uSystolic: Byte-Crawling Unary Systolic Array

Di Wu and Joshua San Miguel
Department of ECE, University of Wisconsin—-Madison, Madison, WI, USA
di.wu@ece.wisc.edu and jsanmiguel @wisc.edu

Abstract—General matrix multiply (GEMM) is an important
operation in broad applications, especially the thriving deep
neural networks. To achieve low power consumption for GEMM,
researchers have already leveraged unary computing, which
manipulates bitstreams with extremely simple logic. However,
existing unary architectures are not well generalizable to varying
GEMM configurations in versatile applications and incompatible
to the binary computing stack, imposing challenges to execute
unary GEMM effortlessly. In this work, we address the problem
by architecting a hybrid unary-binary systolic array, uSystolic,
to inherit the legacy-binary data scheduling with slow (thus
power-efficient) data movement, i.e., data bytes are crawling out
from memory to drive uSystolic. uSystolic exhibits tremendous
area and power improvements as a joint effect of 1) low-power
computing kernel, 2) spatial-temporal bitstream reuse, and 3)
on-chip SRAM elimination. For the evaluated edge computing
scenario, compared with the binary parallel design, the rated-
coded uSystolic reduces the systolic array area and total on-chip
area by 59.0% and 91.3%, with the on-chip energy and power
efficiency improved by up to 112.2x and 44.8x for AlexNet.

I. INTRODUCTION

Prior research has shown that general matrix multiply
(GEMM), as the core of deep neural networks (DNNs),
dominates over 90% computation of the entire workload [28].
As such, in the past decade, tons of research efforts have been
put on optimizing GEMM operations, including both matrix
convolution and matrix multiplication, from varying aspects,
like energy [10], power [51], latency [64] and throughput [60],
etc. Most of those optimizations apply binary computing
architectures with parallel bits as data, which have been
pervasively adopted in real-world applications for decades.
The correspondent binary computing stacks have been well
developed for GEMM, from programming languages and
compilers [8], [14], [20], [65] to microarchitectures and
architectures [30], [41], [66], [77]. Those optimizations are not
only applicable to high performance computing in datacenters,
but also compatible to rapidly-evolving edge computing with
a restricted power budget, e.g., in mobile systems.

Challenges for Low-Power GEMM Execution. Despite the
holistic and mature design stack, low-power GEMM execution
on edge devices is still challenging, even considering the recent
technology advances. First, binary computing usually equips
the computing kernels with on-chip SRAM, increasing power
consumption. Conventional binary GEMM kernels compute
within short cycles and require frequent memory accesses,
which leads to high power consumption, e.g., remote DRAM
accesses occupy around 95% of the total power in [9], as
DRAM accesses consume three orders of magnitude more
energy than fixed-point adders [19]. To reduce remote DRAM

TABLE I: Comparison between existing GEMM architectures
and our proposed uSystolic.

. Power Scala- | Generali-
Architecture Accuracy | pehiency | bility | zability
B-Systolic [30] Precise Low High High
B-Mesh [13] Precise Low Low High
FSU [54], [69], [75] Low-High High Low Low
HUB [38], [57], [58] High High Low Medium
uSystolic (ours) High High High High

accesses for high efficiency, on-chip SRAM is slabbed on
to the computing kernels, like systolic array [30], [34] and
2-D mesh [13] (B-Systolic and B-Mesh in Table I), for
local data reuse. Though DRAM power is reduced, SRAM
now swallows power. Second, the power of parallel binary
computing kernels increases superquadratically with the data
bitwidth. The gate count and power of binary computing
kernels, fed on parallel bits, increase quadratically with the
data bitwidth. Moreover, the routing congestion [68], [74]
further exacerbates the power overhead in a superquadratical
manner and limits the scalability, especially for the 2-D
mesh without local interconnections as in systolic array. As
such, though precise and highly generalizable for varying
DNN applications, i.e., flexibly configuring GEMM to varying
shapes (matrix shape) and types (either matrix convolution or
multiplication), binary systolic array and mesh architectures
are not offering high power efficiency. Alternatively, emerging
unary computing utilizes extremely simple logic to operate
serial bitstreams, either rate or temporal coding, resulting
in power efficiency over binary computing [16], [43], [69].
However, its specific challenge is that existing low-power
unary GEMM architectures are not efficiently generalizable
to diverse DNN-based applications on the edge due to their
dedication to specific GEMM configurations. Leveraging the
high computation density thanks to the simple logic, prior
works mostly exploit fully streaming unary architectures (FSU
in Table I) [40], [43], [54], [61], [68], [69], [75], i.e., no
intermediate interconversion between binary data and unary
bitstreams before the final output [69], to execute DNNs in a
fully parallel manner and eliminate the requirement for data
scheduling. However, DNN applications on the edge have
varying GEMM configurations [5], [18], [19], [23], [25], [26],
[50], [76], where one single FSU architecture fails to serve all
purposes with high generalizability. As a result, conventional
FSU architectures force the coexistence of multiple unary
hardware, eventually diminishing the area and power benefits.
Similar to binary computing, FSU architectures for large
GEMMs also suffer from routing congestion, thus limiting the

Legacy-binary
data scheduling

(N\ o~ ~
|
! Onchip ! Output Interface
: SRAM | Weight Interface
g Low-power
ool G| (L0
Off-chip <:>: """ £ computing kerne
=
DRAM H ity = I:ll)l:I []::ﬂ []?I] Spatial-temporal
MR g bitstream reuse
1 ‘eaa2a
000
' EH s s s ot DT,
I gy & { On-chip SRAM %
I Output’v []?I:I []?I] []?I] liminati [
| mem——— \ elimination)
—/ ~—e J UL T T T | | e~

Fig. 1: uSystolic overview with memory hierarchy.

scalability. Furthermore, FSU architectures do not consistently
offer high accuracy, e.g., temporal coding for signed data
yields low accuracy [69]. On the other hand, there also exist
hybrid unary-binary architectures (HUB in Table I) [15], [38],
[45], [57], [58], which hybridize unary and binary computing
to execute GEMM for better accuracy and higher scalability
than FSU architectures. For example, [57] applies a 3-D
mesh architecture to fit the inner-loops of matrix convolution.
However, it is not well generalizable to matrix multiplication
with inner-loops of varying shapes. As such, mapping arbitrary
GEMMs on those architectures with no overhead is difficult.

Proposed Low-Power Unary GEMM Architecture. To
address above challenges, we propose uSystolic, a hybrid
unary-binary systolic array architecture, which hooks unary
computing kernels to binary interfaces. We highlight the
features of uSystolic in Figure 1. First, uSystolic employs
legacy-binary data scheduling at its memory interfaces. At
the memory side, uSystolic exhibits identical data scheduling
order as conventional binary systolic array and is broadly
generalizable to varying GEMM configurations as shown in
Table 1. More specifically, uSystolic employs a high-accuracy
unary multiplication [69], naturally coupling with weight
stationary dataflow [30], [55]. This allows designers to integrate
uSystolic to existing binary systems without sophisticated
software reinnovation. Second, uSystolic internally equips low-
power computing kernels, including low-cost unary multiplica-
tion and reduced-resolution binary accumulation. The signed
multiplication in uSystolic is performed using the unsigned
multiplier from [69] in the sign-magnitude format, i.e., the
sign bit and the absolute value, halving the hardware cost
and cycle count of the signed multiplier in [69]. The binary
accumulation of bitstreams guarantees high accuracy [57], [58],
especially for temporal-coded bitstreams of signed data, which
exhibit poor accuracy if accumulated in unary domain [69]. The
output resolution can also be reduced for extra hardware saving,
compared to binary designs. Similar to [69], dynamic accuracy-
energy trade-off via early termination [69], [72] is viable in
uSystolic. Third, uSystolic is featured with spatial-temporal
bitstream reuse, which transforms the input reuse in binary
systolic arrays to unary domain. This bitstream reuse, embedded
in the local interconnections, endues a much stronger scalability
in uSystolic than prior FSU [69] or HUB [58] architectures
relying on global broadcast and preserves consistently high
accuracy. Lastly, on-chip SRAM elimination is feasible in
uSystolic due to the relaxed requirement for high memory
bandwidth. Though unary multiplication prolongs the latency,
it slows down the data movement, i.e., data bytes are crawling

TABLE II: GEMM parameters from the DNN perspective.

Matrix Operation (Type)
GEMM Parameter (Shape) Convolution | Multiplication
Height IH IH=1
Input feature map (I) Width w w
Channel IC IC=1
Height WH WH=1
Weight (W) Width wWwW WwW
Stride S S=1
Output feature map %ﬁ:ﬁﬁt 8@ 8@3
© Channel oC oC

out from memory to drive uSystolic, reducing the memory
bandwidth, especially in edge scenarios.
We list the contributions of this work as follows:

o This work identifies the technical challenges for low-
power GEMM execution in existing literature as 1) on-chip
SRAM and superquadratical power overhead in binary
computing and 2) poor generalizability to diverse GEMM
configurations in unary computing.

« This work presents uSystolic, a systolic array architecture
that hybridizes low-power unary computing with binary
interfaces, to overcome the deficiencies in existing unary
GEMM designs by simultaneously offering high accuracy,
efficiency, scalability and generalizability.

o We evaluate uSystolic at the system level in the context of
GEMM-intensive DNNs using early termination as a key
knob, and demonstrate that uSystolic feeds on crawling
bytes, i.e., requires low bandwidth, to eliminate on-chip
SRAM for even higher energy and power efficiency.
Our customized systolic array simulator for evaluation,
uSystolic-Sim, is publicly available [67].

