
The Anytime Automaton

Joshua San Miguel

Natalie Enright Jerger

Summary

2

We propose the Anytime Automaton:
 A new computation model for approximate computing.

Summary

3

We propose the Anytime Automaton:
 A new computation model for approximate computing.

application execution

quality

final
output

Summary

4

We propose the Anytime Automaton:
 A new computation model for approximate computing.

application execution

quality

final
output

Approximate Computing

Many applications are inherently noisy and imprecise.

5

http://www.zentut.com/

http://www.businessweek.com/

http://www.cc.gatech.edu/~cnieto6/

http://www.analyticbridge.com/

http://themusicparlour.blogspot.ca/

http://www.scientific-computing.com/

Data mining

Computer vision Audio and video processing

Gaming Machine learning Dynamical simulation

Approximate Computing

Many applications are inherently noisy and imprecise.

6

http://www.zentut.com/

http://www.businessweek.com/

http://www.cc.gatech.edu/~cnieto6/

http://www.analyticbridge.com/

http://themusicparlour.blogspot.ca/

http://www.scientific-computing.com/

Data mining

Computer vision Audio and video processing

Gaming Machine learning Dynamical simulation

But how can we apply approximate
computing techniques and still ensure

acceptability in final output?

Approximate Computing

program ()

{

 foos_on_first();

 bars_on_second();

 hello_worlds_on_third();

}

7

time

foos_on_first bars_on_second hello_worlds_on_third

Approximate Computing

program ()

{

 approx_foos_on_first();

 bars_on_second();

 hello_worlds_on_third();

}

8

time

foos_on_first bars_on_second hello_worlds_on_third

tune quality
(runtime-quality tradeoff)

Approximate Computing

program ()

{

 approx_foos_on_first();

 bars_on_second();

 hello_worlds_on_third();

}

9

time

foos_on_first bars_on_second hello_worlds_on_third

tune quality
(runtime-quality tradeoff)

Approximate Computing

program ()

{

 approx_foos_on_first();

 approx_bars_on_second();

 hello_worlds_on_third();

}

10

time

bars_on_second hello_worlds_on_third

tune quality

foos_on_first

Approximate Computing

program ()

{

 approx_foos_on_first();

 approx_bars_on_second();

 hello_worlds_on_third();

}

11

time

bars_on_second hello_worlds_on_third

tune quality

foos_on_first

Approximate Computing

program ()

{

 approx_foos_on_first();

 approx_bars_on_second();

 hello_worlds_on_third();

}

12

time

bars_on_second hello_worlds_on_third foos_on_first

But final output may
not be acceptable!

Approximate Computing

program ()

{

 approx_foos_on_first();

 approx_bars_on_second();

 hello_worlds_on_third();

}

13

time

bars_on_second hello_worlds_on_third foos_on_first

But final output may
not be acceptable!

Difficult to ensure acceptability of final output
on-the-fly, since quality control limited to local

approximations and not their composition.
(Challenge #1: Holistic Quality Control)

Approximate Computing

program ()

{

 approx_foos_on_first();

 approx_bars_on_second();

 hello_worlds_on_third();

}

14

time

bars_on_second hello_worlds_on_third foos_on_first

But final output may
not be acceptable!

Difficult to ensure acceptability of final output
on-the-fly, since quality control limited to local

approximations and not their composition.
(Challenge #1: Holistic Quality Control)

tune local quality tune local quality

Real-Time Computing

Real-time systems impose strict runtime constraints;
loss in output quality more tolerable than not finishing
in time.

