
...

PRACTICAL MULTIDIMENSIONAL
BRANCH PREDICTION

...

THE MOST EFFICIENT BRANCH PREDICTORS EXPLOIT BOTH GLOBAL BRANCH HISTORY AND

LOCAL HISTORY, BUT LOCAL HISTORY PREDICTORS INTRODUCE MAJOR DESIGN

CHALLENGES. DRAWING FROM RECENT WORK ON MULTIDIMENSIONAL BRANCH

PREDICTION, THE AUTHORS INTRODUCE A PRACTICAL, COST-EFFECTIVE MECHANISM FOR

OVERCOMING THE CHALLENGES OF MANAGING LOCAL HISTORIES: THE INNERMOST-LOOP

ITERATION COUNTER.

......Improved branch-prediction accu-
racy directly translates in performance gains
through a reduction of the total overall branch
misprediction penalty. It also translates into a
reduction of direct energy consumption
through reducing the number of instructions
on the wrong path. Therefore, replacing the
branch predictor with a more accurate one is a
simple and energy-efficient way to improve a
superscalar processor’s performance, because it
can be done without reopening the overall
execution core’s design.

Since the introduction of two-level branch
prediction,1 academic branch predictors have
been relying on two forms of branch history:
global branch or path history and local
branch history. However, local history branch
predictor components bring only limited
accuracy benefit over global history predic-
tors, yet they introduce complex hardware
management of speculative histories. There-
fore, most effective hardware designs use only
global history components and sometimes a
loop predictor.2,3

Researchers recently introduced the wormhole
(WH) branch predictor to exploit branch out-
come correlation in multidimensional loops.4,5

For some branches encapsulated in a multidi-
mensional loop, their outcomes are corre-
lated with those of the same branch in
neighbor iterations, but in the previous outer
loop iteration (see Figure 1). Unfortunately,
the practical implementation of the WH pre-
dictor is even more challenging than that of
local history predictors.

In this article, which is based on our
MICRO 2015 paper,6 we show that branch
output correlations that exist in multidimen-
sional loops can be tracked by cost-effective
predictor components: those based on the
innermost-loop iteration (IMLI). The IMLI-
based components can be added to a state-
of-the-art global history predictor, and their
speculative states can be easily managed. Our
experiments show that, in association with a
main global history predictor such as the
tagged geometric history length predictor7

(TAGE) or the geometric history length pre-
dictor8 (GEHL), the two IMLI-based compo-
nents achieve accuracy benefits in the same
range as the ones achieved with local history
and loop predictor components. This benefit
comes at a much lower hardware cost and
complexity: a smaller storage budget, fewer

Andr�e Seznec

INRIA

Joshua San Miguel

Jorge Albericio

University of Toronto

...

10 Published by the IEEE Computer Society 0272-1732/16/$33.00�c 2016 IEEE

tables, and simpler speculative management
of the predictor states. Therefore, the IMLI-
based components are much better candidates
for real hardware implementation than local
history predictors and even loop predictors.

Multidimensionality
Jorge Albericio and colleagues recognized that,
in many cases, hard-to-predict branches are
encapsulated in multidimensional loops.4,5

They demonstrated that the outcome of a
branch in the innermost loop is correlated
with the outcomes of the same branch in the
same iteration or neighbor iterations of the
inner loop, but in the previous outer loop iter-
ation. Say B is a branch in the inner loop IL
encapsulated in outer loop OL. If Out½N �½M �
is the outcome of B in iteration M of IL and
in iteration N of OL, then Out½N �½M � is cor-
related with Out½N � 1�½M þ D�, where D
is a small number (such as –1, 0, or 1).

Figure 1 illustrates this. We assume that
arrays A, B, C, and D are not modified by the
(not represented) internal code. The outcome
of branch B1 in iteration ðN; MÞ is equal to
its outcome in iteration ðN � 1; M þ 1Þ.
The outcome of branch B2 is weakly correlated
with its outcome in iteration ðN � 1; MÞ.
The outcome of branch B3 is equal to its out-
come in iteration ðN � 1; MÞ. If executed,
the outcome of branch B4 is equal to its out-
come in iteration ðN � 1; MÞ.