The rest of this paper is organized as follows. Section II
reviews the weight stationary systolic array and unary com-
puting. Then, Section III describes the detailed architecture of
uSystolic. Next, Section IV and V articulate the evaluation
framework and result. Finally, Section VI concludes the paper.

II. BACKGROUND

This section reviews the systolic array with the weight
stationary dataflow and the general concept and architectures
of unary computing, all in the context of GEMM.

A. Weight Stationary Systolic Array

GEMM operations are usually in the form of matrix
multiplication, and can additionally be in the form of matrix
convolution in the realm of DNNs [27]. We list the GEMM
parameters, which unify the notation of both matrix convolution
and multiplication, as in Table II. In this table, there exist
three variables, including input feature map (IFM), weight,
and output feature map (OFM), each associated with three
parameters. Those variables are organized as data windows of
shape (height, width), with the channel and stride referring to
the number of windows and the stride to perform convolution
on IFM and weight windows. The parameter values for matrix
convolution and multiplication are directly taken from an ARM
implementation of systolic arrays [55]. Using those parameters,

Algorithm 1 Loop formulation for GEMM in Table II

1: For {oh,ow,oc,wh,ww,ic} in {OH,OW,0C,WH,WW,IC}
2 O[oh,ow,oc] += Woc,wh,ww, ic]
3: « I[[wh+ohS,ww—+owxS,ic]
4: return O
(I t N\
WREGH—+| MUL || ADD
IREG }

Fig. 2: Weight stationary binary systolic array PE.

GEMM can be formulated as Algorithm 1, exposing abundant
opportunities for data reuse to accelerate execution and boost
efficiency [66]. There exist varieties of data reuse schemes,
i.e., dataflows, including input stationary, weight stationary,
output stationary dataflow, etc. [10], [55], [73]. In this work,
we focus on the weight stationary dataflow, which is adopted
by the commercialized Google TPU [30].

Weight stationary systolic arrays [30], [S5] minimize the
weight movement by reusing weights. The processing element
(PE) using binary computing on bit-parallel data is in Figure 2.
The IREG, WREG and OREG are used to store the IFM, weight
and OFM (a partial sum), respectively. The multiplier (MUL)
and adder (ADD) construct a single-cycle multiply-accumulate
(MAC) unit. The weights are preloaded into the WREG and
pipelined to bottom PEs. Then the IFMs are streamed into the
IREG from left PEs to participate in MAC operations. The
partial sum in OREG is accumulated to the OREG in top PEs
for the final valid OFM. When all OFMs related to current
weights are computed, new weights will be loaded. As high
efficiency requires minimal stalls, binary systolic arrays put
an exorbitant requirement on the memory bandwidth, which
usually can’t be offered by the off-chip DRAM. Therefore,
binary systolic arrays need on-chip SRAM to allow local reuse
for efficiency. In this work, uSystolic PE with unary computing
takes multiple cycles, relieving the bandwidth requirement and
unnecessitating the on-chip SRAM.

B. Unary Computing

Unary computing’s power supremacy originates from the
simple computing units, which operate on serial bitstreams
using either rate or temporal coding [16], [43], [69], with
applications in error correction code [61], [68], image pro-
cessing [1], [48], deep learning [54], [57], sorting [47], DNA
sequencing [43], [44], superconducting [62], etc.

1) Data Coding: Unary data are serial bitstreams converted
from parallel binary data. A N-bit binary data can be converted
to a length-2" serial bitstream with an identical resolution.
Unary bitstreams can employ varying codings [69], either
rate [16] or temporal coding [43], as in Figure 3. Rate-coded
and temporal-coded bitstreams, both representing their values
by the probability of bit 1s, exhibit random and deterministic
bit orders, respectively. The actual bitstream value not only

\ P=05 [
Vu=10.5,V,=0.0

0101010101010101

P=05
Vi=105,V,=00

0000000011111111

Random bits Deterministic bits

(a) Rate coding. (b) Temporal coding.

Fig. 3: Unary bitstream generation for rate and temporal coding
by comparing SRC with a random and deterministic number
sequence from SRC and CNT at each cycle. SRC: source
binary data; RNG: random number generator; CNT: counter;
CMP: comparator; BSG: bitstream generator.

[Sre I
=
R P
=
Fig. 4: Unipolar uMUL with conditional bitstream generation
for zero SCC. Both inputs have the value of 0.5.

8/16

4/16
0101010101010101
0100010001000100
1100110011001100

8/16

depends on the probability of bit 1s, i.e., the SRC value, but
also relies on the polarity, either unipolar or bipolar. Given P as
the probability of bit 1s, the unipolar and bipolar bitstreams are
unsigned and signed with values of V, =P and V;, =2-P—1,
respectively. Note that the coding does not influence the data
scheduling order in uSystolic.

2) Unary Multiplication: Unary computing can perform
arithmetic operations, e.g., multiplication, with considerably
cheap hardware [16] but exponentially increasing latency. A
naive unary multiplication on unipolar bitstreams is an AND
gate, exhibiting superquadratical area and power reduction
compared with binary multipliers, which suffer from the
routing congestion problem [68], [74]. For accurate unary
multiplication [2], [69], [71], a zero-valued stochastic cross
correlation (SCC) [2], formulated to measure the similarity
between two bitstreams, is both necessary and sufficient. To
force SCC close to zero, multiple solutions are proposed [21],
[371, [42], [49], [69]. The recent UMUL calculates the product
with high accuracy and low variance via conditional bitstream
generation (C-BSG) [69], as illustrated in Figure 4. One
bitstream is now the enable signal to update the RNG for
another bitstream, whose source binary data are statically stored,
i.e., stationary!. Consequently, the constraint of zero input SCC
can be approximately converted to C-BSG between the enable
bitstream (B) and the random sequence (R) from the RNG
as in Equation 1. Furthermore, it is compatible to both rate
and temporal coding. Due to those benefits, uSystolic will
adopt C-BSG to ensure accuracy as in Section III-A. uSystolic
multiplies two signed data in sign-magnitude format with one
unipolar UMUL in Figure 4, which is only half the area of the
bipolar UMUL in [69]. Furthermore, due to one less bit in the
absolute value, only half the cycles are necessary for uSystolic,

IThis allows the dataflow to be either input or weight stationary, but not
output stationary. We focus on weight stationary in this work.

Input buffer Output buffer

(a) Existing fully streaming unary architecture.

(b) Existing hybrid unary-binary architecture.

([[[

(c) Proposed uSystolic architecture.

H
a
Iﬂ

(- N
| o Algorithm E Hardware |
\

—> Data | Unary Binary |

Fig. 5: Unary architectures for CNN execution. Binary and
unary domains are gray and colored. B-U: binary data to
unary bitstream conversion; U-B: unary bitstream to binary
data conversion; GEMM: matrix convolution or multiplication;
Conv: matrix convolution layer; FC: fully connected layer via
matrix multiplication; A: activation; L: loss.

compared to [69], to perform signed unary multiplication.

SCC =02 C-BSG(B,R) (1)

3) Early Termination: Though unary computing shows su-
perquadratically higher power efficiency due to the simple logic,
its energy efficiency is undetermined when the exponential
latency overhead is considered. Prior research [39], [69] has
unveiled that when the bitstreams are short enough, unary
computing outperforms binary computing in energy efficiency.
Thus, reducing the latency while not incurring significant
accuracy loss is critical for the energy benefit, leading to
the deployment of early termination, using technologies like
output profiling [3], [68], hardware specialization [57] and
metric-based characterization [69], [72]. Prior works [69], [72]
have already proven the reliability of early terminating C-BSG
with little accuracy loss for rate coding, while early terminating
temporal-coded bitstreams incurs significant accuracy loss [69].
As such, in Section III-C, we will only present the architectural
support for early termination in uSystolic for rate coding.
Moreover, as early termination promotes the efficiency, we will
use it as one key knob for evaluation in Section V.

4) GEMM Architecture: Based on the bitstream flow, unary
GEMM designs can be categorized into fully streaming unary
(FSU) and hybrid unary-binary (HUB) architectures.

a) Fully Streaming Unary Architecture: FSU architectures
are fully parallel designs [40], [54], [69], [75]. An example of a
k-layer DNN, e.g., convolutional neural networks (CNN), using
a FSU architecture is given in Figure 5a. The input binary data
are converted to unary bitstreams only once. The generated
bitstreams then propagate through all hardware pipelines and
are eventually converted back to binary domain at the output.

The recent UGEMM is a FSU GEMM architecture [69],
[70], where high-performance unary multiplication and addition
are organized together to perform unary GEMM operations,
as shown in Figure 6. Input and weight bitstreams are first

e e e e e e e e e e e e e e e e e e = = = = — -

Input

‘Weight
[[[[

[[
p
uMUL) ... (uMUL) ... !uMUL’] [uMUL ‘uMUL' uMUL]

. (s40D) .
| Output : l ‘

Fig. 6: SIMD FSU architecture in uGEMM [69].

broadcasted to the corespondent PE, and then multiplied and
aggregated as a valid output bitstream using bipolar uMUL
and UADD, respectively. All output bitstreams are computed
simultaneously in UGEMM PEs, eliminating the sophisticated
data scheduling in binary designs [9], [13], [30], [34], [51].
Such full parallelism classifies UGEMM as a SIMD architecture.
Though uGEMM presents area and power advantages due to
the simple unary logic, it has multiple drawbacks as in Table I.
First, UGEMM has suboptimal output accuracy due to bitstream
aggregation in the unary domain, especially for temporal
coding [69], [70], despite accurate unary multipliers. Second,
UGEMM exhibits low scalability due to broadcasts of input
and weight bitstreams to all correspondent PEs via a global
interconnection. Finally, UGEMM suffers low generalizability
because it needs to be fitted for a fixed DNN model. To support
multiple DNNs with different GEMM configurations, multiple
UGEMM instances would be needed in hardware, diminishing
the area and power advantages.

b) Hybrid Unary-Binary Architecture: To address the
accuracy issue in UGEMM-like FSU architectures, HUB archi-
tectures with multiple rounds of intermediate interconversion
between binary data and unary bitstreams [15], [38], [45], [57],
[58] are proposed, with an example in Figure 5b. This HUB
architecture executes matrix convolution with unary hardware,
and performs the rest with binary logic. Its insight is to perform
expensive operations with unary logic for efficiency and cheap
operations with binary logic for accuracy.

