
RC25600 (WAT1604-033) April 13, 2016
Computer Science

Research Division
Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich

IBM Research Report

A Systolic Approach to Deriving Anytime Algorithms
for Approximate Computing

Joshua San Miguel
University of Toronto

Canada

Ravi Nair, Vijayalakshmi Srinivasan, Daniel A. Prener
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598 USA



A Systolic Approach to Deriving Anytime Algorithms for
Approximate Computing

Joshua San Miguel†
University of Toronto

joshua.sanmiguel@mail.utoronto.ca

Vijayalakshmi Srinivasan
IBM T. J. Watson Research Center

viji@us.ibm.com

Ravi Nair
IBM T. J. Watson Research Center

nair@us.ibm.com

Daniel A. Prener
IBM T. J. Watson Research Center

prener@us.ibm.com

ABSTRACT
Approximate computing is an emerging paradigm enabling
tradeoffs between accuracy and efficiency. However, a fun-
damental challenge persists: state-of-the-art techniques lack
the ability to enforce runtime guarantees on accuracy. The
convention is to 1) employ training/rollback mechanisms
which add complexity, or 2) present experimental results that
demonstrate low error, though only empirically/statistically.
We offer a solution that revisits concepts from anytime algo-
rithms. Originally explored for real-time decision problems,
anytime algorithms have the property of producing outputs
with increasing accuracy over time. We propose the Any-
time Automaton, a pipelined computation model that en-
ables anytime approximations via sampling. The automaton
executes applications such that 1) they can be interrupted
while still delivering valid output, and 2) their accuracy in-
creases over time and is guaranteed to eventually reach pre-
cise output. The automaton can be stopped at any point that
the user is satisfied, expending just enough time and energy
for an acceptable output. If the output is not acceptable, it is
a simple matter of letting the application run longer.

1. INTRODUCTION
The rise of approximate computing has garnered much

interest in the architecture community. This paradigm of
trading off accuracy for performance and energy efficiency
continues to inspire novel and creative new approximation
techniques [4, 7, 9, 16, 17, 18]. However, despite the sub-
stantial benefits offered by approximate computing, it has
not yet earned widespread acceptance to merit its adoption
in real processors. This is due to the fundamental chal-
lenge of providing guarantees on error. State-of-the-art ap-
proximate computing techniques are unable to enforce run-
time error bounds and guarantees on accuracy. The con-
ventional approach is to either 1) employ training/rollback
mechanisms to maintain accuracy, or 2) present experimen-
tal results showing that error is empirically/statistically low.
These approaches can be complex and are still insufficient in
†This work was done when this author was at IBM T. J. Watson
Research Center.

guaranteeing acceptable accuracy at runtime.
To address this, we revisit concepts from anytime algo-

rithms [3, 8, 10]. Originally proposed for planning and deci-
sion processes in artificial intelligence, anytime algorithms
uphold two key properties: 1) they can be stopped at any
time while still producing a valid output, and 2) they guar-
antee progressively increasing output quality over time. We
believe that these properties offer a solution to the challenges
of approximate computing.

We propose the Anytime Automaton, a computation
model that enables anytime approximations. The model rep-
resents approximate applications as a pipeline of computa-
tion stages and employs sampling techniques in an anytime
way. We show that this model is able to extract parallelism
even out of sequential computations. Our anytime automa-
ton model allows applications to execute such that they de-
liver intermediate approximate outputs with improving accu-
racy over time, guaranteeing that the precise output is even-
tually reached. In this way, the anytime automaton can be
stopped once the output is deemed acceptably accurate by
the user, expending just the right amount of computation
time and energy. If the output is not yet acceptable, it is
only a simple matter of letting the automaton run longer. We
evaluate the model on PERFECT [2] benchmarks, demon-
strating promising results with runtime-accuracy profiles.

2. BACKGROUND AND MOTIVATION
In this section, we provide background on approximate

computing and anytime algorithms. We discuss the chal-
lenge of providing accuracy guarantees in approximate com-
puting and motivate our solution of providing a model for
anytime approximations.