Wormhole Predictor
To track these particular cases, Albericio and
colleagues proposed the WH predictor. Simi-
lar to the loop predictor, WH is intended to
be used as a side predictor. WH is a tagged
structure with only a few entries (seven in the
proposed design optimized for Champion-
ship Branch Prediction 4, or CBP4). For a
branch B encapsulated in a regular loop IL
(that is, a loop predicted by the loop predic-
tor with a constant number of iterations Ni),
an entry is allocated in the WH predictor
upon a misprediction. WH then records the
local history of branch B. When B is fetched
in iteration M of IL and iteration N of OL,
then Out½N � 1�½M þ D� is recovered as bit
Ni � D from its associated local history.
Figure 2 illustrates the prediction process.
WH embeds a small array of prediction

counters in each entry. A few bits (the gray
squares in Figure 2) retrieved from the local
history (as just described) are used to index
this prediction array.

WH is the first predictor in the literature
to track the outcome correlation of a branch
encapsulated in a loop nest with occurrences
of the same branch in neighboring inner loop
iterations, but in the previous outer loop iter-
ation. The number of dynamic instances of
these branches can be significant. When such
correlation exists and is not captured by the
main predictor, the accuracy benefit can be
high. When associated with a state-of-the-art
global history predictor, on average WH
achieves accuracy improvement on the same
range as local history components with only
a few entries.4

Wormhole Limitations
The WH predictor exposes the opportunity
to exploit a new form of correlation in branch
history. However, the original WH predictor
has some limitations that could impair its
practical implementation. First, WH cap-
tures the behavior of only those branches
encapsulated in loops with a constant num-
ber of iterations. It uses the loop predictor to
recognize the loop and extract the number of
iterations of the loop. For instance, WH can-
not track any branch if Mmax varies in the
example illustrated in Figure 1. Second, the
WH predictor captures correlations only for
branches that are executed on each iteration
of the loop. The WH predictor does not
address branches in nested conditional state-
ments (for instance, branch B4). Lastly, WH
uses long local histories. The speculative
management of these long local histories is a
major design challenge. Our proposed IMLI-

for (N=0;i <Nmax;N++)
for (M=0; M <Mmax; M++){

if (A[M+N] >0) { ..}
if (B[N][M]-B[N-1][M])>0{..} // Branch B2
if (C[M]>0) // Branch B3

if(D[M] >0) {..} // Branch B4
}

// Branch B1

Figure 1. Branches B1, B2, B3, and B4 are enclosed in a nested loop and

their outcomes are correlated with previous iterations of the outer loop

(N loop).

...

MAY/JUNE 2016 11

based predictor components address these
shortcomings.

Speculative Local History
To compute the branch prediction, the pre-
dictor states are read at prediction time; they

are updated later at commit time. On a wide
superscalar core, this read-to-update delay
varies from a few tens to several hundreds of
cycles. In the meantime, several branch
instructions, sometimes tens of branches,
would have already been predicted using pos-
sibly irrelevant information (for example,
stale branch histories and predictor tables
entries).

On one hand, it is well known that the
delayed update of prediction tables has limited
prediction accuracy impact for state-of-the-art
branch predictors.9,10 On the other hand,
using incorrect histories leads to reading
wrong entries in the predictor tables and is
likely to result in many branch mispredic-
tions.11 Therefore, accurately managing spec-
ulative branch histories is of prime
importance. Below, we contrast the simple
management of speculative global history
with that of speculative local history.

Managing speculative local history is much
more complex than managing speculative
global history. On a processor with a large
instruction window, distinct static branches
can have speculative occurrences in-flight at
the same time. In practice, speculative history
can be handled as shown in Figure 3. The
local history table is updated only at commit
time. At the prediction time of branch B, the
local history table is read and the window of
all speculatively in-flight branches is checked
for occurrences of branch B (or, more pre-
cisely, of branches with the same index in the
local history table). If any in-flight occurrence
of branch B is detected, the (speculative) local
history associated with the most recent of
these in-flight occurrences is used.

This necessitates an associative search in
the window of in-flight branches. Local his-
tory must be stored with each in-flight
branch in this window. On a misprediction
of branch B, the branches fetched after B are
flushed from the instruction window.

Innermost-Loop Iteration
Two IMLI-based components offer alterna-
tive approaches to predicting the class of
hard-to-predict branches encapsulated in 2D
loops.4,5 These components can be incorpo-
rated into any of the two families of state-of-
the-art branch predictors: the TAGE

0 0 1 0 0 0

0 0 0 ?