However, existing HUB architectures are not as generalizable
as the binary counterparts, as their dataflows [38], [57], [58]
are not flexible enough for varying GEMM configurations. For
example, authors in [38], [58] parallelize all computation for
one single output element in matrix convolution. But when
the matrix shape and type change, this hardware is not able
to provide the best efficiency. Authors in [57] apply a 3-D
mesh architecture to compute matrix convolution without co-
optimizing it for matrix multiplication. Nevertheless, the 3-D
architecture optimized for inner loops of matrix convolution
does not naturally match the shape of inner loops of matrix
multiplication as in Table II, lowering the efficiency.

In this work, we propose uSystolic to simultaneously
offer high accuracy, efficiency, scalability and generalizability
(Table I) by equipping the well-studied systolic arrays with
unary computing, as in Figure 5c. Compared with UGEMM,
whose unipolar UMUL is leveraged here, uSystolic exhibits
significant advantages resulting from small yet deliberate,

fundamental optimizations. First, the binary accumulation
allows accurate MAC for temporal coding, which is impossible
in UGEMM. Second, the unipolar UMUL on sign-magnitude
formatted data halves the latency and power of bipolar uMUL
in UGEMM, improving the energy efficiency by more than 2x.
Third, the systolic nature with local interconnections, instead
of global interconnections in UGEMM, ensures high scalability
with no accuracy degradation and minimized area overhead,
powered by the spatial-temporal bitstream reuse. Last, as a
systolic array, uSystolic inherits the data scheduling from
commercial designs, offering high generalizability for varying
GEMMs, unlike UGEMM targeting a fixed configuration.

IIT. USYSTOLIC ARCHITECTURE

The proposed uSystolic is similar to the Google TPU systolic
array [30] in two aspects. First, they both have fixed-point
(FXP) signed binary data at the input and output. Second, they
both adopt the weight stationary dataflow with an identical
scheduling order. These similarities minimize the effort to
deploy uSystolic in low-power edge computing scenarios.
However, there exist more architectural differences. First,
uSystolic employs a low-power computing kernel via hybrid
unary-binary (HUB) computing, including low-cost unary
multiplication and reduced-resolution binary accumulation.
Second, uSystolic introduces a novel subword-level spatial-
temporal bitstream reuse to further reduce the hardware cost
while offering a consistent accuracy guarantee. Third, uSystolic
is able to trade off accuracy for energy with early termination,
boosting the energy efficiency. Fourth, uSystolic requires
the instruction set architecture (ISA) to be aware of the PE
runtime (cycle count). Lastly, uSystolic allows on-chip SRAM
elimination due to the reduced bandwidth requirement, further
improving energy and power efficiency. From the system
performance perspective, the above differentiators provide
uSystolic with user-tunable accuracy, bandwidth, throughput,
energy and power efficiency.

The uSystolic architecture is shown in Figure 7. The entire
uSystolic is located in the middle, containing R rows and
C columns of PEs. The surrounding FIFOs are in charge of
synchronizing data as in [30]. In step @, the weights are
preloaded into the array from the top and remain stationary
in the array until all related output feature maps (OFMs) are
calculated. In step @, the binary input feature maps (IFMs)
are fed into the array from the left. In step @, the IFMs are
converted to unary bitstreams and pipelined to right PEs. In
step @, the unary OFM bitstreams are accumulated in binary
domain and output from the top.

A. Low-Power Computing Kernel

The left part of Figure 7 draws the PEs at the leftmost column.
Both the weight and IFM, originally signed, are converted to
sign-magnitude format, i.e., the sign bit and the absolute value.
Such conversion is done once at the leftmost column and the
upmost row with minimum overhead. The absolute values of
the weight and IFM are then compared with the output of the
RNG or CNT to generate unipolar bitstreams as in Figure 3.

Weight bitstreams always apply rate coding using RNG, while
IFM bitstreams can optionally be of temporal coding using
CNT. The feedback signal from the IFM comparator C-I to
the weight RNG acts as the enable signal in Figure 4, forming
a unipolar UMUL for low-cost unary multiplication. Then the
output of UMUL AND gate needs to be accumulated to the
OREG, if the unary multiplication is not completed, i.e., M-end
is not asserted. The accumulated value depends on the sign
bits of both the weight and IFM, i.e., WSIGN and ISIGN: 1)
if two bits are identified to be the same using the XOR gate,
the UMUL output bit is directly accumulated; otherwise, its
opposite is accumulated. When M-end is asserted, the partial
sum in OREG from the PE below is accumulated into the
current OREG, and finally streamed out as a valid OFM.

In above HUB computing flow (binary-unary-binary), a N-
bit binary weight and a N-bit binary IFM first generates two
2¥=L_bit unary bitstreams. Then two bitstreams produce one
2N=Lpit bitstream, which accumulates to be a N-bit binary
OFM. This means applying this flow does not change the
FXP data resolution at the input and output, in contrary to the
fact that the conventional binary multiplication of two N-bit
binary input produces one 2N-bit binary output. This allows to
optimize the PE with reduced-resolution binary accumulation:
the OREG size can be N-bit smaller than that in binary designs,
further reducing the hardware cost. The effect of resolution
reduction is later evaluated in Section V-A. Note that long
MAC cycles allow to better hide timing fluctuation of data
synchronization in the FIFO, even without on-chip SRAM.

B. Spatial-Temporal Bitstream Reuse

The right part of Figure 7 depicts the PEs located at the
columns other than the leftmost. The low-power UMUL still
exists, labelled in gray, and is simplified in two aspects: 1) the
IFM bit to the UMUL is the delayed IFM bit in IDFF from
the left PE; 2) the random number to generate the weight bit
is the delayed version of that from the left PE in the RREG.
Such an organization ensures that both the IFM bitstream and
weight random number are generated only once and reused
both spatially and temporally in a row. This spatial-temporal
bitstream reuse allows to 1) to reduce the area and power
overheads by eliminating two costly RNGs and one comparator,
and 2) more importantly, to guarantee the consistency in high
accuracy throughout the entire systolic array.

The PEs at the leftmost column employ UMUL to satisfy the
zero-correlation requirement for high accuracy in Equation 1.
Given r and ¢ as the row and column indexes, leftmost PEs with
index (r, 0) meet Equation 2. Such a relationship holds for
a duplication of the bitstream By and the random number
sequence Ry, e.g., UGEMM spatially duplicates them via
broadcasting [69]. In uSystolic, the one cycle lag for IDFF
and RREG in a PE from those in the left PE duplicates the
values both spatially and temporally, formulated in Equation 3.
Combining Equation 2 and Equation 3, we have Equation 4,
where 0 < r < R and 0 < ¢ < C, to indicate that all PEs at the
same row follow the same SCC constraint for consistently high
accuracy. Furthermore, applying the same RNG to all rows in

Legacy-binary data scheduling

E FIFO Shifter

Low-power computing kernel

(D Regsister :D— Comparator

- Spatial-temporal bitstream reuse

Binary data/
@ Unary data
Control signal Unary data

:)D— XOR gate D— AND gate

From/To PE-(r-1, ¢)

MUX select logic

From/To PE-(r-1,0)
e N §
el
=
OREG
o ADD Input
5 ~[IH|
B g
g sel MUX o B
4] oo ']
: T | -
<] -101 =
=
a
=
<
(Vend)
M-end
L PE-(r, 0) —
To/From PE-(r+1, 0)

D ﬂ ~G
===~ (R-1,
o= ()

J .

(1-0"1)-gd wor]
(1+0“1)-ad oL

PE-(r, ¢)
To/From PE-(r+1, ¢)

Fig. 7: uSystolic architecture with total R-by-C PEs. In the middle is the array of PEs; on the left is the diagram of PEs at the
leftmost column of the array; on the right is the diagram for the rest PEs in the array. WABS and WSIGN are registers to
buffer the absolute value and sign of the weight; IABS and ISIGN are registers for the absolute value and sign of the input
feature map; IDFF is to buffer the input feature map bit from the left PE. C-W and C-I are comparators to generate bitstreams
for the weight and input feature map. RNG and CNT denote the random number generator and counter. RREG and OREG are
buffers for the random number from the left PE and the output, respectively. M-end signals the end of unary multiplication.

uSystolic, we achieve an identical accuracy level throughout
all PEs. And we configure the RNG in uSystolic to be the
high-quality Sobol RNG [42] as in [69].

