.7 640 44.6

Gaines Unipolar 11.8 5.1 640 3.3

units with a large improvement in terms of accuracy observed
from previous results. The unipolar scaled adder introduced
in Jenson’s work is also of low area and power overhead but
higher latency. uNSADD is the first to support bipolar non-
scaled addition. This universal and accurate design trades off
some hardware efficiency for high adaptiveness and accuracy
according to our output evaluation before.

Overall, the implementations of uGEMM’s individual com-
ponents are proven hardware-efficient. Furthermore, we will
investigate its higher level efficiency in GEMM related to the
types of operations, resource sharing, etc.

C. Evaluation of uGEMM Architecture
On the GEMM level, we consider final accuracy, fitness

to early termination, and hardware cost. uGEMM’s target is
preserving the area and power efficiency as previous unary
architecture but reducing its error, latency, as well as providing
compatibility for distinct input codings. Based on different
uGEMM functional units, we evaluate all the combinations for
building an 8-bit fully parallel uGEMM. We opt to employ
uMUL-ST in uGEMM for a fair comparison against the baseline
GEMMs where inputs are generated with static values. We
fixed the GEMM shape to m = k = n = 16 for evaluation
purpose. Same as our functional unit evaluation, we again
evaluate Gaines’, Sim’s, Jenson’s and Najafi’s unary schemes.

1) Accuracy and Compatibility of Early Termination
a) Setup: We provide the same rate-coded and temporal-

coded input cases to uGEMM and applicable baselines. The
final accuracy after complete computation is reported for
each configuration. Further, we show the progressive accuracy
curves throughout the processing duration and mark where it
becomes stable, assuming that it is stable when keeping above
95% of the achievable accuracy. Under this assumption, we

TABLE V
Final accuracy comparison of GEMMs.

Design Unipolar
scaled

Unipolar
non-scaled

Bipolar
scaled

Bipolar
non-scaled

uGEMM RC 99.82% 100% 99.57% 97.59%
TC 99.82% 100% 99.54% 61.37%

Gaines RC 97.21% 44.13% 91.48% N.A.
TC 91.60% 70.45% 65.80% N.A.

Sim RC 98.30% 99.95% 95.52% N.A.
TC 91.47% 70.93% 91.48% N.A.

Jenson RC 100% N.A. 100% N.A.
TC 100% N.A. 100% N.A.

Najafi RC 97.5% N.A. 93.4% N.A.
TC N.A. N.A. N.A. N.A.

report the cycles it takes to stabilize. Results are averaged over
numerous random tests for better statistical profiling.

b) Results: The final accuracies of all the GEMM imple-
mentations are shown in Table V. uGEMM attains accuracies
of higher than 99% under all combinations of requirements
on data polarity and scale except for the bipolar non-scaled
temporal-coded input due to overflowing, which is induced by
the low-stability TC input in this case. Nevertheless, uGEMM
achieves almost perfect final accuracy comparable to Jenson’s.
Furthermore, uGEMM supports more input combinations, pro-
viding flexibility using same hardware. Regarding its coun-
terparts, the accuracy is reasonable. Gaines’ classic design
works stably in most cases except for the unipolar RC data
with non-scaled addition and bipolar data with scaled addition.
By probing the input and the unit’s response, we argue that
the accuracy drop is caused by input-associated overflow and
instability, which is reflected in Figure 9. Sim’s design works
well without the problem troubling the conventional stochastic
units, which partially attributes to its binary addition, avoiding
the inaccuracy in addition. Jenson’s approach achieves perfect
final accuracy as expected. The latency-optimized determinis-
tic approach by Najafi achieves higher accuracy than Gaines’
but lower than uGEMM and Sim’s.
In Figure 9, we plot the curves of progressive accuracy from

the first to the last cycle (256th for uGEMM, Gaines’, Sim’s and
Najafi’s but 2562