15

http://www.streamingvideoprovider.co.uk/ http://www.beaudaniels-illustration.com/ http://m.exed.hec.edu/

Streaming multimedia

Automotive systems Telecommunications

Real-Time Computing

program ()

{

 approx_foos_on_first();

 approx_bars_on_second();

 hello_worlds_on_third();

}

16

time

foos_on_first bars_on_second hello_worlds_on_third

strict target runtime

Real-Time Computing

program ()

{

 approx_foos_on_first();

 approx_bars_on_second();

 hello_worlds_on_third();

}

17

time

foos_on_first bars_on_second hello_worlds_on_third

tune quality tune quality strict target runtime

Real-Time Computing

program ()

{

 approx_foos_on_first();

 approx_bars_on_second();

 hello_worlds_on_third();

}

18

time

foos_on_first bars_on_second hello_worlds_on_third

tune quality tune quality strict target runtime

Real-Time Computing

program ()

{

 approx_foos_on_first();

 approx_bars_on_second();

 hello_worlds_on_third();

}

19

time

foos_on_first

bars_on_second

hello_worlds_on_third

But actual runtimes
variable!

strict target runtime

Real-Time Computing

program ()

{

 approx_foos_on_first();

 approx_bars_on_second();

 hello_worlds_on_third();

}

20

time

foos_on_first

bars_on_second

hello_worlds_on_third

Difficult to ensure strict real-time constraints are met
(i.e., interrupt the application), since runtime-quality

tradeoffs vary dynamically.
(Challenge #2: Interruptibility)

But actual runtimes
variable!

strict target runtime

User-Interactive Computing

In user-interactive environments, users dictate quality
requirements on-the-fly.

21

http://www.businessweek.com/ http://www.pcadvisor.co.uk/ http://www.expressvpn.com/

Gaming

Mobile vision Search/recommendation

User-Interactive Computing

program ()

{

 approx_foos_on_first();

 approx_bars_on_second();

 hello_worlds_on_third();

}

22

time

foos_on_first bars_on_second hello_worlds_on_third

User-Interactive Computing

program ()

{

 approx_foos_on_first();

 approx_bars_on_second();

 hello_worlds_on_third();

}

23

time

bars_on_second hello_worlds_on_third foos_on_first

tune quality?

User-Interactive Computing

program ()

{

 approx_foos_on_first();

 approx_bars_on_second();

 hello_worlds_on_third();

}

24

time

bars_on_second hello_worlds_on_third

But target quality
unknown!

foos_on_first

tune quality?

User-Interactive Computing

program ()

{

 approx_foos_on_first();

 approx_bars_on_second();

 hello_worlds_on_third();

}

25

time

bars_on_second hello_worlds_on_third

But target quality
unknown!

foos_on_first

tune quality?

Difficult to ensure acceptability for a given user at a
given context, since acceptable quality cannot be

determined a priori.
(Challenge #3: User Flexibility)

Anytime Automaton

26

We propose the Anytime Automaton:
 A new computation model for approximate computing.

 Revisits and generalizes concepts from anytime (or iterative)
algorithms, originally studied for real-time decision problems.

 A recipe for applying approximate computing techniques such
that the final output is available early and improves in quality
over time.

Anytime Automaton

27

application execution

quality

Anytime Automaton

28

application execution

quality final
output

conventionally,
single output

Anytime Automaton

29

application execution

quality precise
output

Anytime Automaton

30

application execution

quality precise
output

holistic quality control:
final output available early

Anytime Automaton

31

application execution

quality precise
output

strict target runtime

Anytime Automaton

32

application execution

quality precise
output

interruptibility:
use current output if needed

strict target runtime

Anytime Automaton

33

application execution

quality precise
output

Anytime Automaton

34

application execution

quality precise
output

Anytime Automaton

35

application execution

quality precise
output

Anytime Automaton

36

application execution

quality precise
output

user flexibility:
wait longer for better quality

Outline

Anytime Automaton

 The Model

 The Approximations

Evaluation

 Methodology

 Experimental Results

Conclusion

37

Anytime Automaton

38

program:

data dependence

computation

Anytime Automaton

39

inst A;

program:

Anytime Automaton

40

inst A;
inst B;
inst C;

program:

Anytime Automaton

41

func (...);

program:

Anytime Automaton

42

kernel () {
 ...
}

program:

Dataflow Model

43

program:

Dataflow Model

44

i
n
p
u
t

Dataflow Model

45

i
n
p
u
t

Dataflow Model

46

i
n
p
u
t

Dataflow Model

47

i
n
p
u
t

Dataflow Model

48

i
n
p
u
t

Dataflow Model

49

i
n
p
u
t

Dataflow Model

50

i
n
p
u
t

Dataflow Model

51

i
n
p
u
t

Anytime Automaton

52

Anytime Automaton

53

produce a single result

Anytime Automaton

54

produce multiple approx versions of result (i.e., anytime)

precise version

Anytime Automaton

55

Data Diffusion Model

Anytime Automaton

56

i
n
p
u
t

Anytime Automaton

57

i
n
p
u
t

Anytime Automaton

58

i
n
p
u
t

child works on
parent’s approx

result

Anytime Automaton

59

i
n
p
u
t

child works on
parent’s approx

result

parent works on
producing better

approx result

Anytime Automaton

60

i
n
p
u
t

Anytime Automaton

61

i
n
p
u
t

Anytime Automaton

62

i
n
p
u
t

Anytime Automaton

63

i
n
p
u
t

final output
available early

Anytime Automaton

64

i
n
p
u
t

Anytime Automaton

65

i
n
p
u
t

Anytime Automaton

66

i
n
p
u
t

Anytime Automaton

67

i
n
p
u
t

Anytime Automaton

68

i
n
p
u
t

Anytime Automaton

69

i
n
p
u
t

precise output

Anytime Automaton – The Model

70

1. Ensure precise output is always produced eventually.

Anytime Automaton – The Model

71

1. Ensure precise output is always produced eventually.

Anytime Automaton – The Model

72

1. Ensure precise output is always produced eventually.

kernel () {
 ...
}

Anytime Automaton – The Model

73

1. Ensure precise output is always produced eventually.

kernel () {
 ...
}

pure function

Anytime Automaton – The Model

74

1. Ensure precise output is always produced eventually.

kernel () {
 ...
}

pure function
single-writer,

updates isolated

Anytime Automaton – The Model

75

2. Create the effect of improving accuracy over time.

Anytime Automaton – The Model

76

2. Create the effect of improving accuracy over time.

Anytime (or iterative) algorithms have been studied before but
are traditionally built into the coarse-grained derivation of an
application.

Approximate computing techniques have proliferated recently
and have been shown to have general fine-grained applicability.

Anytime Automaton – The Model

77

2. Create the effect of improving accuracy over time.

Anytime Automaton – The Model

78

2. Create the effect of improving accuracy over time.

anytime algorithm?

Anytime Automaton – The Model

79

2. Create the effect of improving accuracy over time.

kernel () {
 ...
}

Anytime Automaton – The Model

80

2. Create the effect of improving accuracy over time.

kernel () {
 ...
}

approx computing
techniques

Anytime Automaton – The Model

81

2. Create the effect of improving accuracy over time.

approx computing
techniques

Anytime Automaton – The Model

82

3. Enable interruptibility via pipelining.

Anytime Automaton – The Model

83

3. Enable interruptibility via pipelining.

time

computation A computation B computation C

Anytime Automaton – The Model

84

3. Enable interruptibility via pipelining.

time

computation B computation C

Anytime Automaton – The Model

85

3. Enable interruptibility via pipelining.

time

computation C

Anytime Automaton – The Model

86

3. Enable interruptibility via pipelining.

time

computation C

final output
not ready!

Anytime Automaton – The Model

87

3. Enable interruptibility via pipelining.

time

computation A computation B computation C

Anytime Automaton – The Model

88

3. Enable interruptibility via pipelining.

time

computation A computation B computation C

Anytime Automaton – The Model

89

3. Enable interruptibility via pipelining.

time

computation A

computation B

computation C

Anytime Automaton – The Model

90

3. Enable interruptibility via pipelining.

time

approx output
ready!