SCC = 0= C-BSG,(Bo,Ro))
C-BSG,(B.,R;) = C-BSG,(Bc1,Rc11) 3)
SCC =0 C-BSG,(Bc,R.) o))

C. Early Termination

The early termination in uSystolic is designed for rate
coding to improve the energy and power efficiency, instead of
temporal coding due to the potential accuracy loss as explained
in Section II-B3. Given a N-bit binary weight and IFM, the
binary product can be maximally N-bit if all unary bits are
accumulated. Early termination leads to a fraction of those
bits being accumulated. Assume 2"~! bits are accumulated, the
binary product will be n-bit, where 1 <n < N. This fact implies
that only n out of N most significant bits of the binary output
are generated, and we define n to be the effective bitwidth.
The resultant MAC cycle count is 2"~! 4 1. This n-bit result
needs to be scaled back to N bits (left shifted by N —n) for
correctness. Furthermore, the shifters can be allocated to the
output of PEs in the top row, instead of per PE for hardware
saving, as in the middle of Figure 7.

D. ISA Support

As uSystolic maintains the dataflow of binary systolic arrays,
it has an identical data scheduling order as in binary systolic

arrays. However, uSystolic increases the PE MAC cycle count.

Therefore, the interval between consecutive data scheduling
is deterministically prolonged. More specifically, the weight
preloading is identical to that in binary systolic arrays, while

the original one-cycle OFM accumulation in Figure 2 now lags
multiple cycles behind the initial streaming of IFM. As such,
the uSystolic ISA is similar to that of TPU, but augmented
with an indicator field for the MAC cycle count, i.e., how many
cycles to terminate the computation.

E. On-Chip SRAM Elimination

The memory hierarchy of uSystolic is used to store weights,
IFMs and OFMs. However, the increased PE MAC cycle count
in uSystolic leads to less frequent data feeding at the memory
interfaces, i.e., data bytes are crawling out from the memory,
reducing bandwidth for both on-chip SRAM and off-chip
DRAM. Fortunately, the on-chip bandwidth can be as low
as what off-chip DRAM can cheaply afford, and even some
crawling bytes can drive uSystolic in edge computing scenarios.
Therefore, the on-chip SRAM can be of small size, or even
eliminated for energy and power benefits, without hurting data
synchronization. In this work, we focus on the necessity of
SRAM, as shown by the dashed blocks in Figure 1, instead of
judiciously exploring how large SRAM needs to be.

IV. EVALUATION FRAMEWORK

In this work, we focus on the computing kernel of the
systolic array and memory hierarchy to understand where the
limit of uSystolic lies. Therefore, other hardware logic in a
comprehensive DNN accelerator, like accumulators, look-up
tables, I/0Os [30], are not evaluated. This section describes the
evaluate framework in Figure 8 for the system in Figure 1 with
both uSystolic and memory hierarchy.

A. Objective

As uSystolic applies non-traditional HUB computing, two
aspects are evaluated: 1) functional correctness, i.e., accuracy;

DNN inference
(UnarySim)

Trace profiling Bandwidth, Throughput:

(uSystolic-Sim) Systolic array + SRAM + DRAM
Hardware synthesis Area, Energy, Power, Efficiency:
(Design Compiler) Systolic array

Area, Energy, Power, Efficiency:]

Accuracy:
Systolic array + SRAM + DRAM

GEMM
configuration
Systolic array
configuration

Memory
configuration

Fig. 8: Evaluation framework of uSystolic. The objectives

(right) are obtained by applying widgets (middle) on the
configurations (left).

Memory modeling

(CACTI7.0) SRAM + DRAM

2) hardware performance , i.e., bandwidth, area, throughput,
energy, power and correspondent energy and power efficiency
in a system with the required memory hierarchy.

B. Widget

To validate the accuracy of the system, we choose the popular
GEMM-intensive DNN inference [27]. To model matrix convo-
lution and multiplication behavior in uSystolic, we extend an
open-source unary computing simulator, UnarySim [69], [70].
Besides the GEMM configuration in Table II, we also consider
the data bitwidth and PE MAC cycle count.

The bandwidth and throughput are calculated by profiling
memory traces modelled with a customized systolic array
simulator, uSystolic-Sim [67], adapted from SCALE-Sim [55]
from ARM. Our simulator supports varying computing schemes,
different data bitwidths and memory-contention-aware data
scheduling, which are unavailable in ARM SCALE-Sim.

The systolic array area and leakage power are modelled via
hardware synthesis using Synopsys Design Compiler, while
those for the memory hierarchy are modelled using CACTI
7 [6]. The dynamic power and energy of all are modelled
with additional execution statistics from trace profiling. The
efficiency is obtained by dividing the throughput by the energy
and power. Note that the on-chip systolic array and SRAM
always apply the same technology node.

C. Configuration

1) GEMM: GEMMs are organized as CNN layers by
configuring the shape and type in Table II. Such an organization
is motivated by three reasons: 1) the accuracy of uSystolic can
be directly reflected by GEMM-intensive CNN inference [22],
[33], [59]; 2) among popular DNNs [7], [12], [24], [33], [59],
[63], CNNs usually have the least ratio and simplest form
of non-GEMM operations [46] to accurately reflecting the
capability of uSystolic; 3) CNN layers exhibit varying GEMM
configurations, covering representative use cases.

The involved CNNs and corresponding datasets are a small
4-layer CNN for small-sized MNIST dataset [36], the medium
ResNet18 [22] for medium-sized CIFIAR10 dataset [32] and
the large AlexNet [33] for large-sized ImageNet dataset [11].
Those CNNs have a parameter count of 1.2M, 11.7M and
61.1M, respectively, representing small-, medium- and large-
scale applications. The accuracy of all three CNNs are evaluated

to proof the applicability, while only the layerwise performance
of AlexNet is evaluated in detail.

To further demonstrate uSystolic’s generalizability, we
evaluate USystolic’s overall efficiency on the entire MLPerf
benchmark [53], [55], a collection of diverse DNN models,
including AlphaGoZero for Go match, AlexNet, GoogleNet
and Resnet50 for image classification, neural collaborative
filtering for recommendation system, sentimental_seqCNN
and sentimental_seqLSTM for text sentiment analysis, and
transformer for natural language processing, in total containing
1094 GEMM layers with varying configurations.

2) Systolic Array: The systolic array configuration refers to
the shape, applied computing scheme, data bitwidth, PE MAC
cycle count and dataflow. The choice of the configuration aims
to highlight the impact of the computing scheme, instead of
the rest. All systolic arrays are synthesized at 400MHz under
TSMC 32nm technology to collect the hardware statistics.

According to the shape, represented by (height, width),
systolic arrays are categorized into the edge configuration
to mimic classical low-power use cases and the cloud con-
figuration to extensively understand uSystolic’s capability in
high performance scenarios. The edge and cloud configurations
take their shapes from MIT Eyeriss [10] (as small as (12, 14))
and Google TPU [30] (as large as (256, 256)), respectively,
simplifying the design space exploration [4], [17], [29], [52].

The evaluated computing schemes cover four versions: unary
rate-coded, unary temporal-coded, binary bit-parallel and binary
bit-serial, with each offering unique PE latency, area, energy
and power. The two unary approaches are as in Section III. The
binary bit-parallel implementation is the conventional binary
version [30] with 1 cycle for a MAC operation. The binary
bit-serial version is also evaluated here towards a holistic
understanding between bit-serial binary computing and unary
computing beyond the architecture level [69]. Its multiplication
follows those in prior works [31], [56], where the MAC
cycle count equals the data bitwidth plus 1 accumulation
cycle, as only one MUL input in Figure 2 is serialized. We
additionally evaluate a HUB systolic array with rate coding,
UGEMM-H, based on [69] 2. uGEMM-H implements the signed
multiplication with the bipolar UMUL directly on the signed
data, instead of the unipolar uUMUL in uSystolic on sign-
magnitude formatted data. Compared to uSystolic, uUGEMM-
H has no logic related to the absolute value; but uUGEMM-H
spends twice the area and cycles on signed unary multiplication
to achieve identical binary accumulation resolution.

The data bitwidth is 8 from Eyeriss or 16 from TPU. For
either, early termination for rate coding leads to different MAC
cycle counts (i.e., the multiplication cycles plus 1 accumulation
cycle). However, temporal coding allows no early termination
for accuracy consideration as in Section II-B3.

>The FSU architectures with rate coding in Table I, including the
UGEMM [69], are not evaluated in this work for two reasons. First, AlexNet
impractically requires 61.1MB on-chip weight storage (D Flip Flops). Even
more is needed for the entire MLPerf benchmark, far beyond the 24MB SRAM
in the Google’s cloud TPU [30]. Second, temporal coding for signed data in
FSU architectures incurs low DNN accuracy.

pe P . o *

=@ uSystolic/uGEMM-H
FXP-o-res *

FXP-i-res
FP32

1 T T T T T T T
6-32 7-64 8-128 9-256 10-512 11-1024 12-2048 FP32

(a) MNIST dataset using a 4-layer CNN with 1.2M parameters.

100. ~ -
2 —
=S 600
2
2005 T T T T T T T
6-32 7-64 8-128 9-256 10-512 11-1024 12-2048 FP32

(b) CIFARI0 dataset using ResNet18 with 11.7M parameters.

60.0 - =
A/

T T =T T T T T T
6-32 7-64 8-128 9-256 10-512 11-1024 12-2048 FP32

35.0

Accuracy
(%)

(c) ImageNet dataset using AlexNet with 61.1M parameters.
Fig. 9: Top-1 accuracy comparison for CNN inference.

Finally, as uSystolic adopts a weight stationary dataflow, we
fairly apply it to all designs, even Eyeriss for the edge, which is
originally row stationary. Albeit switching the dataflow indeed
differentiates the hardware performance from the original
version, it does not deviate from our goal, i.e., evaluating
the influence of varying computing schemes on performance.