th for Jenson’s). The stable points, from where
the progressive accuracy maintains above 95% are highlighted.
Whereas it statistically implies a higher likelihood that the
accuracy will not degrade drastically when the computation is
terminated earlier if stable points are closer to the y-axis in
this plot. The gray area bounded in between the curves shows
the difference between accuracies with rate-coded input and
temporal-coded input, and a smaller area indicates lower input-
coding sensitivity. In a nutshell, for each combination and
input type, uGEMM outperforms all other approaches in terms
of how early its accuracy can stabilize, up to 84% and 99.6%
(on average 53% and 51% across all configurations) fewer
cycles for RC and TC input. Also, except for the configuration
of bipolar non-scaled GEMM, uGEMM has smaller shaded
area comparatively, suggesting a higher compatibility of input
data representation and distribution. Note that Najafi’s design
does not support temporal coding due to bit stream scrambling.

10

uG
EM

M
Unipolar

scaled
Unipolar

non-scaled
Bipolar
scaled

Bipolar
non-scaled

Si
m

G
ai

ne
s

RC

0

50
100

A
cc

. (
%

)

100

0

50

A
cc

. (
%

)

0

50

A
cc

. (
%

) 100

0

50

A
cc

. (
%

) 100

Je
ns

on
TC

N.A. N.A.

N.A.

N.A.

0

50

A
cc

. (
%

) 100

N
aj

af
i

N.A. N.A.

Fig. 9. Progressive accuracy (curves) and stability (dots) comparison of
GEMMs. Cycle ranges from 1 to 256 in uGEMM, Gaines’, Sim’s and Najafi’s;
and 1 to 2562 in Jenson’s.

2) Hardware Implementation
a) Setup: As shown in Table VI, we evaluated all

hardware implementations of corresponding configurations of
GEMM for unipolar/bipolar data and scaled/non-scaled accu-
mulation. For each version, we utilize its inherent features to
optimize the implementation as better as we can. For uGEMM
and Sim’s GEMM, we share RNGs for the same input branches
of different multipliers (input 1) in Figure 3 if their inputs 0
come from the same source data, as those RNGs will be
updated synchronously. For Jenson’s GEMM, the repeated bit
streams can be constructed in the same manner regardless of
correlation entirely, yielding a more eager resource sharing of
bit stream generator. Due to the fact that the Gaines’ GEMM
does not have those inherent features, no sharing mechanism
is applied to retain accuracy. Najafi’s design has to maintain
enough LFSRs to keep the accuracy, because its truncation
mechanism emulates the behavior of Gaines’ design using
LFSRs, where the correlation problem is critical.

b) Results: From Table VI, we find that all versions of
uGEMM consume small area and low power, whose values
are lower than those of Gaines’, Sim’s and Najafi’s. We
also observe that Jenson’s GEMM is significantly more light-
weighted than others. We conclude this difference is mainly
due to resource sharing schemes under the accuracy constraint
recalling the comparable unit-level area and power. However,
one drawback of Jenson’s design is its long latency, accounting
for the higher energy consumption. For both unipolar-scaled
GEMM and unipolar-non-scaled GEMM, uGEMM consumes
the least power, while for bipolar-scaled GEMM, it is only less
than 0.02 µJ higher than the lowest one by Sim’s. The bipolar-
non-scaled uGEMM shows pleasant hardware efficiency, too,
related to the ratio between of multiplications and additions.

TABLE VI
Hardware comparison of GEMMs.