2.1 Approximate Computing
Approximate computing introduces application output er-

ror/accuracy as an axis in architectural design, trading off
for improved performance and energy efficiency. State-of-
the-art approximate computing techniques have been pro-
posed both in software and hardware. In software, eliding
code/computation can yield acceptable approximations. Ex-
amples include loop perforation [19] and relaxed synchro-



nization [15] (i.e., approximation via lock elision). In hard-
ware, many techniques exploit the physical characteristics
of computation and storage elements. For example, the op-
erating voltages of functional units can be scaled to trade-off
accuracy for performance or power-efficiency [14]. SRAM
caches [5], DRAM [11] and phase-change memories [17]
are also amenable to such physical approximations. Though
these techniques achieve substantial efficiency gains, it can
be difficult to reason about error in the application output.

Some approximate computing techniques provide error
control via informed approximations (i.e., based on previ-
ous precise outputs). Offline training phases inform the con-
figuration of neural accelerators [4, 7, 13, 20]. Value-based
approximations [18, 21] learn from the precise data values
of previous memory accesses. Memoization-based approxi-
mations [1] exploit the recurrence of common computations.
Precision-based approximations [22, 24] make informed ap-
proximations based on bit significance in data types.

Other techniques, such as Rumba [9] and SAGE [16], im-
plement online error control. However, such mechanisms
can introduce considerable overhead and complexity, re-
quiring knowledge of error metrics as well as the source
of error, to isolate troublesome computation/data and re-
execute precisely. Furthermore, online error controllers rely
on statically-defined error metrics, which may not always be
applicable. For example, 10% average error may be visually
acceptable for one set of images but not for others. Error
control is best left to users, since the definition of what is
acceptable can vary from one case to another.

2.2 Anytime Algorithms
An anytime algorithm is an algorithm that produces an

output with progressively increasing accuracy over time.
Anytime algorithms were first explored in terms of time-
dependent planning and decision making [3, 8, 10]. They
are generally studied in the context of artificial intelligence
under real-time constraints, where suboptimal output qual-
ity can be more acceptable than exceeding time limits. Any-
time algorithms can be characterized as either contract or
interruptible algorithms [25]. Contract algorithms make on-
line decisions to schedule their computations to meet a run-
time deadline. Researchers have explored optimal schedul-
ing policies for contract anytime algorithms [6, 23] as well
as the error composition of anytime algorithms [25]. On
the other hand, interruptible algorithms can deliver an output
when stopped (or paused) at any moment. Our work focuses
on interruptible anytime algorithms, which provide stronger
guarantees for real-time and user-interactive applications.

Despite the wealth of research on anytime algorithms,
there is little to no work on its implications to computer ar-
chitecture. The most relevant work explores porting contract
anytime algorithms to GPUs and providing CUDA-enabled
online quality control [12]. Anytime algorithms are able to
offer strong accuracy guarantees. However, such guarantees
are derived at an algorithmic level; the anytime concept is
typically regarded as a property built into algorithms as op-
posed to a general technique that can be employed on appli-
cations. In our work, we integrate the anytime concept to
approximate computing, providing a general model for exe-
cuting applications such that their output accuracy increases

prologue(); 

f(); 

g(); 

h(); 

i(); 

epilogue(); 

f 

i 

g h 

Figure 1: High-level overview of anytime automaton.

with time.

3. THE ANYTIME AUTOMATON
The Anytime Automaton is a computation model that

represents approximate applications as anytime stages. Fig-
ure 1 shows a high-level overview. An approximate ap-
plication is broken down into computation stages with in-
put/output buffers, connected in a directed, acyclic graph.
Sampling techniques (Section 3.1) can then be applied to
stages (where applicable), allowing them to produce any-
time outputs. This allows stages to execute in parallel as
a pipeline (Section 3.2), since they can deliver intermedi-
ate approximate outputs as opposed to just the single pre-
cise output in the end. Data is streamed through the stages,
and each stage produces approximate output that progres-
sively increases in accuracy over time, eventually reaching
the precise output. The anytime automaton can be stopped
(or paused) once the application output is deemed accept-
ably accurate, expending just the right amount of compu-
tation time and energy. The decision of stopping can either
be automated, user-specified (as in interactive computing) or
enforced by time constraints (as in real-time computing). In
all cases, the user can rely on the comfort of knowing that
error eventually diminishes.