computation A

computation B

computation C

Anytime Automaton – The Approximations

91

1. General case: apply approximations iteratively.

Anytime Automaton – The Approximations

92

1. General case: apply approximations iteratively.

quality knob

Anytime Automaton – The Approximations

93

loop perforation smaller perforation stride

load value approximation lower approximation degree

neural acceleration higher neural network complexity

SRAM bit upsets higher supply voltage

floating-point precision more mantissa bits

1. General case: apply approximations iteratively.

Anytime Automaton – The Approximations

94

1. General case: apply approximations iteratively.

 Loop perforation

Anytime Automaton – The Approximations

95

perforation stride 20: for i = 0, 20, 40, 60, 80, 100,, N-1

1. General case: apply approximations iteratively.

 Loop perforation

Anytime Automaton – The Approximations

96

1. General case: apply approximations iteratively.

 Loop perforation

perforation stride 20: for i = 0, 20, 40, 60, 80, 100,, N-1

perforation stride 15: for i = 0, 15, 30, 45, 60, 75,, N-1

perforation stride 10: for i = 0, 10, 20, 30, 40, 50,, N-1

perforation stride 5: for i = 0, 5, 10, 15, 20, 25,, N-1

perforation stride 1: for i = 0, 1, 2, 3, 4, 5, 6, 7,, N-1

Anytime Automaton – The Approximations

97

1. General case: apply approximations iteratively.

 Loop perforation

perforation stride 20: for i = 0, 20, 40, 60, 80, 100,, N-1

perforation stride 15: for i = 0, 15, 30, 45, 60, 75,, N-1

perforation stride 10: for i = 0, 10, 20, 30, 40, 50,, N-1

perforation stride 5: for i = 0, 5, 10, 15, 20, 25,, N-1

perforation stride 1: for i = 0, 1, 2, 3, 4, 5, 6, 7,, N-1

Achieves desired effect of improving quality over time,
but can yield redundant work.

Anytime Automaton – The Approximations

98

1. General case: apply approximations iteratively.

 Loop perforation

perforation stride 20: for i = 0, 20, 40, 60, 80, 100,, N-1

perforation stride 15: for i = 0, 15, 30, 45, 60, 75,, N-1

perforation stride 10: for i = 0, 10, 20, 30, 40, 50,, N-1

perforation stride 5: for i = 0, 5, 10, 15, 20, 25,, N-1

perforation stride 1: for i = 0, 1, 2, 3, 4, 5, 6, 7,, N-1

Anytime Automaton – The Approximations

99

2. Better case: apply diffusive approximations.

 Each approximation builds on the previous one.

Anytime Automaton – The Approximations

100

2. Better case: apply diffusive approximations.

 Each approximation builds on the previous one.

data dependences
(each approximate result contributes usefully to precise result)

Anytime Automaton – The Approximations

101

2. Better case: apply diffusive approximations.

 Each approximation builds on the previous one.

data dependences
(each approximate result contributes usefully to precise result)

data sampling more samples

integer/fixed-point precision more bits

Anytime Automaton – The Approximations

102

2. Better case: apply diffusive approximations.

 Input sampling (e.g., generating a distribution)

Anytime Automaton – The Approximations

103

2. Better case: apply diffusive approximations.

 Input sampling (e.g., generating a distribution)

Anytime Automaton – The Approximations

104

2. Better case: apply diffusive approximations.

 Input sampling (e.g., generating a distribution)

commutative
operation

Anytime Automaton – The Approximations

105

2. Better case: apply diffusive approximations.

 Input sampling (e.g., generating a distribution)

To improve quality, no need to reiterate from beginning;
therefore, diffusive.

(e.g., just add more samples to current result)

Anytime Automaton – The Approximations

106

2. Better case: apply diffusive approximations.

 Input sampling (e.g., generating a distribution)

Anytime Automaton – The Approximations

107

2. Better case: apply diffusive approximations.

 Input sampling (e.g., generating a distribution)

Anytime Automaton – The Approximations

108

2. Better case: apply diffusive approximations.

 Input sampling (e.g., generating a distribution)

Anytime Automaton – The Approximations

109

2. Better case: apply diffusive approximations.

 Input sampling (e.g., generating a distribution)

Anytime Automaton – The Approximations

110

2. Better case: apply diffusive approximations.

 Input sampling (e.g., generating a distribution)

Minimal redundant work
since each element processed exactly once.