GEMM Area
(mm2)

Power
(W)

Latency
(µs)

Energy
(µJ)

Unipolar scaled
uGEMM 0.43 0.15 0.64 0.07
Gaines 1.57 0.50 0.64 0.32
Sim 0.52 0.18 0.64 0.11
Jenson 0.08 0.02 163.84 3.91
Najafi 1.26 0.46 0.64 0.29

Unipolar non-scaled
uGEMM 0.44 0.12 0.64 0.07
Gaines 1.55 0.49 0.64 0.31
Sim 0.50 0.15 0.64 0.09

Bipolar scaled
uGEMM 0.76 0.21 0.64 0.13
Gaines 1.56 0.50 0.64 0.32
Sim 0.53 0.18 0.64 0.12
Jenson 0.08 0.02 163.84 3.90
Najafi 1.25 0.45 0.64 0.29

Bipolar non-scaled
uGEMM 0.77 0.20 0.64 0.13

To conclude, uGEMM attains excellent area, power, latency,
and energy efficiency with a guarantee of accuracy compared
to the state-of-the-art unary paradigms, providing better design
trade-offs, i.e., best early termination capability.
3) Comparison with Non-Unary GEMM

a) Bit-Parallel Binary GEMM: Based on prior measure-
ments [31] where unary matrix multiplication and convolution
are shown to be 13% and 180% more energy-efficient than
their binary counterparts, we estimate that with support for
early termination (which reduces the unary latency by 84%),
uGEMM can achieve similar energy efficiency as binary matrix
multiplication and around 10× that of binary convolution. The
unary-binary hybrid DNN accelerator in [33] improves the
energy efficiency by 1.23× under the same area budget as the
pure binary implementation.

b) Bit-Serial Binary GEMM: Due to less wire conges-
tion, bit-serial computing has slightly higher energy efficiency
compared to bit-parallel binary computing. According to [55],
the bit-serial implementation of a DNN accelerator [23] sees
around 1.7× and 1.3× higher performance and energy effi-
ciency compared with the bit-parallel Eyeriss in [11]. Though
promising, this falls short of our estimated 10× improvement
in energy efficiency for uGEMM, discussed above.
Moreover, as previous studies demonstrate, in practical sens-

ing systems, uGEMM can outperform such binary schemes by
operating on unary data directly from sensors without expen-
sive unary-to-binary data conversion [7, 33, 41, 57]. In [24],
the authors use specialized analog-to-stochastic converters to
transform the sensed analog signal into unary data without
any binary conversion, leading to 56.3× and 2.1× average
improvement in area and energy consumption, respectively.

VI. uGEMM on Multilayer Perceptron
As a case study, we evaluate uGEMM’s accuracy and capa-

bility of early termination at the application level and compare

11

1 17 33 49 65 81 97 113129145161177193209225241
0

20
40
60
80

100

1
Cycle

256129A
cc

ur
ac

y
(%

)

0
20
40
60
80

100

uGEMM Gaines

Fig. 10. Progressive MLP accuracy of uGEMM and Gaines.

against a baseline implemented with Gaines’ functional units.
a) Setup: We develop a custom cycle-accurate unary

computing simulator integrated with PyTorch [68]. We train
a MLP model on the full MNIST training set [30] and report
the progressive accuracy of classification results on the full
test set. The MLP has three fully connected layers with ReLU
activation [40], resulting in 791,522 MUL-ADDs. The baseline
uses bipolar scaled addition and scales data up with the
technique in [26]; other performance-enhancing techniques are
not applied. We implement uGEMM with bipolar uMUL and
uNSADD, fed with rate-coded data. Note that this implemen-
tation is the worst-case scenario for rate-coded uGEMM based
on Figure 9.

b) Results: The floating-point MLP model achieves in-
ference accuracy of 96.87%, and the accuracy is 96.08% when
being quantized to 8-bit and using binary processing elements
as a baseline. We observe from Figure 10 that uGEMM is
able to achieve negligible accuracy loss and maintain 98.6%
accuracy of the binary 8-bit MLP using the entire 256 cycles,
i.e., 94.7% actual accuracy. Note that at each cycle, the
accuracy is the mean accuracy of the entire test set at that
specific cycle. Moreover, uGEMM demonstrates its excellent
capability of early termination – after the 71st cycle (marked as
colored dot in Figure 10), uGEMM stably maintains accuracy
within 5% of its final accuracy. In contrast, Gaines’ design
only attains a final MLP accuracy of 88.58%. Moreover, to
be stable, approaching its maximum accuracy, Gaines’ design
needs 195 cycles and a large number of RNGs to minimize
correlation, unlike uGEMM whose units can share a single
RNG for weights with the same input. These results all suggest
that uGEMM can achieve excellent application accuracy similar
to its binary counterpart while further saving time and energy
in the computation compared to its unary alternative.