An example pipeline is shown in Figure 2. Each of the
four stages f , g, h and i are anytime; in this case, their com-
putations are broken into two parts (e.g., f1 and f2). As soon
as f1, g1, h1 and i1 have executed, an approximate output
O111 is available, and thus the application can already be
stopped here. If the approximate output is not acceptable,
the pipeline can simply continue executing, progressively
improving the output accuracy until the final precise output
O222. In this way, the anytime automaton is able to extract
parallelism out of sequential applications. Whereas g and h
would have to wait for f to finish in the original application,
our model enables f to produce an approximate (but still ac-
ceptable) output so that g and h can already start executing.

To ensure correctness in the model, the following proper-
ties must hold:

1. Each computation stage is idempotent under sequen-
tial composition (i.e., f () applied twice on I yields the
same end result).

2. Computation stages do not communicate via any
global variables.

3. Each output buffer has exactly one writer stage.
4. Updates to output buffers are atomic.



g1 g2 g1 g2 

f1 f2 

i1 i2 i1 i2 i1 i2 i1 i2 

h1 h2 h1 h2 

time O111 O112 O121 O122 O211 O212 O221 O222 

Figure 2: Parallel pipeline of anytime automaton.

3.1 Anytime Approximations via Sampling
In this section, we show how to sample the input and out-

put data sets of a computation stage to generate anytime
approximations. Specifically, instead of waiting to process
all elements in a data set before delivering the final output,
sampling recognizes that the intermediate output (of the ele-
ments processed so far) can serve as an acceptable approxi-
mation.

A computation stage f with input I and output O can be
represented as:

f (I)→ O

We say that f is an anytime computation stage if it can be
represented as a set of intermediate computations f1, ..., fn
executed sequentially, where each fi operates on progres-
sively larger samples of the input/output data:

f1(I,O0), ..., fn(I,On−1)→ O

O0 is the initial value in the output buffer. Since each fi pro-
cesses progressively larger samples, Oi generally improves
on the accuracy of Oi−1, eventually reaching the precise out-
put On = O. In the simple example in Figure 2, f , g, h and
i are all anytime stages with n = 2. Section 3.1.1 discusses
input sampling, which is well-suited to reductions on input
I, and Section 3.1.2 discusses output sampling, which is
well-suited to map operations on output O.

3.1.1 Input Sampling
Input sampling enables anytime approximations for re-

duction computations. Reductions process elements in the
input set and accumulate values in the output buffer. Intu-
itively, performing the reduction on only a sample of the
input set can yield acceptable approximations of the final
accumulated output.

Reductions are most commonly performed using com-
mutative operators. Examples include computing a sum,
searching for an element or building a histogram. A com-
putation stage f is commutative if it can be represented as:

∀ i, fi(I,Oi−1) = Oi−1 4 xi(I)

where 4 is some commutative operation and x1, ...,xn are
computations independent of O.

Figure 3 shows an example of anytime histogram con-
struction using input sampling; 4 is the addition operator.
As more input elements are processed over time, the ap-
proximate histogram approaches the precise output. In this
example, sampling is performed with a pseudo-random per-
mutation; we discuss various permutation functions and their
suitability for different applications in Section 3.1.3).

ti
m

e 

Figure 3: Example of input sampling with a pseudo-random
permutation for anytime histogram construction.

3.1.2 Output Sampling
Whereas input sampling is applicable to reductions, out-

put sampling is well-suited for map operations. We gener-
alize map operations to computations that generate a set of
distinct output elements, each of which are computed from
some element(s) in the input set:

∀ i, fi(I,Oi−1) = Oi−1, Oi[i] = xm(i)(I)

where m(i) is some mapping of input elements to the output
element at index i. In this case, the commutative operation is
a union of disjoint sets: Oi−1∪Xm(i). Output sampling is ap-
plicable to common map computations. Examples include
generating pixels of an image, processing lists of indepen-
dent items or simulating the movement of particles.

