Doppelgänger: A Cache for Approximate Computing

Joshua San Miguel
Jorge Albericio
Andreas Moshovos
Natalie Enright Jerger

main memory

Accessing memory is 10x – 100x greater latency and energy than accessing private cache!

shared last-level cache

Need hierarchy of large caches...

private caches

processor core

But last-level cache consumes substantial energy and takes up 30%-50% of chip area!

shared last-level cache

Higher efficiency via Approximate Computing...

private caches

processor core

Summary

- > Identifies approximate similarity in data block values.
 - 77% cache storage savings of approximable data.

Summary

- Identifies approximate similarity in data block values.
 - 77% cache storage savings of approximable data.
- Effectively compresses storage of approximately similar blocks.
 - 3x better compression ratio than state-of-the-art techniques.

Summary

- Identifies approximate similarity in data block values.
 - 77% cache storage savings of approximable data.
- Effectively compresses storage of approximately similar blocks.
 - 3x better compression ratio than state-of-the-art techniques.
- Significantly reduces area and energy consumption.
 - Reduces total on-chip cache area by 1.36x.

Outline

- Approximate Computing
 - Approximate Similarity
- Doppelgänger Cache
 - Cache Architecture
 - Similarity Mapping
- Evaluation

Approximate Computing

Not all data/computations need to be precise.

Two data blocks are approximately similar (i.e., doppelgängers)

Two data blocks are approximately similar (i.e., doppelgängers)

Outline

- Approximate Computing
 - Approximate Similarity
- > Doppelgänger Cache
 - Cache Architecture
 - Similarity Mapping
- Evaluation

tag array map X tag 0 tag 1 map X tag 2 map X map X tag 3

approximate data array

map X	data block A

approximate data array

map X	data block A

tag array map X tag 0 tag 1 map X map X tag 2 map X tag 3

approximate data array

map X	data block A

approximate data array

map X	data block A

tag array map X tag 0 map Y tag 5 tag 1 map X tag 2 map X map X tag 3

approximate data array

map X	data block A
map Y	data block B

approximate data array

map X	data block A
map Y	data block B

More details in paper:

- > Cache writes, replacements and coherence.
- Details on hash functions and mapping.
- Sensitivity to size of map space and data array.
- Evaluation of uniDoppelgänger.

Outline

- Approximate Computing
 - Approximate Similarity
- Doppelgänger Cache
 - Cache Architecture
 - Similarity Mapping
- Evaluation

Evaluation

- > Applications: PARSEC and AxBench
- > Performance: Full-system cycle-level simulation
- > Error: Pin simulation
- Area and Energy: CACTI
- Configuration:
 - 4 cores, private L1 and L2
 - 2MB shared LLC (1MB precise, 1MB Doppelgänger)
 - Doppelgänger: 14-bit similarity map, 1/4 data array

Evaluation - Compression Ratio

Evaluation - Compression Ratio

Evaluation - Compression Ratio

Evaluation

Evaluation

Conclusion

- Identifies approximate similarity in data block values.
 - 77% cache storage savings of approximable data.
- Effectively compresses storage of approximately similar blocks.
 - 3x better compression ratio than state-of-the-art techniques.
- Significantly reduces area and energy consumption.
 - Reduces total on-chip cache area by 1.36x.

Thank you

Doppelgänger: A Cache for Approximate Computing

Joshua San Miguel
Jorge Albericio
Andreas Moshovos
Natalie Enright Jerger