VII. Conclusion

We present uGEMM, an area- and energy-efficient GEMM
architecture enabled by novel arithmetic units that unify rate-
coded and temporal-coded unary computing. The proposed
design relaxes previously imposed constraints on input unary
bit streams, such as low correlation or long stream length, and
achieves improved area and energy efficiency over existing
unary systems. Most importantly, uGEMM achieves higher
accuracy and stability than both prior rate-coded and temporal-
coded schemes, facilitating early termination and flexible
energy-accuracy scaling on resource-constrained systems. Our
PyTorch-based cycle-accurate simulator for unary computing
is publicly available [68].

Acknowledgements
We thank the reviewers for their valuable feedback. This

work is supported by the Wisconsin Alumni Research Foun-
dation, an Ontario Graduate Scholarship, and NSF under award
No. CNS-1845469.

References
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: A System for Large-Scale Machine
Learning,” in USENIX Conference on Operating Systems Design
and Implementation (OSDI), 2016.

[2] E. D. Adrian and Y. Zotterman, “The Impulses Produced by
Sensory Nerve-Endings: Part II. The Response of A Single End-
Organ,” The Journal of Physiology, vol. 61, no. 2, pp. 151–171,
1926.

[3] A. Alaghi, Cheng Li, and J. P. Hayes, “Stochastic Circuits for
Real-Time Image-Processing Applications,” in Design Automa-
tion Conference (DAC), 2013.

[4] A. Alaghi and J. P. Hayes, “Exploiting Correlation in Stochas-
tic Circuit Design,” in International Conference on Computer
Design (ICCD), 2013.

[5] A. Alaghi and J. P. Hayes, “Fast and Accurate Computation
Using Stochastic Circuits,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2014.

[6] A. Alaghi and J. P. Hayes, “Survey of Stochastic Computing,”
ACM Transactions on Embedded Computing Systems, vol. 12,
no. 2s, p. 92, 2013.

[7] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and
W. J. Gross, “VLSI Implementation of Deep Neural Network
Using Integral Stochastic Computing,” IEEE Transactions on
Very Large Scale Integration Systems, vol. 25, no. 10, pp. 2688–
2699, 2017.

[8] S. Behroozi, J. Li, J. Melchert, and Y. Kim, “SAADI: A
Scalable Accuracy Approximate Divider for Dynamic Energy-
Quality Scaling,” in Asia and South Pacific Design Automation
Conference (ASPDAC), 2019.

[9] T. H. Chen and J. P. Hayes, “Design of Division Circuits
for Stochastic Computing,” in IEEE Computer Society Annual
Symposium on VLSI (IVLSI), 2016.

[10] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and
O. Temam, “DianNao: A Small-Footprint High-Throughput
Accelerator for Ubiquitous Machine-Learning,” in International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2014.

[11] Y. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture
for Energy-Efficient Dataflow for Convolutional Neural Net-
works,” in International Symposium on Computer Architecture
(ISCA), 2016.

[12] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer, “cuDNN: Efficient Primitives
for Deep Learning,” arXiv:1410.0759, 2014.

[13] Facebook, “FB (Facebook) + GEMM (General Matrix-Matrix
Multiplication).” [Online]. Available: https://code.fb.com/ml-
applications/fbgemm/

[14] B. R. Gaines, Stochastic Computing Systems. Springer, 1969,
pp. 37–172.