Saturating counters
100

Inner loop iterations

Outer loop
iterations

...

Figure 2. Example of wormhole (WH) prediction. History bits (100) from the

previous outer loop iteration are used to index into a table of saturating

counters.

Local
history
table

Update at commit time

To predicton tables

Speculative history for the most
recent occurrence of branch B

Window of
in-flight branches

B h4

B h3

B h2

B h1

Figure 3. Retrieving the speculative local history for branch B. The window

of in-flight branches is searched for the outcomes of branches that have yet

to commit.

..

TOP PICKS

..

12 IEEE MICRO

predictor family7 and the neural-inspired
predictor family.8,12–14 Figure 4 illustrates
the addition of IMLI components to the stat-
istical corrector in TAGE-GSC.15 Both com-
ponents exploit the IMLI counter, a simple
mechanism that tracks the number of the
current iteration in the innermost loop. The
first component, IMLI-SIC (Same Iteration
Correlation), captures a completely different
correlation than the WH predictor. The sec-
ond component, IMLI-OH (Outer History),
essentially captures the same correlation as
the WH predictor. Throughout this section,
we will use the following notation when dis-
cussing branches in multidimensional loops:
B is a branch in inner loop IL encapsulated in
outer loop OL, and Out½N �½M � is the out-
come of branch B in iteration M of IL and
iteration N of OL.

IMLI Counter
In most cases, a loop body ends at a backward
conditional branch. Therefore, for simplic-
ity’s sake, we consider that any backward con-
ditional branch is a loop exit branch. We also
consider that a loop is an innermost loop if
its body does not contain any backward
branch.

We define the IMLI counter, IMLIcount, as
the number of times that the last-encountered
backward conditional branch has been con-
secutively taken. A simple heuristic lets us
track IMLIcount at fetch time for the inner-
most loop for any backward conditional
branch:

if (backward){if (taken)
IMLIcountþþ;
else IMLIcount¼0;}

In practice, the IMLIcount will be 1 or 0
on the first iteration, depending on the mul-
tidimensional loop’s construction. We can
then use the IMLI counter to produce the
index of the two IMLI-based predictor
components.

IMLI-SIC
In some applications, a few hard-to-predict
branches encapsulated in loops repeat or
nearly repeat their behavior for the same itera-
tion in the innermost loop (that is,
Out½N �½M � � Out½N � 1�½M �) in most

cases. For instance, this occurs when the same
expression, dependent on the innermost itera-
tion number, is tested in the inner loop body.
In the example in Figure 1, branches B3 and
B4 represent this case.

To capture this behavior, we add a single
table to TAGE-GSC’s statistical corrector
(SC). We refer to this table as the IMLI-SIC
table. IMLI-SIC is indexed with a hash of the
IMLI counter and the program counter.
With a 512-entry table, we capture most of
the potential benefit on this class of branches
on our benchmark set. However, we can
increase the benefit further by inserting the
IMLI counter in the indices of two tables in
the global history component of the SC.

IMLI-OH
Our experiments showed that the IMLI-SIC
component does not capture all correlations
that the WH predictor does. Specifically,
when predicting Out½N �½M � for a branch B,
the outcomes Out½N � 1�½M � 1� and
Out½N � 1�½M � from the previous outer
iteration also must be memorized. In the
WH predictor, these outcomes are memo-
rized in the local history associated with
branch B in the WH predictor entry. When
predicting Out½N �½M �, these two outcomes
are then retrieved as bits Mmaxþ1 and Mmax

of the local history, respectively, where Mmax

is the number of iterations of the inner loop
as predicted by the loop predictor.

The IMLI-OH predictor component, shown
in Figure 5, is an alternative solution to track
Out½N � 1�½M � 1� and Out½N � 1�½M �

PC

Global

IMLIcount +
IMLI history

TAGE

+

+

+

sign
=

pred.
+

Figure 4. The statistical corrector predictor

for TAGE-GSC (tagged geometric history

length predictor) with innermost-loop

iteration (IMLI) based components. The

final prediction is selected according to the

individual confidences of each predictor.

...