3) Memory Hierarchy: SRAMs can be either present or
absent for three variables in Table II. SRAMs, if existing, are
double buffered to hide the access latency [55], [66], and their
sizes are also originated from Eyeriss and TPU in the edge
and cloud configurations. Both Eyeriss and TPU employ a
shared global buffer for three variables, and we divide the
entire SRAM space evenly into three equal pieces for three
variables. Eyeriss has a global buffer of size 108KB and a
local scratchpad of size 0.5KB for each PE, i.e., in total 192KB
on-chip SRAM, and we assign 64KB to each variable in the
edge configuration. TPU has a 24MB global buffer and we
assign 8MB to each variable in the cloud configuration. Also,
to reduce the SRAM bank conflict, we set the bank count of
each variable SRAM in both configurations to 16. The SRAM
technology node is aligned with that of the systolic array, i.e.,
32nm. We assign the same 22nm 1GB DDR3 DRAM chip as
the off-chip memory in all on-chip configurations. The DRAM
bank count is set to 8, and the page size is set to 8192 bits.

V. EXPERIMENTAL RESULT

In this section, we summarize the results and insights for
each objective using early termination a key evaluation knob.

A. Accuracy

The top-1 accuracy of CNN inference are shown in Figure 9.

As uSystolic computes in a fundamentally different way from
both floating-point (FP) and fixed-point (FXP) designs, we
compare USystolic against three binary designs, including
one single-precision FP design, i.e., FP32, and two FXP
designs, i.e., FXP-o-res and FXP-i-res. The FP32 design is
the original model, while the rest are obtained from the FP32
design by simply quantizing all variables to FXP format. The

accuracy evaluation focuses on revealing the gap between
different computing schemes, thus, no accuracy-preserving
retraining is performed. uSystolic applies varying effective
bitwidth (EBT), defined as the actual number of bits, n, used
in the HUB computing in Section III-C. We set 6 <n < 12, as
the accuracy either degrades too much or saturates outside this
range. The EBT is marked on the horizontal axis, together with
the correspondent multiplication cycle count in uSystolic, in
the format of (effective bitwidth)-(cycle count). For example, 6-
32 means unary multiplication in uSystolic has 6-bit EBT and
needs 32 cycles, where 32 = 2°~! due to unary multiplication
is always performed on unipolar bitstreams as in Section III-A.
FXP-o-res and FXP-i-res both apply conventional binary
computing on FXP input data. FXP-o-res refers to that the
output resolution is » bits. If n is even, two MAC inputs (weight
and IFM) are both % bits; otherwise, the weight/IFM are either
”;21/ % or %1/ %% bits, whichever produces higher accuracy.
FXP-i-res means the input resolution is 7 bits, leading to 2n-bit
output resolution. As such, uSystolic with n bits for both input
and output has an intermediate accuracy between FXP-o-res
and FXP-i-res, i.e., both the mean and standard deviation of the
error for GEMMs rank as FXP-o-res < uSystolic < FXP-i-res
as simulated. Note that the uSystolic accuracy for rate and
temporal codings with an identical EBT are almost the same.

As in Figure 9, for all CNNs, FP32 has the highest accuracy,
with FXP-i-res ranking the second across all EBT. For MNIST
dataset using a 4-layer CNN, we barely see accuracy drop
in uSystolic, which outperforms FXP-o-res. However, when
the task complexity rises, i.e., the dataset becomes larger, the
accuracy varies. When the EBT is 6 or 7, FXP-o-res has higher
accuracy than uSystolic; but uSystolic consistantly excels for
the rest EBT. For rate coding, smaller EBT can be obtained
by early terminating larger EBT. Note that UGEMM-H has the
same accuracy as uSystolic, as bipolar uMUL in uGEMM-H
merely changes the hardware cost but not resolution of unary
multiplication. One key observation is that uSystolic presents
smooth accuracy variation when the EBT changes across all
tasks, translating to satisfactory accuracy-runtime scaling to
boost the hardware efficiency via early termination.

B. Bandwidth

The GEMM-level (per layer in 8-bit AlexNet) SRAM and
DRAM bandwidth of all candidate designs are presented in
Figure 10. The bandwidth (and following throughput, energy
and power) plots omit temporal coding, as they are similar
to rate coding without early termination. For the edge, more
multiplication cycles always decrease DRAM bandwidth and
SRAM bandwidth if SRAM exists, due to the insignificant
memory contention. Eliminating SRAM transmits the SRAM
bandwidth pressure to DRAM, increasing the maximum
DRAM bandwidth of binary parallel and serial designs from
3.03GB/s and 0.88GB/s to 10.49GB/s and 1.83GB/s. Though
the uSystolic DRAM bandwidth also rises, it still maintains at
a very low level, e.g., [0.11,0.47]GB/s for compute-bounded
Conv layers and [0.46,1.08]GB/s for memory-bounded FC
layers. The key insight is that uSystolic requires ultra-low

W Binary Parallel
Binary Serial

I Unary-32¢
N Unary-64c

Unary-128¢
uGEMM-H

1E+01
1E+00
1E-01
s 1E-02
1E-03

0
1E-03

1E-02

SRAM-DRAM bandwidth
(GBIs)

1E-01

1E+00

1E+01 T T T

Convl Conv2 Conv3 Conv4 ConvS FC6 FC7 FC8
(a) Edge configuration.

= E+01
S 1E+00 -
Z 1E-01
£ 1E-02 —
2% 1E-03
=3 0
<O
2= 1E-03
< 1E-02
3 1E-01 —
o2 1E+00

1E+01 T T T T T T T T
Convl Conv2 Conv3 Conv4 Conv5 FC6 FC7 FC8

(b) Cloud configuration.
Fig. 10: Log-scale layerwise bandwidth comparison for 8-bit
AlexNet. The upper and lower planes are for DRAM and SRAM

if any. Conv and FC are convolution and fully connected layers.

Binary Parallel and Binary Serial denote binary computing with
1 cycle for bit-parallel multiplication (also for MAC) and 8
cycles for bit-serial multiplication. Unary-32c, 64c and 128c
refer to rate-coded unary computing with 32, 64 and 128 cycles
for unipolar multiplication, where 32 and 64 cycles are early
terminated from 128 cycles. UGEMM-H spends 256 cycles
on bipolar multiplication with rate coding. White and purple
background colors are for designs with/without on-chip SRAM.

DRAM bandwidth, even when SRAM is absent, allowing to
eliminate the more-than-enough SRAM from uSystolic for edge
computing. UGEMM-H requires even lower bandwidth due to
longer MAC cycles. In edge devices, such low bandwidth opens
opportunities to drive the computation in uSystolic with only
a few crawling DRAM bytes, which is impossible for binary
designs. As such, in the following we focus on the hardware
evaluation on binary designs with SRAM and unary designs
without SRAM. In the cloud configuration, increasing the MAC
cycle count does not monotonically decrease the bandwidth
due to heavy memory contention.

C. Area

The area breakdown of 8-bit and 16-bit systolic arrays,
excluding the insignificant FIFOs and shifters in Figure 7,
are presented in Figure 11. 16-bit designs have twice SRAM
size of 8-bit designs to hold the same amount of data. When
switching the computing scheme from BP to BS, UG, UR,
UT for 8-bit designs, the systolic array area is observed to
decrease by 30.9%, 50.9%, 59.0% and 62.5% for the edge and
26.2%, 48.9%, 63.8% and 64.7% for the cloud. IREG with
spatial-temporal bitstream reuse, MUL with low-cost unary
multiplication and spatial-temporal bitstream reuse, and ACC
with reduced-resolution binary accumulation contributes 3.9%,
33.4% and 21.3% for rate-coded uSystolic with the edge
configuration. Though BS designs have smaller MUL than

1.46 2.12 (0.96,1.34)
—

04 B SRAM MUL
o IREG ACC
Se
ZE o B WREG
-
-
0.0 _— . | |
cz,‘c 0 q,‘c q,‘c q,‘o <gc Q0 \Q° 60 QO Q0 _\Q°
N S SNSRI o R R CaTCAN
(a) Edge configuration.
300 (491.63,682.14)
~ 200
5%
< £

100

DO O O\ \° \6°
BR-EARN SRRV AR\ ?ﬁh‘v\ ™ o

X O
AR

(b) Cloud configuration.

Fig. 11: Linear-scale area comparison. BP, BS, UG, UR and
UT denote systolic implementations using binary parallel,
binary serial, UGEMM-H rate, uSystolic rate and uSystolic
temporal computing schemes, respectively. The -8b and -16b
indicate the 8 and 16 bits for two multiplication inputs. The
IREG, WREG and MUL directly refers to correspondent
blocks in Figure 2 for binary computing, with ACC for
ADD/OREG. In uSystolic from Figure 7, IREG is for the
IABS/IDFF/ISIGN, WREG contains WABS/WSIGN, MUL
includes RNG/CNT/RREG/C-W/C-I/AND, and ACC consists
of the rest. The area of IREG, WREG, MUL and ACC are
stacked as a whole to reflect the area of the entire systolic array.
The outlier values are labelled on top of the correspondent
bars, with the single value as the top of SRAM area and the
value tuple as the top of MUL and ACC area.

uSystolic, the overall area is higher due to larger ACC. The
rate-coded uSystolic for the edge has 58.2% smaller MUL than
UGEMM-H with bipolar uMUL, leading to 16.5% overall area
reduction, though the remaining logic is larger due to the sign-
magnitude data format. For 8-bit designs, rate-coded uSystolic
without SRAM exhibits 91.3% and 90.7% area reduction for the
edge and 74.3% and 68.4% area reduction for the cloud, from
BP and BS designs with SRAM. More savings are observed
for 16-bit designs. We conclude that the proposed techniques
in uSystolic all boost the area efficiency, among which the
on-chip SRAM elimination contributes the most.