[15] K. Ganesan, J. San Miguel, and N. Enright Jerger, “The
What’s Next Intermittent Computing Architecture,” in Interna-
tional Symposium on High-Performance Computer Architecture
(HPCA), 2019.

[16] A. J. Groszewski and T. Lenz, “Deterministic Stochastic Com-
putation Using Parallel Datapaths,” in International Symposium
on Quality Electronic Design (ISQED), 2019.

12

[17] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: Efficient Inference Engine on Compressed
Deep Neural Network,” in International Symposium on Com-
puter Architecture (ISCA), 2016.

[18] Intel, “Intel® Math Kernel Library for Deep Neural Networks
(Intel® MKL-DNN).” [Online]. Available: https://github.com/
intel/mkl-dnn

[19] D. Jenson and M. Riedel, “A Deterministic Approach to
Stochastic Computation,” in International Conference on
Computer-Aided Design (ICCAD), 2016.

[20] Y. Jia, “Learning Semantic Image Representations at a Large
Scale,” Ph.D. dissertation, EECS Department, University of
California, Berkeley, 2014. [Online]. Available: http://www2.
eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-93.html

[21] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional
Architecture for Fast Feature Embedding,” in International
Conference on Multimedia (MM), 2014.

[22] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle,
P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau,
J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gul-
land, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt,
D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khai-
tan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon,
J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagara-
jan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadi-
ani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg,
A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle,
V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon,
“In-Datacenter Performance Analysis of A Tensor Processing
Unit,” in International Symposium on Computer Architecture
(ISCA), 2017.

[23] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and
A. Moshovos, “Stripes: Bit-Serial Deep Neural Network Com-
puting,” in International Symposium on Microarchitecture (MI-
CRO), 2016.

[24] S. K. Khatamifard, M. H. Najafi, A. Ghoreyshi, U. R. Karpuzcu,
and D. J. Lilja, “On Memory System Design for Stochastic
Computing,” IEEE Computer Architecture Letters, vol. 17, no. 2,
pp. 117–121, 2018.

[25] K. Kim, J. Lee, and K. Choi, “Approximate De-Randomizer for
Stochastic Circuits,” in International SoC Design Conference
(ISOCC), 2015.

[26] K. Kim, J. Kim, J. Yu, J. Seo, J. Lee, and K. Choi, “Dy-
namic Energy-Accuracy Trade-Off Using Stochastic Computing
in Deep Neural Networks,” in Design Automation Conference
(DAC), 2016.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
Classification with Deep Convolutional Neural Networks,” in
International Conference on Neural Information Processing
Systems (NeurIPS), 2012.

[28] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling
Flexible Dataflow Mapping over DNN Accelerators via Recon-
figurable Interconnects,” in International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS), 2018.

[29] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh,
“Basic Linear Algebra Subprograms for Fortran Usage,” ACM
Transactions on Mathematical Software, vol. 5, no. 3, pp. 308–
323, 1979.

[30] Y. LeCun and C. Cortes, “MNIST handwritten digit database,”
2010. [Online]. Available: http://yann.lecun.com/exdb/mnist/

[31] V. T. Lee, A. Alaghi, R. Pamula, V. S. Sathe, L. Ceze, and
M. Oskin, “Architecture Considerations for Stochastic Com-

puting Accelerators,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 37, no. 11, pp.
2277–2289, 2018.

[32] V. T. Lee, A. Alaghi, and L. Ceze, “Correlation Manipulating
Circuits for Stochastic Computing,” in Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2018.

[33] V. T. Lee, A. Alaghi, J. P. Hayes, V. Sathe, and L. Ceze,
“Energy-Efficient Hybrid Stochastic-Binary Neural Networks
for Near-Sensor Computing,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2017.

[34] Z. Li, J. Li, A. Ren, R. Cai, C. Ding, X. Qian, J. Draper,
B. Yuan, J. Tang, Q. Qiu, and Y. Wang, “HEIF: Highly
Efficient Stochastic Computing-Based Inference Framework for
Deep Neural Networks,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 38, no. 8, pp.
1543–1556, 2019.