MAY/JUNE 2016 13

for the inner branches in 2D loops using the
IMLI counter. It comprises the IMLI-OH
predictor table, which is incorporated in the
SC part of the TAGE-GSC predictor, and
the IMLI history table and PIPE (previous
inner iteration in previous external iteration)
vector, two structures to store and retrieve the
history of the previous outer loop iteration.

The IMLI history table stores the
branches’ outcomes; we found that a 1-Kbit
table is sufficient. The outcome of a branch
at address B is stored at address (B*64) þ
IMLIcount. This lets us recover Out½N �
1�½M � when predicting Out½N �½M �. How-
ever, when predicting the next iteration (that
is, Out½N �½M þ 1�), Out½N � 1�½M � would
already have been overwritten with
Out½N �½M �. Therefore, we use the PIPE vec-
tor to intermediately store Out½N � 1�½M �.
This vector contains only 16 bits, corre-
sponding to the 16 distinct branch addresses
that the 1,024-entry IMLI outer history table
can track.

The IMLI-OH predictor table is indexed
with the PC hashed with bits Out½N �
1�½M � and Out½N � 1�½M � 1� retrieved as
described earlier. We found that a 256-entry
IMLI-OH predictor table was sufficient to
cover all the practical cases in our set of 80
traces.

Speculative Management of IMLI
After the fetch of a given instruction block,
we derive the new speculative IMLI counter
from the previous speculative IMLI counter,
along with the presence or absence of any for-
ward branches in the instruction fetch block

and their predicted directions. Checkpoint-
ing the speculative IMLI counter lets us
resume branch prediction and instruction
fetch with the correct IMLI counter after a
branch misprediction.

For IMLI-OH, the IMLI PIPE vector is a
small structure (16 bits in our study). It can
be checkpointed for each instruction fetch
block. In practice, precise management of the
IMLI outer history is not required. Analysis
of simulations shows that the IMLI-OH
component essentially captures correlation
for branches that are encapsulated in loops
with a large number of iterations. In practice,
for these branches, when iteration M of IL in
iteration N of OL is fetched, the occurrences
around iteration M of the innermost loop IL
and iteration N � 1 of the outer loop OL
have been committed for a long time. For
these branches, the correct outer history is
used. For the other branches, which do not
exhibit IMLI counter correlations, using the
incorrect outer history has a limited impact.

Methodology
Throughout this article, we use trace-based
simulations of the branch predictors to moti-
vate and validate the proposed designs. We
will use misprediction rates measured as mis-
predictions per kilo instructions (MPKI) as a
metric of accuracy.

Trace-based branch prediction simula-
tions assume immediate updates of the pre-
diction tables and branch histories. On real
hardware, branch histories are speculatively
updated, ensuring that the same prediction
tables’ entries are read at fetch time and
updated at commit time. The prediction
tables are updated at commit time; thus, in a
few cases, a prediction table entry is read at
prediction time before a previous branch in
the control flow commits and updates it.
However, for the state-of-the-art global his-
tory predictors considered in this article, the
delayed update of predictor tables has a lim-
ited impact on accuracy,9,10 and this impact
can be mitigated.10

Application Traces
To allow reproducibility of the experiments
presented in this article, we performed all the
simulations using the two sets of traces that

IMLI-OHIMLI history(PC<<6) +IMLI
Prediction
counter

PC

PC

P
I
P
E

Figure 5. The IMLI-OH (Outer History) component. The component

comprises a predictor table, history table, and PIPE (previous inner iteration

in previous external iteration) vector.

..

TOP PICKS

..

14 IEEE MICRO

were distributed for two recent Branch Pre-
diction Championships, in 2011 (CBP3)
and 2014 (CBP4). Each set of traces features
40 traces. Traces from CBP3 were trans-
formed to be compatible with simulations
through the CBP4 framework. These 80
traces cover various application domains,
including SPEC integer and floating-point
applications, servers, and client and multime-
dia applications.

Branch Predictors
The IMLI predictor components presented
here improve branch accuracy when com-
bined with either of the two state-of-the-art
branch predictor families: the TAGE predic-
tor family7 and the neural-inspired predictor
family.8,12–14 We consider one global history
predictor from each family as base references:
from the TAGE predictor family, we use the
TAGE-GSC predictor (that is, the global his-
tory components of TAGE-SC-L,15 the win-
ner of CBP4), and from the neural predictor
family, we use a GEHL predictor.8

Evaluation
Figures 6 and 7 illustrate the accuracy benefit
obtained from augmenting TAGE-GSC with
the two IMLI-based components on the
whole set of 80 benchmarks and on the 15
most improved benchmarks, respectively. In
both figures, the benefit of IMLI-SIC alone is
illustrated by the lowest bar.