D. Throughput

The throughput, i.e., the reciprocal of the runtime, is
compared in Figure 12. For Conv layers on the edge, the
throughput degrades almost linearly when the MAC cycle count
increases, due to low memory contention (2.7%, 1.3% and 0.7%
average runtime overhead for 32-, 64- and 128-cycle uSystolic,
and 0.3% for 256-cycle UGEMM-H). For Conv layers on the
cloud, the throughput does not monotonically descend as MAC
cycles increase, as the memory contention in binary parallel
and serial designs introduces 161.8% and 105.2% average
runtime overhead, while it’s only 47.5%, 25.7% and 13.4%
for 32-, 64- and 128-cycle uSystolic, and 6.9% for 256-cycle

W Binary Parallel B Unary-32¢ Unary-128¢

2% 1E+03 A Binary Serial N Unary-64c uGEMM-H
&%
5 6
S £ .
_2:9 E 1E+02
= 1E+01

1E+00 -~

Convl Conv2 Conv3 Conv4 Conv5 FC6 FC7 FC8
(a) Edge configuration.

;5; % 1E+03
58
2P E 1E+H02 o
2
£Z 1E+01

1E+00 =

Convl Conv2 Conv3 Conv4 Conv5 FCeé FC7 FC8
(b) Cloud configuration.
Fig. 12: Log-scale layerwise throughput comparison with

identical notations as in Figure 10.

UGEMM-H, respectively. For both the edge and cloud, the FC
throughput in uSystolic outperforms that in binary designs. The
takeaway is that in edge scenarios with little memory contention,
early termination in uSystolic increases the throughput almost
linearly with the reciprocal of MAC cycles.

E. Energy

We plot the energy comparison in Figure 13. For binary
parallel and serial designs for both the edge and cloud
configurations, the SRAM leakage energy dominates the
SRAM energy, which further dominates the on-chip energy. In
comparison to the binary parallel and serial designs, uSystolic
reduces the on-chip energy by [50.0,99.1]% (mean 83.5%) and
[78.3,99.1]% (mean 90.5%) for the edge and [—330.3,98.9]%
(mean 47.6%) and [—218.0,98.8]% (mean 55.5%) for the cloud.
The negative gains for the cloud occurs for some Conv layers
when the runtime increases, which scales up the dominant
leakage energy. When considering the total energy including
the off-chip DRAM dynamic access energy, the DRAM energy
dominates. Compared with the binary parallel and serial
designs, the total energy reduction in uSystolic ranges within
[—2474.7,—11.8]% (mean —754.0%) and [—1147.1,20.1]%
(mean —487.1%) for the edge and [—351.2,92.3]% (mean
18.1%) and [—253.5,91.5]% (mean 25.1%) for the cloud,
respectively. The negative gains mainly originate from matrix
convolution, where the IFMs and OFMs in DRAM for matrix
convolution are accessed much more frequently than those
in matrix multiplication. UGEMM-H consistently consumes
over 2x energy than uSystolic, due to larger area and
longer runtime. Overall, the energy consumption decreases in
Figure 13 with shorter cycles, eventually causing the accuracy
drop in Figure 9. When further considering the energy delay
product (EDP), uSystolic does not provide improvements as
high as those in the energy due to the exponential latency
overhead. Compared to binary parallel and serial designs,
the on-chip EDP improvements are [—4611.4,99.7]% (mean
—487.8%) and [—243.5,99.7]% (mean 3.9%) for the edge
and [—3776.4,99.9]% (mean —145.2%) and [—2250.7,99.9]%
(mean —56.2%) for the cloud. Such degradation also exists
in the total EDP. Two takeaways are 1) uSystolic reduces

10

I Binary Parallel
Binary Serial

BN Unary-32¢
I Unary-64c

Unary-128¢

1E+07] uGEMM-H

1E+05

(ul)

SRAM-SA energy

1E+05

1E+07 =

T T T T T
Convl Conv2 Conv3 Conv4 Conv5

T
FC6

T
FC7

T
FC8

(a) Edge configuration (On-chip).

- o
o

T T T T T
Convl Conv2 Conv3 Conv4 Conv5

1E+07 3
1E+05

0]
1E+05
1E+07 3
1E+09

(ul)

SRAM-SA energy

T
FC6

T
FC7

T
FC8

(b) Cloud configuration (On-chip).

1E+08

(u)

1E+07 —

Total energy

1E+06 =

Convl Conv2 Conv3 Conv4 Conv5s FC6 FC7 FC8

(c) Edge configuration (Total: on-chip + off-chip).

1E+08 =

(ul)

1E+07 =

Total energy

1E+06 =
Convl Conv2 Conv3 Conv4 Convs FCé6 FC7 FC8
(d) Cloud configuration (Total: on-chip + off-chip).
Fig. 13: Log-scale layerwise energy comparison. The upper and
lower planes in (a) and (b) are systolic array (SA) and SRAM
energy, whose sum is the on-chip energy. For each bar in (a)
and (b), the brighter and dimmer parts (closer to and further
from the x axis) represent the dynamic and leakage energy.
(c) and (d) record total energy, including the on-chip energy
and the DRAM dynamic access energy. The rest notations are

identical to those in Figure 10.

the on-chip energy most of the time, but cannot determine the
DRAM-access-dominated total energy; and 2) early termination
in uSystolic reduces the on-chip energy and achieves dynamic
accuracy-energy scaling, as the leakage current dominates.

F. Power

The layerwise power of each design can be calculated as the
energy in Figure 13 by the throughput in Figure 12. For both
the edge and cloud configurations, the SRAM leakage power of
varying designs are identical, and dominate the SRAM power.
The SRAM power for all evaluated GEMMs are larger than the
systolic array power. Therefore, uSystolic exhibits tremendous
on-chip power reduction, e.g., [97.6,99.5]% (mean 98.4%) and
[97.5,98.7]% (mean 98.1%) for the edge and [49.0,83.4]%
(mean 66.4%) and [48.7,81.6]% (mean 65.2%) for the cloud
compared to binary parallel and serial designs. For both the
edge and cloud configurations, early termination has varying
influences on the dynamic power. For the edge configuration
with low memory contention, less cycles raise the frequency

to load data from memory into PE and increase the dynamic
power. However, for the cloud, less cycles superlinearly increase
the memory contention, as explained in Section V-D, and the
resultant longer runtime inversely lowers systolic array dynamic
power. Similar to energy, when further considering the DRAM
dynamic access power, such colossal reduction is amortized,
due to the dominance of DRAM dynamic access power. Again,
compared with the binary parallel and serial designs, the total
power reduction in uSystolic ranges in [—220.2,97.8]% (mean
—37.0%) and [—229.7,94.9]% (mean —67.5%) for the edge
and [—48.0,49.9]% (mean —6.1%) and [—51.2,52.2]% (mean
—11.7%) for the cloud. The negative gains usually occur when
the uSystolic MAC cycle count is small or the GEMM is
matrix multiplication. Note that UGEMM-H always shows
higher on-chip power than uSystolic due to larger area and
longer runtime. Two lessons is that 1) uSystolic indeed reduces
the on-chip power tremendously, but a dedicated scheduling
algorithm is mandatory to further reduce the off-chip DRAM
access power; and 2) in edge scenarios with little memory
contention, early termination in uSystolic will slight increase
the on-chip power.

G. Summary for Efficiency

Putting all together, accuracy-scalable uSystolic maintains
the required bandwidth at a low level, where data bytes
crawling out from DRAM at a low frequency can drive
uSystolic. Based on this, we can safely eliminate the more-
than-enough SRAM from uSystolic, which is not possible
for binary systolic arrays. uSystolic reduces the on-chip area,
energy and power tremendously due to the adopted techniques,
especially eliminating the on-chip SRAM, which is usually
costly and excels the systolic array in the hardware consumption.
However, for the total energy and power, which are dominated
by the off-chip DRAM, simply eliminating the SRAM does
not bring about improvement, sometimes even degradation.
Actually, eliminating SRAM leads uSystolic to the field of
in-/near-memory computing [35], which appeals for specialized
scheduling for high hardware performance. Above facts hold
true for both edge computing and cloud computing use cases.

The on-chip energy and power efficiency (throughput/energy
and throughput/power) gains of uSystolic over binary parallel
and serial designs, running 8-bit AlexNet or MLPerf benchmark,
are drawn in Figure 14. MLPerf yields lower efficiency
than AlexNet, as diverse GEMMs reduce the average MAC
utilization from 97.1% to 69.6% for the edge and from
81.6% to 37.2% for the cloud. The MLPerf energy efficiency
on 128-cycle uSystolic and 256-cycle UGEMM-H for the
edge is lower than that of binary designs, while all other
efficiency is higher than that of binary designs. We observe
that early termination in uSystolic always increases the on-
chip energy and power efficiency over binary designs, thanks
to the increased throughput. When considering the total energy
and power with the DRAM access, such improvements almost
vanish. Though we target the necessity of on-chip SRAM, there
indeed exists a continuous design space where a small-sized
on-chip SRAM can reduce the off-chip DRAM access cost.