3.1.3 Sampling Permutations
For a commutative stage f , the final precise output can be

computed from any sequential ordering of x1, ...,xn. Thus
the order can be permuted to better suit the type of computa-
tion. In the histogram construction example (Figure 3), ac-
cessing the elements in their sequential memory order may
result in biased approximate outputs (i.e., biased towards the
first elements in memory order). To avoid such bias, a uni-
form random permutation is more suitable as shown in the
figure.

Applying a permutation to f yields:

∀ i, fi(I,Oi−1) = Oi−1 4 xp(i)(I)

for input sampling and:

∀ i, fi(I,Oi−1) = Oi−1, Oi[p(i)] = xm(p(i))(I)

for output sampling, where p(i) is the permutation function
and is bijective (i.e., a one-to-one and onto mapping of i). As
long as p is bijective, the precise output is guaranteed since
all xi computations are still performed exactly once.

Depending on the computation, some permutations may
be more suitable than others. In general, we find that
the three most common permutations are sequential (for
priority-ordered data sets), tree (for ordered data sets without
priority) and pseudo-random (for unordered data sets).
Sequential Permutation. The default permutation is se-
quential, where elements are accessed in memory order (i.e.,
ascending index i). This can be expressed simply as p(i) = i
or p(i) = n+ 1− i, for i ∈ [1...n]. Sequential sampling is



20 elements 

21 elements 

22 elements 

23 elements 

24 elements 

Figure 4: One-dimensional tree sampling permutation ex-
ample. This shows which indices have been accessed after
20, ...,24 elements are processed.

well-suited for data sets that are ordered based on ascend-
ing/descending priority or significance to the final output.
Examples include priority queues or bitwise operations.
Tree Permutation. For some computation stages, elements
in data sets are not prioritized but are still ordered; the po-
sitions of elements are significant to the computation. Ex-
amples include image pixels or functions of time (e.g., audio
wave signal, video frames). We find that an N-dimensional
bit-reverse (or tree) permutation is well-suited for sampling
these data sets. With a tree permutation, the data set is effec-
tively accessed at progressively increasing resolutions. For
example, sampling pixels in a tree permutation implies that
after 4 pixels have been processed, a 2×2 image is sampled.
After 16 pixels, a 4×4 image is sampled, and so on. This is
visualized and discussed later in Figure 5.

The tree permutation accesses elements in bit-reverse or-
der along each of N dimensions, interleaving between di-
mensions. Thus p(i) is simply a permutation of the bits
of index i. For example, the tree permutation for a one-
dimensional set of 16 elements can be expressed as:

p : b3b2b1b0 → b0b1b2b3

where b j is the jth bit of the set index i. This is shown in Fig-
ure 4. Elements are accessed in the form of a perfect 2N-ary
tree, where N = 1. This produces samples with progressively
increasing resolution along one dimension. Note that since
the tree permutation is a one-to-one correspondence of bits
in the set index, p is a bijective function.

Figure 5 shows an example of the tree permutation on a
two-dimensional data set (e.g., image pixels). For 8×8 ele-
ments, the permutation function p can be expressed as:

p : b5b4b3 b2b1b0 → b5b3b1 b4b2b0 → b1b3b5 b0b2b4

where b5b4b3 is the original row index and b2b1b0 is the
original column index. First, the set index is deinterleaved to
produce new row and column indices. Then the new row and
column indices are each reversed. As before, elements are
accessed in the form of a perfect 2N-ary tree, where N = 2.
This produces samples with progressively increasing two-
dimensional resolution.
Pseudo-Random Permutation. When the data set is un-
ordered, to avoid bias in the memory ordering of elements,
we find that a pseudo-random permutation is most suitable.
Examples include simulated annealing, k-means clustering
or histogram construction (Figure 3). A true random permu-
tation would be ideal; however, the permutation function p
would not be bijective (i.e., we would not be able to guar-

21 x 21 elements 

22 x 22 elements 

23 x 23 elements 

20 x 20 elements 

Figure 5: Two-dimensional tree sampling permutation ex-
ample. This shows which indices have been accessed after
20, ...,26 elements are processed.

antee that all elements are processed exactly once). For a
pseudo-random permutation, p can be computed using any
deterministic pseudo-random number generator. In our ex-
periments, we use a linear-feedback shift register (LFSR),
which is very simple to implement in hardware.