IMLI-SIC
IMLI-SIC reduces the average misprediction
rate from 2.473 to 2.373 MPKI for CBP4
and from 3.902 to 3.733 MPKI on CBP3
traces. This benefit is essentially obtained on
a few benchmarks: two CBP4 benchmarks—
SPEC2K6-04 (–2.37 MPKI) and SPEC2K6-
12 (–1.16 MPKI)—and three CBP3 bench-
marks—WS04 (–3.20 MPKI), MM07
(–2.17 MPKI), and CLIENT02 (–0.64
MPKI). The accuracies of two other bench-
marks (MM4 and WS03) are marginally
improved, whereas the other benchmarks
remain mostly unchanged.

The impact of adding the IMLI-SIC table
to GEHL is similar, reducing the mispredic-
tion rate from 2.864 to 2.752 MPKI for
CBP4 traces and from 4.243 to 4.053 MPKI

for CBP3 traces. The same benchmarks as
for TAGE-GSC are improved by IMLI-SIC
(see Figures 8 and 9).

Interestingly, SPEC2K6-04 and WS04 are
benchmarks that the WH predictor did not
improve. In practice, as already pointed out,
the WH predictor’s structure captures correla-
tions only for branches that are encapsulated
in regular loops with constant iteration num-
bers and that are executed on each iteration of
the inner loop. IMLI-SIC does not suffer
from these restrictions. On the other hand,
benchmarks that WH improved—SPEC2K6-
12, CLIENT02, MM07, and MM4—are not
as significantly improved by IMLI-SIC as
with WH.

The IMLI-SIC table lets us predict the
number of iterations of the inner loop when-
ever the inner loop has a constant iteration

3.4

2.9

1.9

2.4

1.4

0.9

0.4

–0.1

M
P

K
I r

ed
uc

tio
n IMLI IMLISIC

Figure 6. IMLI-induced reduction of mispredictions per kilo instructions

(MPKI) on 80 benchmarks, using the TAGE-GSC predictor. The lower bar

shows the MPKI reduction of IMLI-SIC alone.

3.4
2.9

1.9
2.4

1.4
0.9
0.4

–0.1

M
P

K
I r

ed
uc

tio
n

IN
T

-3

W
S

01

M
M

02

C
LI

E
N

T
11

M
M

05

IN
T

-5

S
P

E
C

2K
6-

13

IN
T

01

M
M

-4

W
S

03

C
LI

E
N

T
02

S
P

E
C

2K
6-

04

S
P

E
C

2K
6-

12

W
S

04

M
M

07

IMLI IMLISICIMLI IMLISIC

Figure 7. IMLI-induced MPKI reduction on the 15 most improved

benchmarks, using the TAGE-GSC predictor. The lower bar shows the MPKI

reduction of IMLI-SIC alone.

...

MAY/JUNE 2016 15

number. As a result, activating the loop pre-
dictor when IMLI-SIC is enabled has limited
impact. For instance, with TAGE-GSC, the
loop predictor’s benefit is reduced from
0.034 to 0.013 MPKI on CBP4 and from
0.094 to 0.010 MPKI on CBP3.

IMLI-OH
First, we compare the benefits of IMLI-OH
and WH when added to the base predictors.
This is shown in Figure 10 for the GEHL
predictor; results for TAGE-GSC are similar.
As expected, the two predictors enhance the
accuracy of the benchmarks that were
enhanced by WH. IMLI-OH slightly enhan-
ces the accuracy of a few other benchmarks
(for example, SPECK6-04 and WS03) that
are also enhanced by IMLI-SIC.

The benefits from IMLI-OH over the
base predictors augmented with IMLI-SIC
are proportionally smaller than the ones from
IMLI-SIC alone: 2.0 percent MPKI reduc-
tion on CBP4 traces and 2.3 percent on
CBP3 traces for TAGE-GSC (2.2 percent on
CBP4 and 2.3 percent on CBP3 for GEHL).