Anytime Automaton – The Approximations

111

2. Better case: apply diffusive approximations.

 Output sampling (e.g., generating an image)

Anytime Automaton – The Approximations

112

2. Better case: apply diffusive approximations.

 Output sampling (e.g., generating an image)

sequential
permutation

Anytime Automaton – The Approximations

113

2. Better case: apply diffusive approximations.

 Output sampling (e.g., generating an image)

Anytime Automaton – The Approximations

114

2. Better case: apply diffusive approximations.

 Output sampling (e.g., generating an image)

Anytime Automaton – The Approximations

115

2. Better case: apply diffusive approximations.

 Output sampling (e.g., generating an image)

Anytime Automaton – The Approximations

116

2. Better case: apply diffusive approximations.

 Output sampling (e.g., generating an image)

Anytime Automaton – The Approximations

117

2. Better case: apply diffusive approximations.

 Output sampling (e.g., generating an image)

Anytime Automaton – The Approximations

118

2. Better case: apply diffusive approximations.

 Output sampling (e.g., generating an image)

tree
permutation

Anytime Automaton – The Approximations

119

2. Better case: apply diffusive approximations.

 Output sampling (e.g., generating an image)

Anytime Automaton – The Approximations

120

2. Better case: apply diffusive approximations.

 Output sampling (e.g., generating an image)

Anytime Automaton – The Approximations

121

2. Better case: apply diffusive approximations.

 Output sampling (e.g., generating an image)

Anytime Automaton – The Approximations

122

2. Better case: apply diffusive approximations.

 Integer/fixed-point precision (e.g., dot product)

[X Y Z] ● [10.1101 01.0010 11.0110]

X * 10.1101 Y * 01.0010 Z * 11.0110

Anytime Automaton – The Approximations

123

2. Better case: apply diffusive approximations.

 Integer/fixed-point precision (e.g., dot product)

time

[X Y Z] ● [10.1101 01.0010 11.0110]

X * 10.1101 Y * 01.0010 Z * 11.0110

Anytime Automaton – The Approximations

124

2. Better case: apply diffusive approximations.

 Integer/fixed-point precision (e.g., dot product)

time

final result
not ready!

[X Y Z] ● [10.1101 01.0010 11.0110]

X * 10.1101 Y * 01.0010 Z * 11.0110

Anytime Automaton – The Approximations

125

2. Better case: apply diffusive approximations.

 Integer/fixed-point precision (e.g., dot product)

time

[X Y Z] ● [10.1101 01.0010 11.0110]

Y * 01.0010 Z * 11.0110

Anytime Automaton – The Approximations

126

2. Better case: apply diffusive approximations.

 Integer/fixed-point precision (e.g., dot product)

time

X * 10 X * 11 X * 01

MSb LSb

[X Y Z] ● [10.1101 01.0010 11.0110]

Anytime Automaton – The Approximations

127

2. Better case: apply diffusive approximations.

 Integer/fixed-point precision (e.g., dot product)

time

X * 10 Y * 01 Z * 11 X * 11 Y * 00 Z * 01 X * 01 Y * 10 Z * 10

MSb LSb

[X Y Z] ● [10.1101 01.0010 11.0110]

Anytime Automaton – The Approximations

128

2. Better case: apply diffusive approximations.

 Integer/fixed-point precision (e.g., dot product)

time

X * 10 Y * 01 Z * 11 X * 11 Y * 00 Z * 01 X * 01 Y * 10 Z * 10

MSb LSb

[X Y Z] ● [10.1101 01.0010 11.0110]

Anytime Automaton – The Approximations

129

2. Better case: apply diffusive approximations.

 Integer/fixed-point precision (e.g., dot product)

time

X * 10 Y * 01 Z * 11 X * 11 Y * 00 Z * 01 X * 01 Y * 10 Z * 10

approx result
ready!