3.2 Anytime Pipeline
The anytime automaton is able to extract more parallelism

out of applications. Consider the example in Figure 1. In the
original application, computation i is dependent on g and h,
which are both dependent on f . These dependences enforce
that the computations execute sequentially, as is written in
the example code. However, by building the pipeline, the
automaton model allows all computations to run in parallel.
Figure 2 takes a closer look. By recognizing that f can be
broken down into f1 and f2, our model is able to provide an
intermediate (but still acceptable) output of f . This allows g
and h to begin executing without having to wait for all of f
to finish.

This section discusses how to compose anytime (and non-
anytime) stages into a pipeline. Without loss of generality,
we limit the discussion to two computation stages:

f (I)→ F g(F)→ G

where g is dependent on f . If f is an anytime computation,
then g can be computed on any or all intermediate Fi outputs
such that:

g(F1), ...,g(Fn)→ G

where g(Fi) → GFi. At any point in time, g processes
whichever output Fi happens to be in the buffer. Both stages
can simply execute concurrently and independently of each
other; no synchronization between them is necessary to en-
sure correctness. The only requirement is that g is eventually
computed on Fn = F to produce the precise output GFn = G.
This implies that the precise output is always reachable.

These stages form a parallel pipeline since any fi can ex-
ecute in parallel to any g(Fj) where j < i. An example
is shown in Figure 6. The outputs of f flow through the
pipeline, producing final outputs O1, ...,On with progres-
sively increasing accuracy. At any point in time, g simply



f g h O1 
h(g(F1)) g(F2) F3 

I 

f g h O2 
h(g(F2)) g(F3) F4 

I 

f g h O3 
h(g(F3)) g(F4) F5 

I 
ti

m
e 

f g h On 
h(g(Fn)) g(Fn) Fn 

I 

Figure 6: Anytime pipeline example.

processes the most recent available output of f . As a re-
sult, though f , g and h may be sequentially dependent in the
original application, the automaton allows them to execute
in parallel.

If g is also an anytime computation, then each g(Fi) can
be represented as:

g1(Fi,GFi,0), ...,gm(Fi,GFi,n−1)→ GFi

where GF1,0 = ...=GFn,0 =G0, and g j(Fi,GFi, j−1)→GFi, j.
As before, the precise output GFn is guaranteed since all
computations g1, ...,gm eventually execute on Fn.

4. METHODOLOGY
We perform our evaluation of anytime automata on real

machines, demonstrating attractive runtime-accuracy trade-
offs even without specialized hardware. We run experiments
on IBM Power 780 (9179-MHD) machines. We use two
nodes with four 4.42 GHz POWER7+ cores each, with four-
way hyper-threading per core, yielding 32 hardware threads
in total. The system consists of 256 KB of L2 cache and
10 MB of L3 (eDRAM) cache per core. All benchmarks are
parallelized (both in the baseline precise execution and in
the anytime automaton execution) to fully utilize the avail-
able hardware threads.

We evaluate our anytime automaton model on bench-
marks from PERFECT [2], a suite containing a variety of
kernels for embedded computing. We use large image input
sets and measure accuracy in terms of the signal-to-noise ra-
tio (SNR) of the approximate output relative to the baseline
precise output. We focus on three approximate benchmarks
that are widely used, are applicable to real-time computing
and have visualizable outputs.
2dconv. 2D convolution applies a convolutional kernel to
spatially filter an image; in our case, a blur filter is applied.
This is common in computer vision and machine learning.
The benchmark is simple in structure, yielding a single-stage
anytime automaton. We employ output sampling with a tree
permutation in generating the filtered image.
histeq. Histogram equalization enhances the contrast of
an image using a histogram of image intensities. This is
common in satellite and x-ray imaging. We construct an au-
tomaton with four computation stages in the pipeline. The
first stage builds a histogram of pixel values using anytime
pseudo-random input sampling, similar to the example in
Figure 3. The second and third stages are not anytime;
they construct a normalized cumulative distribution function
from the histogram. The fourth stage generates the high-
contrast image using tree-based output sampling.