IMLI Overall
The total benefit of IMLI-SIC and IMLI-
OH is illustrated as the full bar in Figures 6
and 7 for TAGE-GSC and in Figures 8 and 9
for GEHL. These benefits were obtained on
just a few benchmarks but are significant for
these benchmarks. The benefits of IMLI-OH
and IMLI-SIC are not always cumulative, as
SPECK6-04 shows.

For TAGE-GSC, the misprediction rate
improved by 6.8 percent (from 2.473 to
2.313 MPKI) on CBP4 traces and by 6.1
percent (from 3.902 to 3.649 MPKI) on
CBP3 traces. For the GEHL predictor, the
misprediction rate improved by 6.0 percent
(from 2.864 to 2.694 MPKI) on CBP4 traces
and 6.5 percent (from 3.902 to 3.649
MPKI) on CBP3 traces. This misprediction
reduction is most prominent for seven
benchmarks: SPEC2K6-04, SPEC2K6-12,
and MM-4 for CBP4, and CLIENT02,
MM07, WS04, and WS03 from CBP3 (see
Figures 7 and 9). Most of the other bench-
marks neither benefit nor suffer from the
IMLI components shown in Figures 6 and 8.

We can simply add these two predictor
components as extra tables in the statistical

M
P

K
I r

ed
uc

tio
n

4.5

3.5

2.5

1.5

0.5

–0.5

IMLI IMLISICIMLI IMLISIC

Figure 8. IMLI-induced MPKI reduction on 80 benchmarks, using the

geometric history length (GEHL) predictor. The lower bar shows the MPKI

reduction of IMLI-SIC alone.

M
P

K
I r

ed
uc

tio
n

4.5

3.5

2.5

1.5

0.5

–0.5

M
M

02

C
LI

E
N

T
11

C
LI

E
N

T
02

IN
T

5

M
M

05

M
M

4

M
M

07

W
S

01

W
S

03

W
S

04

S
P

E
C

2K
6-

13

S
P

E
C

2K
6-

04

S
P

E
C

2K
6-

12

S
P

E
C

2K
6-

18

IN
T

3

IN
T

01

IMLI IMLISIC

Figure 9. IMLI-induced MPKI reduction on the 15 most benefitting

benchmarks, using the GEHL predictor. The lower bar shows the MPKI

reduction of IMLI-SIC alone.

M
P

K
I r

ed
uc

tio
n

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

W
S

01

W
S

04

W
S

03

M
M

4

M
M

07

S
P

E
C

2K
6-

04

S
P

E
C

2K
6-

12

C
LI

E
N

T
02

IN
T

01

–0.5

WH IMLI-OHWH IMLI-OH

Figure 10. IMLI-OH versus WH prediction accuracy on top of the GEHL

predictor for only the most improved benchmarks.

..

TOP PICKS

..

16 IEEE MICRO

corrector predictor of TAGE-GSC or in the
GEHL predictor. The overall storage budget
for implementing the two IMLI-based com-
ponents is low: a total of 708 bytes (that is,
384 bytes for the IMLI-SIC table, 128 bytes
for the IMLI outer history table, 192 bytes
for the predictor table, and 4 bytes total for
the PIPE vector and the IMLI counter).
Moreover, managing the speculative states of
IMLI-SIC and IMLI-OH is as simple as
managing the speculative global history; it
can be implemented by checkpointing only
two small structures: the IMLI counter (10
bits) and the IMLI PIPE vector (16 bits).
Despite this low storage budget and hardware
complexity, the IMLI-based components sig-
nificantly reduce the misprediction rate for
several benchmarks when added to TAGE-
GSC and GEHL.

Impact on Local History
Up to now, we have considered IMLI-based
components for branch predictors featuring
only global history components. State-of-the-
art academic branch predictors feature both
local and global history components, but
most real hardware processors use global his-
tory predictors alone. In this section, we
show that the potential accuracy benefit from
using local history is further limited when
using IMLI-based components.

We can augment the two base predictors,
TAGE-GSC and GEHL, with local history
components. These local history components

can be inserted in the SC predictor of
TAGE-GSC and can be added as a local his-
tory predictor in GEHL, which yields fused
two-level (FTL) prediction.14 We considered
augmenting both predictors with a local his-
tory component. For TAGE-GSC, we acti-
vated the local history components and the
loop predictor in TAGE-SC-L.15 For GEHL,
we added four tables of 2,048 6-bit counters,
a 256-entry table of 24-bit local history coun-
ters, and a 32-entry loop predictor, thus
yielding a FTL predictor.14

We ran simulations selectively, activating
the different components: Base, Base þ I (in
which I stands for IMLI), Base þ L (local),
and Baseþ Iþ L. Figure 11 shows the results
for the 25 most affected benchmarks (out of
80); Tables 1 and 2 report the average mis-
prediction rates.