[35] S. Liu and J. Han, “Energy Efficient Stochastic Computing with
Sobol Sequences,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017.

[36] L. Lu, Y. Liang, Q. Xiao, and S. Yan, “Evaluating Fast
Algorithms for Convolutional Neural Networks on FPGAs,”
in International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2017.

[37] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing Loop
Operation and Dataflow in FPGA Acceleration of Deep Con-
volutional Neural Networks,” in International Symposium on
Field-Programmable Gate Arrays (FPGA), 2017.

[38] A. Madhavan, T. Sherwood, and D. Strukov, “Race Logic: A
Hardware Acceleration for Dynamic Programming Algorithms,”
in International Symposium on Computer Architecture (ISCA),
2014.

[39] A. Madhavan, T. Sherwood, and D. Strukov, “A 4-mm2 180-
nm-CMOS 15-Giga-Cell-Updates-per-Second DNA Sequence
Alignment Engine based on Asynchronous Race Conditions,”
in Custom Integrated Circuits Conference (CICC), 2017.

[40] V. Nair and G. E. Hinton, “Rectified Linear Units Improve
Restricted Boltzmann Machines,” in International Conference
on Machine Learning (ICML), 2010.

[41] M. H. Najafi, S. R. Faraji, K. Bazargan, and D. Lilja, “Energy-
Efficient Near-Sensor Convolution Using Pulsed Unary Pro-
cessing,” in International Conference on Application-specific
Systems, Architectures and Processors (ASAP), 2019.

[42] M. H. Najafi, D. Jenson, D. J. Lilja, and M. D. Riedel,
“Performing Stochastic Computation Deterministically,” IEEE
Transactions on Very Large Scale Integration Systems, vol. 27,
no. 12, pp. 2925–2938, 2019.

[43] M. H. Najafi, D. J. Lilja, M. Riedel, and K. Bazargan, “Power
and Area Efficient Sorting Networks Using Unary Processing,”
in International Conference on Computer Design (ICCD), 2017.

[44] M. H. Najafi, D. J. Lilja, M. D. Riedel, and K. Bazargan, “Low-
Cost Sorting Network Circuits Using Unary Processing,” IEEE
Transactions on Very Large Scale Integration Systems, vol. 26,
no. 8, pp. 1471–1480, 2018.

[45] M. H. Najafi and M. E. Salehi, “A Fast Fault-Tolerant Archi-
tecture for Sauvola Local Image Thresholding Algorithm Using
Stochastic Computing,” IEEE Transactions on Very Large Scale
Integration Systems, vol. 24, no. 2, pp. 808–812, 2016.

[46] C. Nugteren, “CLBlast.” [Online]. Available: https://github.
com/CNugteren/CLBlast

[47] Nvidia, “cuBLAS.” [Online]. Available: https://docs.nvidia.
com/cuda/cublas/index.html

[48] Nvidia, “NVBLAS.” [Online]. Available: https://docs.nvidia.
com/cuda/nvblas/index.html

[49] B. Parhami and Chi-Hsiang Yeh, “Accumulative Parallel Coun-
ters,” in Asilomar Conference on Signals, Systems and Comput-
ers (ACSSC), 1995.

[50] K. Parhi and Y. Liu, “Computing Arithmetic Functions Using

13

Stochastic Logic by Series Expansion,” IEEE Transactions on
Emerging Topics in Computing, vol. 7, no. 1, pp. 44–59, 2017.

[51] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic
Differentiation in PyTorch,” in Neural Information Processing
Systems (NeurIPS), 2017.

[52] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K.
Lee, J. M. Hernández-Lobato, G. Y. Wei, and D. Brooks,
“Minerva: Enabling Low-Power, Highly-Accurate Deep Neural
Network Accelerators,” in International Symposium on Com-
puter Architecture (ISCA), 2016.