0

5

10

15

20

25

30

35

40

0 0.5 1 1.5 2

SN
R

 (
d

B
) 

runtime (normalized to baseline) 

Figure 7: Runtime-accuracy of 2dconv anytime automaton.
The vertical line indicates an SNR of infinity.

0

5

10

15

20

0 0.5 1 1.5

SN
R

 (
d

B
) 

runtime (normalized to baseline) 

Figure 8: Runtime-accuracy of histeq anytime automaton.

debayer. This benchmark converts a Bayer filter image
from a single sensor to a full RGB image, common in image
sensors for security cameras and x-ray imaging. The compu-
tation performs simple interpolations; we use a single-stage
automaton with tree-based output sampling.

5. EVALUATION
In this section, we present the performance-accuracy

tradeoffs of our anytime automata. The runtime-accuracy
results are shown in Figures 7 (2dconv), 8 (histeq) and 9
(debayer). These plots are generated from multiple runs,
executing each automaton and halting it after some time to
evaluate its output accuracy. The x-axis is the runtime of the
automaton normalized to the baseline precise execution. The
y-axis is our accuracy metric SNR in decibels. We later show
example image outputs to relate SNR to image quality. The
vertical line indicates the point where SNR reaches infinity
(precise output). This is shown for all benchmarks except
for histeq, where precise output is reached at 6× the runtime
of the baseline; this is high due to non-anytime computa-
tions as discussed later. From our runtime-accuracy results,
our model maintains the universal and most important trend
in that accuracy increases over time and eventually reaches
precise output. Though the rate of increase varies among
benchmarks, this trend is maintained.

As shown in Figures 7 and 9, 2dconv and debayer bene-
fit greatly from the anytime automaton model. At only 21%
of the baseline runtime, 2dconv is able to produce an output
with an SNR of 15.8 dB, which may be acceptable in certain
use cases. The outputs are visualized in Figures 10 and 12
for 2dconv and debayer respectively, comparing against the
baseline precise output. The benchmarks are able to achieve
high accuracy at low runtimes because their computations
are well-suited for sampling and their pipelines are simple.
Despite the good results, neither 2dconv nor debayer reach
precise output as early as the baseline execution. This is pri-



0

2

4

6

8

10

12

14

16

18

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

SN
R

 (
d

B
) 

runtime (normalized to baseline) 

Figure 9: Runtime-accuracy of debayer anytime automaton.
The vertical line indicates an SNR of infinity.

(a) 21% runtime, SNR 15.8dB

(b) baseline precise

Figure 10: Output of 2dconv anytime automaton.

(a) 66% runtime, SNR 14.6dB

(b) baseline precise

Figure 11: Output of histeq anytime automaton.

marily due to poor cache locality from non-sequential sam-
pling permutations. This can be alleviated via architectural
optimizations, which we leave for future work.

(a) 21% runtime, SNR 12.0dB (b) baseline precise

Figure 12: Output of debayer anytime automaton.

As shown in Figure 8, histeq does not perform as well
as 2dconv and debayer. This is due to the presence of non-
anytime stages. Non-anytime stages are common for per-
forming small (typically sequential) tasks such as normaliz-
ing data structures and reducing thread-privatized data. De-
spite this, histeq is able to produce outputs of acceptable
quality (in certain cases) at only 66% of the baseline run-
time, visualized in Figure 11. Note also that though some
computation stages are not anytime in our design, it may still
be possible to make them anytime using other methods. This
motivates future research avenues in wider design space ex-
ploration of anytime automata and new anytime approximate
computing techniques.

6. CONCLUSION
We propose the Anytime Automaton, a novel computa-

tion model that represents an approximate application as a
parallel pipeline of computation stages with anytime sam-
pling. This allows the application to execute such that 1) it
can be interrupted at any time while still producing a valid
approximate output, and 2) its output quality is guaranteed
to increase over time and approach the precise output. This
addresses the fundamental drawbacks of state-of-the-art ap-
proximate computing techniques: 1) they do not provide any
accuracy guarantees at runtime, and 2) they require com-
plex rollback or training mechanisms to control the trade-off
between accuracy and performance/energy. With the any-
time automaton model, the application can be stopped at any
point that the user is satisfied, expending just enough time
and energy for an acceptable output. If the output is not ac-
ceptable, it is a simple matter of letting the application run
longer.

