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Approximate Computing 

Many applications are inherently noisy and imprecise. 
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Computer vision Audio and video processing 

Gaming Machine learning Dynamical simulation 

But how can we apply approximate 
computing techniques and still ensure 

acceptability in final output? 
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time 
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But final output may 
not be acceptable! 

Difficult to ensure acceptability of final output 
on-the-fly, since quality control limited to local 

approximations and not their composition. 
(Challenge #1: Holistic Quality Control) 

tune local quality tune local quality 



Real-Time Computing 

Real-time systems impose strict runtime constraints; 
loss in output quality more tolerable than not finishing 
in time. 
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    hello_worlds_on_third(); 
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time 

foos_on_first 

bars_on_second 

hello_worlds_on_third 

Difficult to ensure strict real-time constraints are met 
(i.e., interrupt the application), since runtime-quality 

tradeoffs vary dynamically. 
(Challenge #2: Interruptibility) 

But actual runtimes 
variable! 

strict target runtime 



User-Interactive Computing 

In user-interactive environments, users dictate quality 
requirements on-the-fly. 
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Gaming 
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program () 

{ 
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    approx_bars_on_second(); 

    hello_worlds_on_third(); 

} 
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time 

bars_on_second hello_worlds_on_third 

But target quality 
unknown! 

foos_on_first 

tune quality? 

Difficult to ensure acceptability for a given user at a 
given context, since acceptable quality cannot be 

determined a priori. 
(Challenge #3: User Flexibility) 
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We propose the Anytime Automaton: 
 A new computation model for approximate computing. 

 Revisits and generalizes concepts from anytime (or iterative) 
algorithms, originally studied for real-time decision problems. 

 A recipe for applying approximate computing techniques such 
that the final output is available early and improves in quality 
over time. 
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application execution 
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output 

conventionally, 
single output 
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application execution 

quality precise 
output 

holistic quality control: 
final output available early 
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application execution 

quality precise 
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use current output if needed 
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application execution 

quality precise 
output 

user flexibility: 
wait longer for better quality 
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program: 

data dependence 

computation 
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program: 
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program: 
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program: 
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kernel () { 
    ... 
} 

program: 
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produce multiple approx versions of result (i.e., anytime) 

precise version 
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Data Diffusion Model 
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1. Ensure precise output is always produced eventually. 

kernel () { 
    ... 
} 

pure function 
single-writer, 

updates isolated 
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2. Create the effect of improving accuracy over time. 

 

Anytime (or iterative) algorithms have been studied before but 
are traditionally built into the coarse-grained derivation of an 
application. 

 

Approximate computing techniques have proliferated recently 
and have been shown to have general fine-grained applicability. 
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2. Create the effect of improving accuracy over time. 

anytime algorithm? 
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not ready! 
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3. Enable interruptibility via pipelining. 

time 

approx output 
ready! 

computation A 

computation B 

computation C 
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1. General case: apply approximations iteratively. 



Anytime Automaton – The Approximations 

92 

1. General case: apply approximations iteratively. 

quality knob 
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loop perforation smaller perforation stride 

load value approximation lower approximation degree 

neural acceleration higher neural network complexity 

SRAM bit upsets higher supply voltage 

floating-point precision more mantissa bits 

1. General case: apply approximations iteratively. 
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Achieves desired effect of improving quality over time, 
but can yield redundant work. 
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2. Better case: apply diffusive approximations. 

 Each approximation builds on the previous one. 

data dependences 
(each approximate result contributes usefully to precise result) 

data sampling more samples 

integer/fixed-point precision more bits 
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2. Better case: apply diffusive approximations. 

 Input sampling (e.g., generating a distribution) 

commutative 
operation 



Anytime Automaton – The Approximations 

105 

2. Better case: apply diffusive approximations. 

 Input sampling (e.g., generating a distribution) 

To improve quality, no need to reiterate from beginning; 
therefore, diffusive. 

(e.g., just add more samples to current result) 
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2. Better case: apply diffusive approximations. 

 Input sampling (e.g., generating a distribution) 

Minimal redundant work 
since each element processed exactly once. 
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2. Better case: apply diffusive approximations. 

 Output sampling (e.g., generating an image) 
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2. Better case: apply diffusive approximations. 

 Output sampling (e.g., generating an image) 

sequential 
permutation 
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2. Better case: apply diffusive approximations. 

 Output sampling (e.g., generating an image) 

tree 
permutation 
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2. Better case: apply diffusive approximations. 
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 Output sampling (e.g., generating an image) 
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2. Better case: apply diffusive approximations. 

 Integer/fixed-point precision (e.g., dot product) 

[  X  Y  Z  ]  ●  [  10.1101  01.0010  11.0110  ] 



X * 10.1101 Y * 01.0010 Z * 11.0110 
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2. Better case: apply diffusive approximations. 

 Integer/fixed-point precision (e.g., dot product) 

time 

final result 
not ready! 

[  X  Y  Z  ]  ●  [  10.1101  01.0010  11.0110  ] 



X * 10.1101 Y * 01.0010 Z * 11.0110 
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2. Better case: apply diffusive approximations. 

 Integer/fixed-point precision (e.g., dot product) 

time 

[  X  Y  Z  ]  ●  [  10.1101  01.0010  11.0110  ] 



Y * 01.0010 Z * 11.0110 
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2. Better case: apply diffusive approximations. 

 Integer/fixed-point precision (e.g., dot product) 

time 

X * 10 X * 11 X * 01 

MSb LSb 
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2. Better case: apply diffusive approximations. 

 Integer/fixed-point precision (e.g., dot product) 

time 

X * 10 Y * 01 Z * 11 X * 11 Y * 00 Z * 01 X * 01 Y * 10 Z * 10 

MSb LSb 
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2. Better case: apply diffusive approximations. 

 Integer/fixed-point precision (e.g., dot product) 

time 

X * 10 Y * 01 Z * 11 X * 11 Y * 00 Z * 01 X * 01 Y * 10 Z * 10 

MSb LSb 

[  X  Y  Z  ]  ●  [  10.1101  01.0010  11.0110  ] 
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2. Better case: apply diffusive approximations. 

 Integer/fixed-point precision (e.g., dot product) 

time 

X * 10 Y * 01 Z * 11 X * 11 Y * 00 Z * 01 X * 01 Y * 10 Z * 10 

approx result 
ready! 

MSb LSb 

[  X  Y  Z  ]  ●  [  10.1101  01.0010  11.0110  ] 
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More details in paper: 

 Asynchronous/synchronous pipelining 

 Data locality with sampling 

 Approximate storage techniques 

 Thread scheduling 
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Experiments: 

 IBM Power 780 system 
• 4 POWER7+ cores 

• 32 total hardware threads 
 

Applications: 

 PERFECT and AxBench suites 
• 2D convolution (output sampling, reduced precision†, SRAM bit upsets†) 

• debayer (output sampling) 

• discrete wavelet transform (loop perforation) 

• histogram equalization (input and output sampling) 

• k-means clustering (output sampling) 

†see paper 
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