Overall, adding the local history predictor
components and the loop predictor to the
IMLI-augmented base predictors leads to
lower accuracy gains than adding them to the
base predictors. For TAGE-GSC without
IMLI, the benefit shrinks from 0.108 to
0.087 MPKI for CBP4 traces, and from
0.232 to only 0.094 MPKI for CBP3 traces.
For GEHL without IMLI, we observe a simi-
lar trend, with an accuracy benefit of 0.132
MPKI (vs. 0.171 MPKI) on CBP4 traces
and 0.131 MPKI (vs. 0.319 MPKI) on
CBP3 traces.

The IMLI components capture part of
the correlations that are captured by the
local history components and the loop

5

4

3

2

1

0

M
P

K
I r

ed
uc

tio
n

W
S

01

W
S

03

W
S

04

M
M

-5

M
M

03

F
P

-1

M
M

-1

M
M

01

M
M

04

M
M

02

M
M

05

M
M

07

IN
T

02

IN
T

-3

S
P

E
C

2K
6-

01

S
P

E
C

2K
6-

18

S
P

E
C

2K
6-

10

S
P

E
C

2K
6-

05

S
P

E
C

2K
6-

07

S
P

E
C

2K
6-

13

S
P

E
C

2K
6-

04

S
P

E
C

2K
6-

12

C
LI

E
N

T
11

C
LI

E
N

T
02

IN
T

01

GEHL+I GEHL+I+LGEHL+L

Figure 11. Benefits of local history components on GEHL for the 25 most improved benchmarks with IMLI (I), Local History

(L), and both (IþL). Results for the TAGE predictor (not shown) are similar to those for GEHL.

...

MAY/JUNE 2016 17

predictor. Figure 11 shows this phenom-
enon. When IMLI components are effective
(on MM-4, SPECK2-04, SPECK6-12,
CLIENT02, WS04, and MM07), the local
history components often are somewhat
effective as well (for example, on MM07,
WS04, WS03, and CLIENT02). However,
their impact is only partially cumulative.
On the other hand, Figure 11 also shows
that the benefit of local history components
is more evenly distributed on the overall set
of benchmarks than that of the IMLI-based
components.

T he accuracy benefits of using local his-
tory components and a loop predictor

on top of a predictor implementing global his-
tory and IMLI-based components are limited.
These reduced benefits further argue against
the cost effectiveness of local history predictor
components when the predictor already fea-
tures IMLI-based components. MICR O

Acknowledgments
This work was partially supported by the
European Research Council Advanced
Grant DAL no. 267175. This work is also
supported by a Queen Elizabeth II/Mon-
trose Werry Scholarship in Science and
Technology, Bell Graduate Scholarship, a
Discovery grant, and a Strategic grant from
the Natural Sciences and Engineering
Research Council of Canada.

Table 1. Average misprediction rate for TAGE-GSC-based predictors.

Traces TAGE-GSC

(228 Kbits)

Base 1 local (L)

(256 Kbits)

Base 1 IMLI (I)

(234 Kbits)

Base 1 I 1 L

(261 Kbits)

CBP4 2.473 2.365 2.313 2.226

CBP3 3.902 3.670 3.649 3.555

Table 2. Average misprediction rate for GEHL-based predictors.

Traces GEHL

(204 Kbits)

Base 1 L

(256 Kbits)

Base 1 I

(209 Kbits)

Base 1 I 1 L

(261 Kbits)

CBP4 2.864 2.693 2.694 2.562

CBP3 4.243 3.924 3.958 3.827

..
References
1. T.-Y. Yeh and Y.N. Patt, “Two-Level Adap-

tive Training Branch Prediction,” Proc. 24th

Ann. Int’l Symp. Microarchitecture, 1991,

pp. 51–61.

2. T. Sherwood and B. Calder, “Loop Termina-

tion Prediction,” Proc. 3rd Int’l Symp. High

Performance Computing, 2000, pp. 73–87.