MSb LSb

[X Y Z] ● [10.1101 01.0010 11.0110]

Anytime Automaton

130

More details in paper:

 Asynchronous/synchronous pipelining

 Data locality with sampling

 Approximate storage techniques

 Thread scheduling

Evaluation – Methodology

131

Experiments:

 IBM Power 780 system
• 4 POWER7+ cores

• 32 total hardware threads

Applications:

 PERFECT and AxBench suites
• 2D convolution (output sampling, reduced precision†, SRAM bit upsets†)

• debayer (output sampling)

• discrete wavelet transform (loop perforation)

• histogram equalization (input and output sampling)

• k-means clustering (output sampling)

†see paper

Evaluation – 2D Convolution

132

0

10

20

30

40

0 0.5 1 1.5 2

SN
R

 (
d

B
)

runtime (normalized to baseline)

inf
b

e
tt

e
r

Evaluation – 2D Convolution

133

0

10

20

30

40

0 0.5 1 1.5 2

SN
R

 (
d

B
)

runtime (normalized to baseline)

inf
b

e
tt

e
r

Evaluation – 2D Convolution

134

0

10

20

30

40

0 0.5 1 1.5 2

SN
R

 (
d

B
)

runtime (normalized to baseline)

inf
b

e
tt

e
r

Evaluation – 2D Convolution

135

0

10

20

30

40

0 0.5 1 1.5 2

SN
R

 (
d

B
)

runtime (normalized to baseline)

inf
b

e
tt

e
r

Evaluation – 2D Convolution

136

0

10

20

30

40

0 0.5 1 1.5 2

SN
R

 (
d

B
)

runtime (normalized to baseline)

inf
b

e
tt

e
r

Evaluation – 2D Convolution

137

0

10

20

30

40

0 0.5 1 1.5 2

SN
R

 (
d

B
)

runtime (normalized to baseline)

inf
b

e
tt

e
r

Evaluation – 2D Convolution

138

0

10

20

30

40

0 0.5 1 1.5 2

SN
R

 (
d

B
)

runtime (normalized to baseline)

inf
b

e
tt

e
r

Evaluation – Debayer

139

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

SN
R

 (
d

B
)

runtime (normalized to baseline)

inf
b

e
tt

e
r

Evaluation – Debayer

140

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

SN
R

 (
d

B
)

runtime (normalized to baseline)

inf
b

e
tt

e
r

Evaluation – Debayer

141

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

SN
R

 (
d

B
)

runtime (normalized to baseline)

inf
b

e
tt

e
r

Evaluation – Debayer

142

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

SN
R

 (
d

B
)

runtime (normalized to baseline)

inf
b

e
tt

e
r

Evaluation – Debayer

143

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

SN
R

 (
d

B
)

runtime (normalized to baseline)

inf
b

e
tt

e
r

Evaluation – Discrete Wavelet Transform

144

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5

SN
R

 (
d

B
)

runtime (normalized to baseline)

inf
b

e
tt

e
r

Evaluation – Discrete Wavelet Transform

145

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5

SN
R

 (
d

B
)

runtime (normalized to baseline)

inf
b

e
tt

e
r

Evaluation – Discrete Wavelet Transform

146

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5

SN
R

 (
d

B
)

runtime (normalized to baseline)

inf
b

e
tt

e
r

Evaluation – Discrete Wavelet Transform

147

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5

SN
R

 (
d

B
)

runtime (normalized to baseline)

inf
b

e
tt

e
r

Evaluation – Discrete Wavelet Transform

148

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5

SN
R

 (
d

B
)

runtime (normalized to baseline)

inf
b

e
tt

e
r

Evaluation – Summary

149

how acceptable
the output is

how much time
is expended

Conclusion

150

We propose the Anytime Automaton:
 A new computation model for approximate computing.

application execution

quality

precise
output

Conclusion

151

We propose the Anytime Automaton:
 A new computation model for approximate computing.

application execution

quality

holistic quality control:
final output available early

precise
output

Conclusion

152

We propose the Anytime Automaton:
 A new computation model for approximate computing.

application execution

quality
interruptibility:

use current output if needed

precise
output

Conclusion

153

We propose the Anytime Automaton:
 A new computation model for approximate computing.

application execution

quality

precise
output

user flexibility:
wait longer for better quality

Thank you

The Anytime Automaton

Joshua San Miguel

Natalie Enright Jerger

Special thanks to IBM collaborators:
Viji Srinivasan, Ravi Nair, Dan Prener