[53] A. Ren, Z. Li, C. Ding, Q. Qiu, Y. Wang, J. Li, X. Qian,
and B. Yuan, “SC-DCNN: Highly-Scalable Deep Convolutional
Neural Network Using Stochastic Computing,” in International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2017.

[54] J. San Miguel and N. Enright Jerger, “The Anytime Automaton,”
in International Symposium on Computer Architecture (ISCA),
2016.

[55] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra,
and H. Esmaeilzadeh, “Bit Fusion: Bit-Level Dynamically Com-
posable Architecture for Accelerating Deep Neural Networks,”
in International Symposium on Computer Architecture (ISCA),
2018.

[56] H. Sim, S. Kenzhegulov, and J. Lee, “DPS: Dynamic Pre-
cision Scaling for Stochastic Computing-based Deep Neural
Networks,” in Design Automation Conference (DAC), 2018.

[57] H. Sim and J. Lee, “A New Stochastic Computing Multiplier
with Application to Deep Convolutional Neural Networks,” in
Design Automation Conference (DAC), 2017.

[58] H. Sim and J. Lee, “Log-Quantized Stochastic Computing for
Memory and Computation Efficient DNNs,” in Asia and South
Pacific Design Automation Conference (ASPDAC), 2019.

[59] J. E. Smith, “Space-Time Algebra: A Model For Neocortical
Computation,” in International Symposium on Computer Archi-
tecture (ISCA), 2018.

[60] J. Smith and J. Shen, “Your Brain is a Unary Computer,”
in International Symposium on Computer Architecture (ISCA),
2019.

[61] R. B. Stein, E. R. Gossen, and K. E. Jones, “Neuronal Variabil-
ity: Noise or Part of The Signal?” Nature Reviews Neuroscience,
vol. 6, no. 5, pp. 389–397, 2005.

[62] S. S. Tehrani, W. J. Gross, and S. Mannor, “Stochastic Decoding
of LDPC Codes,” IEEE Communications Letters, vol. 10, no. 10,
pp. 716–718, 2006.

[63] G. Tzimpragos, A. Madhavan, D. Vasudevan, D. Strukov, and
T. Sherwood, “Boosted Race Trees for Low Energy Classifi-
cation,” in International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
2019.

[64] S. I. Venieris and C. S. Bouganis, “fpgaConvNet: A Framework
for Mapping Convolutional Neural Networks on FPGAs,” in
International Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), 2016.

[65] D. Wu, T. Chen, C. Chen, O. Ahia, J. San Miguel, M. Li-
pasti, and Y. Kim, “SECO: A Scalable Accuracy Approximate
Exponential Function Via Cross-Layer Optimization,” in In-
ternational Symposium on Low Power Electronics and Design
(ISLPED), 2019.

[66] D. Wu, Y. Chen, Q. Zhang, Y.-L. Ueng, and X. Zeng, “Strategies
for Reducing Decoding Cycles in Stochastic LDPC Decoders,”
IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 63, no. 9, pp. 873–877, 2016.

[67] D. Wu and J. San Miguel, “In-Stream Stochastic Division and
Square Root via Correlation,” in Design Automation Conference
(DAC), 2019.

[68] D. Wu and R. Yin, “UnarySim.” [Online]. Available:

https://github.com/diwu1990/UnarySim
[69] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing Energy-Efficient

Convolutional Neural Networks Using Energy-Aware Pruning,”
in IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017.

[70] J. Yu, K. Kim, J. Lee, and K. Choi, “Accurate and Effi-
cient Stochastic Computing Hardware for Convolutional Neural
Networks,” in International Conference on Computer Design
(ICCD), 2017.

[71] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava,
R. Gupta, and Z. Zhang, “Accelerating Binarized Convolutional
Neural Networks with Software-Programmable FPGAs,” in In-
ternational Symposium on Field-Programmable Gate Arrays
(FPGA), 2017.

14