3. D. Morris et al., Method and Apparatus for

Predicting Loop Exit Branches, US patent

09/169,866, 2002.

4. J. Albericio et al., “Wormhole: Wisely Pre-

dicting Multidimensional Branches,” Proc.

47th Ann. IEEE/ACM Int’l Symp. Microarchi-

tecture, 2014, pp. 509–520.

5. J. Albericio et al., “Wormhole Branch Pre-

diction Using Multidimensional Histories,”

Proc. 4th Championship Branch Prediction,

2014; www.jilp.org/cbp2014/paper/Jorge

Albericio.pdf.

6. A. Seznec, J. San Miguel, and J. Albericio,

“The Inner Most Loop Iteration Counter: A

New Dimension in Branch History,” Proc.

48th Ann. IEEE/ACM Int’l Symp. Microarchi-

tecture, 2015, pp. 347–357.

7. A. Seznec and P. Michaud, “A Case for

(Partially) TAgged GEometric History Length

Branch Prediction,” J. Instruction Level Par-

allelism, 2006; www.jilp.org/vol8/v8paper1.

pdf.

..

TOP PICKS

..

18 IEEE MICRO

8. A. Seznec, “Analysis of the O-Geometric

History Length Branch Predictor,” Proc.

32nd Int’l Symp. Computer Architecture,

2005, pp. 394–405.

9. D.A. Jim�enez, “Reconsidering Complex

Branch Predictors,” Proc. 9th Int’l Symp.

High-Performance Computer Architecture,

2003, pp. 43–52.

10. A. Seznec, “A New Case for the TAGE

Branch Predictor,” Proc. 44th Ann. IEEE/

ACM Int’l Symp. Microarchitecture, 2011,

pp. 117–127.

11. E. Hao, P.-Y. Chang, and Y.N. Patt, “The

Effect of Speculatively Updating Branch His-

tory on Branch Prediction Accuracy, Revis-

ited,” Proc. 27th Ann. Int’l Symp.

Microarchitecture, 1994, pp. 228–232.

12. D.A. Jim�enez and C. Lin, “Dynamic Branch

Prediction with Perceptrons,” Proc. 7th Int’l

Symp. High-Performance Computer Archi-

tecture, 2001, pp. 197–206.

13. D.A. Jimen�ez and C. Lin, “Neural Methods

for Dynamic Branch Prediction,” ACM

Trans. Computer Systems, vol. 20, no. 4,

2002, pp. 369–397.

14. Y. Ishii, “Fused Two-Level Branch Predic-

tion with Ahead Calculation,” J. Instruction

Level Parallelism, vol. 9, 2007, pp. 1–19.

15. A. Seznec, “TAGE-SC-L Branch Predictors,”

Proc. 4th Championship on Branch Predic-

tion, 2014; www.jilp.org/cbp2014/paper/

AndreSeznec.pdf.

Andr�e Seznec is a senior research director at
INRIA. His research interests include specula-
tive execution, pipeline design, and memory
hierarchy and systems. Seznec received a PhD
in computer sciences from the University of
Rennes. He is an IEEE Fellow. Contact him
at andre.seznec@inria.fr.

Joshua San Miguel is a PhD candidate in
the Edward S. Rogers Sr. Department of
Electrical and Computer Engineering at the
University of Toronto. His research interests
include branch prediction, approximate
computing, and networks on chip. San
Miguel received a BASc in engineering sci-
ence from the University of Toronto. Con-
tact him at joshua.sanmiguel@utoronto.ca.

Jorge Albericio is a postdoctoral fellow in the
Edward S. Rogers Sr. Department of Electrical
and Computer Engineering at the University
of Toronto. His research interests include
branch prediction, architectures for machine
intelligence algorithms, memory hierarchy,
and approximate computing. Albericio
received a PhD in systems engineering and
computing from the University of Zaragoza.
Contact him at jorge@ece.utoronto.ca.

...

MAY/JUNE 2016 19

	fig1
	fig2
	fig3
	fig4
	fig5
	fig6
	fig7
	fig8
	fig9
	fig10
	fig11
	ref1
	ref2
	ref3
	ref4
	ref5
	ref6
	ref7
	table1
	table2
	ref8
	ref9
	ref10
	ref11
	ref12
	ref13
	ref14
	ref15

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