11

B Unary-32¢ Unary-128¢
B Unary-64c uGEMM-H

18 "W, N

Over Binary Parallel Over Binary Serial

(a) Edge configuration for AlexNet.

BN BN

Over Binary Parallel Over Binary Serial
(b) Cloud configuration for AlexNet.

1 ke 1 b

T T
Over Binary Parallel Over Binary Serial
(c) Edge configuration for MLPerf.

125 o - 50

E.E.L(X)
P.E.L(X)

E.E.L(X)
P.EL(X)

EE.L(X)
P.E.L(X)

50

E.E.L(X)
P.E.L(X)

Over Binary Parallel Over Binary Serial
(d) Cloud configuration for MLPerf.

Fig. 14: Linear-scale on-chip energy and power efficiency
improvement (denoted as E.E.I. (white background) and P.E.IL.
(purple background)) of uSystolic over binary parallel and
serial systolic arrays. Each bar is the mean improvement for
all GEMM layers in 8-bit AlexNet or MLPerf benchmark. The
involved notations are identical to those in Figure 10.

H. System-Level Discussion

The aforementioned architectural features in uSystolic can
also be translated into dynamic trade-offs at the system level.
When considering a single uSystolic instance, higher-quality
(higher-accuracy) services can be offered at the cost of longer
runtime with lower system bandwidth, i.e., not interrupting
other components enormously. If the power supply, e.g., battery
in edge computing, is running out, early termination improves
energy and power efficiency to prolong the system lifespan.
When considering multiple tiled uSystolic instances with
interconnections, uSystolic’s low bandwidth empowers better
scalability. Moreover, its simple runtime control can hide packet
routing variation in the interconnection, permitting flexible
synchronization among instances.

VI. CONCLUSION

This paper explores the bottleneck of low-power GEMM
architectures for edge computing and presents uSystolic, a
systolic array architecture based on unary computing. uSystolic
employs a hybrid unary-binary architecture to utilize legacy-
binary data scheduling and achieve low power consumption
simultaneously via the low-power computing kernel, spatial-
temporal bitstream reuse and on-chip SRAM elimination
due to low bandwidth requirement with crawling data bytes.
Experiments demonstrate that with 91.3% less on-chip area,
uSystolic consumes 83.5% and 98.4% less on-chip energy
and power, and exhibits up to 112.2x and 44.8x higher
correspondent efficiency than binary designs for AlexNet.

ACKNOWLEDGMENTS

We thank our reviewers for their valuable feedback. This
work is supported by the Wisconsin Alumni Research Founda-
tion and NSF under award No. CNS-2045985.

[1]

[2

—

[3]

[4]

[5

=

[6]

[7

—

[8

=

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

(16]

[17]

(18]

REFERENCES

A. Alaghi, Cheng Li, and J. P. Hayes, “Stochastic Circuits for Real-
Time Image-Processing Applications,” in Design Automation Conference,
2013.

A. Alaghi and J. P. Hayes, “Exploiting Correlation in Stochastic Circuit
Design,” in International Conference on Computer Design, 2013.

A. Alaghi and J. P. Hayes, “Fast and Accurate Computation Using
Stochastic Circuits,” in Design, Automation & Test in Europe Conference
& Exhibition, 2014.

C. Angermueller, D. Belanger, A. Gane, Z. Mariet, D. Dohan, K. Murphy,
L. Colwell, and D. Sculley, “Population-Based Black-Box Optimization
for Biological Sequence Design,” in International Conference on Machine
Learning, 2020.

P. Aspinall, P. Mavros, R. Coyne, and J. Roe, “The Urban Brain:
Analysing Outdoor Physical Activity with Mobile EEG,” British Journal
of Sports Medicine, vol. 49, no. 4, 2015.

R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and
V. Srinivas, “CACTI 7: New Tools for Interconnect Exploration in
Innovative Off-Chip Memories,” ACM Transactions on Architecture and
Code Optimization, vol. 14, no. 2, Jun. 2017.

P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zam-
baldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner,
C. Gulcehre, F. Song, A. Ballard, J. Gilmer, G. Dahl, A. Vaswani,
K. Allen, C. Nash, V. Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli,
M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu, “Relational Inductive
Biases, Deep Learning, and Graph Networks,” arXiv, 2018.

T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “TVM:
An Automated End-to-End Optimizing Compiler for Deep Learning,” in
USENIX Symposium on Operating Systems Design and Implementation,
2018.

T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“DianNao: A Small-Footprint High-Throughput Accelerator for Ubiqui-
tous Machine-Learning,” in International Conference on Architectural
Support for Programming Languages and Operating Systems, 2014.

Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp.
127-138, 2017.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in Conference on Computer
Vision and Pattern Recognition, 2009.

J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-Training
of Deep Bidirectional Transformers for Language Understanding,” in
Annual Conference of the North American Chapter of the Association
for Computational Linguistics, 2019.

Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “ShiDianNao: Shifting Vision Processing Closer to The
Sensor,” in International Symposium on Computer Architecture, 2015.
V. V. Elango, N. N. Rubin, M. M. Ravishankar, H. H. Sandanagobalane,
and V. V. Grover, “Diesel: DSL for Linear Algebra and Neural Net
Computations on GPUS,” in International Workshop on Machine Learning
and Programming Languages, 2018.

S. A. Faraji, G. Singh, and K. Bazargan, “HBUNN - Hybrid Binary-
Unary Neural Network: Realizing A Complete CNN on An FPGA,” in
International Conference on Computer Design, 2019.

B. R. Gaines, Stochastic Computing Systems. Springer, 1969, pp. 37—
172.

D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley,
“Google Vizier: A Service for Black-Box Optimization,” in International
Conference on Knowledge Discovery & Data Mining, 2017.

S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
Y. Wang, H. Yang, and W. J. Dally, “ESE: Efficient Speech Recognition
Engine with Sparse LSTM on FPGA,” in International Symposium on
Field-Programmable Gate Arrays, 2017.

12

[19]

[20]

[21]

[22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

(35]

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally, “EIE: Efficient Inference Engine on Compressed Deep Neural
Network,” in International Symposium on Computer Architecture, 2016.
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,
M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F.
del Rio, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant,
“Array Programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357-
362, 2020.

M. Hassan Najafi, D. Jenson, D. J. Lilja, and M. D. Riedel, “Performing
Stochastic Computation Deterministically,” in IEEE Transactions on Very
Large Scale Integration Systems, vol. 27, no. 12, 2019, pp. 2925-2938.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in Conference on Computer Vision and Pattern
Recognition, 2016.

Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw, R. Alvarez, D. Zhao,
D. Rybach, A. Kannan, Y. Wu, R. Pang, Q. Liang, D. Bhatia, Y. Shang-
guan, B. Li, G. Pundak, K. C. Sim, T. Bagby, S. yiin Chang, K. Rao, and
A. Gruenstein, “Streaming End-to-End Speech Recognition for Mobile
Devices,” in International Conference on Acoustics, Speech and Signal
Processing, 2019.

G. Hinton, S. Sabour, and N. Frosst, “Matrix Capsules with EM Routing,”
in International Conference on Learning Representations, 2018.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient Convolutional Neural
Networks for Mobile Vision Applications,” arXiv, 2017.

H. Jebelli, M. M. Khalili, and S. Lee, “Mobile EEG-based Workers’
Stress Recognition by Applying Deep Neural Network,” in Advances
in Informatics and Computing in Civil and Construction Engineering,
2019.

Y. Jia, “Learning Semantic Image Representations at A Large Scale,”
Ph.D. dissertation, EECS Department, University of California, Berkeley,
2014. [Online]. Available: http://www?2.eecs.berkeley.edu/Pubs/TechRpts/
2014/EECS-2014-93.html

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture for
Fast Feature Embedding,” in International Conference on Multimedia,
2014.

A. Jones, A. Yazdanbakhsh, B. Akin, C. Angermueller, J. P. Laudon,
K. Swersky, M. Hashemi, R. Narayanaswami, S. Chatterjee, and Y. Zhou,
“Apollo: Transferable architecture exploration,” in Conference on Neural
Information Processing Systems, 2020.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. L. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. Richard Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn,
G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan,
G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox, and D. H. Yoon, “In-Datacenter Performance
Analysis of A Tensor Processing Unit,” in International Symposium on
Computer Architecture, 2017.

P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos,
“Stripes: Bit-Serial Deep Neural Network Computing,” in International
Symposium on Microarchitecture (MICRO), 2016.

A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,”
2009.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Conference on Neural
Information Processing Systems, 2012.

H.-T. Kung, “Why Systolic Architectures?” Computer, vol. 15, no. 1, pp.
37-46, Jan 1982.

Y. C. Kwon, S. H. Lee, J. Lee, S. H. Kwon, J. M. Ryu, J. P. Son,
O. Seongil, H. S. Yu, H. Lee, S. Y. Kim, Y. Cho, J. G. Kim, J. Choi,
H. S. Shin, J. Kim, B. Phuah, H. Kim, M. J. Song, A. Choi, D. Kim,
S. Kim, E. B. Kim, D. Wang, S. Kang, Y. Ro, S. Seo, J. Song, J. Youn,
K. Sohn, and N. S. Kim, “25.4 A 20nm 6GB Function-In-Memory
DRAM, Based on HBM2 with A 1.2TFLOPS Programmable Computing

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-93.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-93.html

[36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49

[50

[51]

[52]

[53]

[54]

>

Unit Using Bank-Level Parallelism, for Machine Learning Applications,
in International Solid-State Circuits Conference, vol. 64, 2021, pp. 350—
352.

Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

V. T. Lee, A. Alaghi, and L. Ceze, “Correlation Manipulating Circuits
For Stochastic Computing,” in Design, Automation & Test in Europe
Conference & Exhibition, 2018.

V. T. Lee, A. Alaghi, J. P. Hayes, V. Sathe, and L. Ceze, “Energy-Efficient
Hybrid Stochastic-Binary Neural Networks for Near-Sensor Computing,”
in Design, Automation & Test in Europe Conference & Exhibition, 2017.
V. T. Lee, A. Alaghi, R. Pamula, V. S. Sathe, L. Ceze, and M. Oskin,
“Architecture Considerations for Stochastic Computing Accelerators,” in
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 11, 2018, pp. 2277-2289.

Z. Li, J. Li, A. Ren, R. Cai, C. Ding, X. Qian, J. Draper, B. Yuan,
J. Tang, Q. Qiu, and Y. Wang, “HEIF: Highly Efficient Stochastic
Computing-based Inference Framework for Deep Neural Networks,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 38, no. 8, pp. 1543-1556, 2019.

S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen,
“Cambricon: An Instruction Set Architecture for Neural Networks,” in
International Symposium on Computer Architecture, 2016.

S. Liu and J. Han, “Toward Energy-Efficient Stochastic Circuits Using
Parallel Sobol Sequences,” IEEE Transactions on Very Large Scale
Integration Systems, vol. 26, no. 7, pp. 1326-1339, 2018.

A. Madhavan, T. Sherwood, and D. Strukov, “Race Logic: A Hardware
Acceleration for Dynamic Programming Algorithms,” in International
Symposium on Computer Architecture, 2014.

A. Madhavan, T. Sherwood, and D. Strukov, “A 4-mm? 180-nm-CMOS
15-Giga-Cell-Updates-per-Second DNA Sequence Alignment Engine
based on Asynchronous Race Conditions,” in Custom Integrated Circuits
Conference, 2017.

G. Maor, X. Zeng, Z. Wang, and Y. Hu, “An FPGA Implementation
of Stochastic Computing-based LSTM,” in International Conference on
Computer Design, 2019.

V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted
Boltzmann Machines,” in International Conference on Machine Learning,
2010.

M. H. Najafi, D. J. Lilja, M. D. Riedel, and K. Bazargan, “Low-Cost
Sorting Network Circuits Using Unary Processing,” IEEE Transactions
on Very Large Scale Integration Systems, vol. 26, no. 8§, pp. 1471-1480,
2018.

M. H. Najafi and M. E. Salehi, “A Fast Fault-Tolerant Architecture
for Sauvola Local Image Thresholding Algorithm Using Stochastic
Computing,” IEEE Transactions on Very Large Scale Integration Systems,
vol. 24, no. 2, pp. 808-812, 2016.

F. Neugebauer, I. Polian, and J. P. Hayes, “Building A Better Random
Number Generator For Stochastic Computing,” in Euromicro Conference
on Digital System Design, 2017.

J. Park, Y. Boo, I. Choi, S. Shin, and W. Sung, “Fully Neural Network
based Speech Recognition on Mobile and Embedded Devices,” in
Conference on Neural Information Processing Systems, 2018.

B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee,
J. M. Hernandez-Lobato, G. Y. Wei, and D. Brooks, “Minerva: Enabling
Low-Power, Highly-Accurate Deep Neural Network Accelerators,” in
International Symposium on Computer Architecture, 2016.

E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized Evolution for
Image Classifier Architecture Search,” in AAAI Conference on Artificial
Intelligence, 2019.

V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.
Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou, R. Chukka,
C. Coleman, S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, J. S. Gardner,
I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. S. John, P. Kanwar, D. Lee,
J. Liao, A. Lokhmotov, F. Massa, P. Meng, P. Micikevicius, C. Osborne,
G. Pekhimenko, A. T. R. Rajan, D. Sequeira, A. Sirasao, F. Sun, H. Tang,
M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada, B. Yu, G. Yuan,
A. Zhong, P. Zhang, and Y. Zhou, “MLPerf Inference Benchmark,” in
International Symposium on Computer Architecture, 2020.

A. Ren, Z. Li, C. Ding, Q. Qiu, Y. Wang, J. Li, X. Qian, and B. Yuan,
“SC-DCNN: Highly-Scalable Deep Convolutional Neural Network Using
Stochastic Computing,” in International Conference on Architectural
Support for Programming Languages and Operating Systems, 2017.

13

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna,
“SCALE-Sim: Systolic CNN Accelerator Simulator,” arXiv, 2018.

H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and
H. Esmaeilzadeh, “Bit Fusion: Bit-Level Dynamically Composable
Architecture for Accelerating Deep Neural Network,” in International
Symposium on Computer Architecture, 2018.

H. Sim and J. Lee, “A New Stochastic Computing Multiplier with Appli-
cation to Deep Convolutional Neural Networks,” in Design Automation
Conference, 2017.

H. Sim, D. Nguyen, J. Lee, and K. Choi, “Scalable Stochastic-Computing
Accelerator for Convolutional Neural Networks,” in Asia and South
Pacific Design Automation Conference, 2017.

K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” in International Conference on
Learning Representations, 2015.

N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J. S.
Seo, and Y. Cao, “Throughput-Optimized OpenCL-based FPGA Accel-
erator for Large-Scale Convolutional Neural Networks,” in International
Symposium on Field-Programmable Gate Arrays, 2016.

S. S. Tehrani, W. J. Gross, and S. Mannor, “Stochastic Decoding of LDPC
Codes,” IEEE Communications Letters, vol. 10, no. 10, pp. 716-718,
2006.

G. Tzimpragos, D. Vasudevan, N. Tsiskaridze, G. Michelogiannakis,
A. Madhavan, J. Volk, J. Shalf, and T. Sherwood, “A Computational
Temporal Logic for Superconducting Accelerators,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention Is All You Need,” in Conference
on Neural Information Processing Systems, 2017.

S. I. Venieris and C. S. Bouganis, “Latency-Driven Design for FPGA-
based Convolutional Neural Networks,” in International Conference on
Field Programmable Logic and Applications (FPL), 2017.

R. Wei, L. Schwartz, and V. Adve, “DLVM: A Modern Compiler
Infrastructure for Deep Learning Systems,” in International Conference
on Learning Representations, 2018.

X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang,
and J. Cong, “Automated Systolic Array Architecture Synthesis for
High-Throughput CNN Inference on FPGAs,” in Design Automation
Conference, 2017.

D. Wu, “uSystolic-Sim.”
diwu1990/uSystolic-Sim
D. Wu, Y. Chen, Q. Zhang, Y.-L. Ueng, and X. Zeng, “Strategies
for Reducing Decoding Cycles in Stochastic LDPC Decoders,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 9,
pp. 873-877, 2016.

D. Wu, J. Li, R. Yin, H. Hsiao, Y. Kim, and J. S. Miguel, “uGEMM:
Unary Computing Architecture for GEMM Applications,” in International
Symposium on Computer Architecture, 2020.

D. Wu, J. Li, R. Yin, H. Hsiao, Y. Kim, and J. San Miguel, “uGEMM:
Unary Computing for GEMM Applications,” IEEE Micro, vol. 41, no. 3,
pp. 50-56, 2021.

D. Wu and J. San Miguel, “In-Stream Stochastic Division and Square
Root via Correlation,” in Design Automation Conference, 2019.

D. Wu, R. Yin, and J. San Miguel, “Normalized Stability: A Cross-Level
Design Metric for Early Termination in Stochastic Computing,” in Asia
and South Pacific Design Automation Conference, 2021.

X. Yang, M. Gao, J. Pu, A. Nayak, Q. Liu, S. E. Bell, J. O. Setter,
K. Cao, H. Ha, C. Kozyrakis, and M. Horowitz, “DNN Dataflow Choice
Is Overrated,” arXiv, 2018.

C. Yu and Z. Zhang, “Painting on Placement: Forecasting Routing
Congestion Using Conditional Generative Adversarial Nets,” in Design
Automation Conference, 2019.

J. Yu, K. Kim, J. Lee, and K. Choi, “Accurate and Efficient Stochastic
Computing Hardware for Convolutional Neural Networks,” in Interna-
tional Conference on Computer Design, 2017.

X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An Extremely Effi-
cient Convolutional Neural Network for Mobile Devices,” in Conference
on Computer Vision and Pattern Recognition, 2018.

Y. Zhang, B. Du, L. Zhang, and J. Wu, “Parallel DNN Inference
Framework Leveraging A Compact RISC-V ISA-based Multi-Core
System,” in International Conference on Knowledge Discovery & Data
Mining, 2020.

[Online]. Available: https://github.com/

http://yann.lecun.com/exdb/mnist/
https://github.com/diwu1990/uSystolic-Sim
https://github.com/diwu1990/uSystolic-Sim

	Introduction
	Background
	Weight Stationary Systolic Array
	Unary Computing
	Data Coding
	Unary Multiplication
	Early Termination
	GEMM Architecture

	uSystolic Architecture
	Low-Power Computing Kernel
	Spatial-Temporal Bitstream Reuse
	Early Termination
	ISA Support
	On-Chip SRAM Elimination

	Evaluation Framework
	Objective
	Widget
	Configuration
	GEMM
	Systolic Array
	Memory Hierarchy

	Experimental Result
	Accuracy
	Bandwidth
	Area
	Throughput
	Energy
	Power
	Summary for Efficiency
	System-Level Discussion

	Conclusion
	References