7. REFERENCES
[1] C. Alvarez, J. Corbal, and M. Valero, “Fuzzy memoization for

floating-point multimedia applications,” IEEE Transactions on
Computers, 2005.

[2] K. Barker, T. Benson, D. Campbell, D. Ediger, R. Gioiosa, A. Hoisie,
D. Kerbyson, J. Manzano, A. Marquez, L. Song, N. Tallent, and
A. Tumeo, PERFECT (Power Efficiency Revolution For Embedded
Computing Technologies) Benchmark Suite Manual, Pacific
Northwest National Laboratory and Georgia Tech Research Institute,
December 2013, http://hpc.pnnl.gov/projects/PERFECT/.

[3] T. L. Dean and M. Boddy, “An analysis of time-dependent planning,”
in Proceedings of the National Conference on Artificial Intelligence,
1988.

http://hpc.pnnl.gov/projects/PERFECT/


[4] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural
acceleration for general-purpose approximate programs,” in Proc.
Int. Symp. Microarchitecture, 2012.

[5] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge,
“Drowsy caches: simple techniques for reducing leakage power,” in
Proc. Int. Symp. Computer Architecture, 2002.

[6] A. Garvey and V. Lesser, “Design-to-time real-time scheduling,”
IEEE Transactions on Systems, Man and Cybernetics, 1993.

[7] B. Grigorian, N. Farahpour, and G. Reinman, “BRAINIAC: Bringing
reliable accuracy into neurally-implemented approximate
computing,” in Proc. Int. Symp. High-Performance Computer
Architecture, 2015.

[8] E. J. Horvitz, “Reasoning about beliefs and actions under
computational resource constraints,” in Workshop on Uncertainty in
Artificial Intelligence, 1987.

[9] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke, “Rumba: An
Online Quality Management System for Approximate Computing,”
in Proc. Int. Symp. Computer Architecture, 2015.

[10] V. Lesser, J. Pavlin, and E. Durfee, “Approximate processing in
real-time problem-solving,” AI Magazine, vol. 9, no. 1, pp. 49–61,
1988.

[11] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker:
saving DRAM refresh-power through critical data partitioning,” in
Int. Conf. Architectural Support for Programming Languages and
Operating Systems, 2011.

[12] R. Mangharam and A. A. Saba, “Anytime Algorithms for GPU
Architectures,” in Proceedings of the Real-Time Systems Symposium,
2011.

[13] T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh,
L. Ceze, and M. Oskin, “SNNAP: Approximate Computing on
Programmable SoCs via Neural Acceleration,” in Proc. Int. Symp.
High-Performance Computer Architecture, 2015.

[14] S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones, “Scalable
stochastic processors,” in Proceedings of the Conference on Design
Automation and Test in Europe, 2010.

[15] L. Renganarayana, V. Srinivasan, R. Nair, and D. Prener,
“Programming with relaxed synchronization,” in Proc. Workshop on
Relaxing Synchronization for Multicore and Manycore Scalability,
2012.

[16] M. Samadi, J. Lee, D. Jamshidi, A. Hormati, and S. Mahlke, “SAGE:
Self-tuning approximation for graphics engines,” in Proc. of the Int.
Symp. on Microarchitecture, 2013.

[17] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate
storage in solid-state memories,” in Proc. Int. Symp.
Microarchitecture, 2013.

[18] J. San Miguel, M. Badr, and N. Enright Jerger, “Load value
approximation,” in International Symposium on Microarchitecture,
2014.

[19] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop
perforation,” in Proc. of the 19th ACM SIGSOFT Symposium and the
13th European Conf. on Foundations of software engineering, 2011,
pp. 124–134.

[20] R. St. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites,
H. Esmaeilzadeh, A. Hassibi, L. Ceze, and D. Burger,
“General-purpose code acceleration with limited-precision analog
computation,” in Proc. of the Int. Symp. on Computer Architecture,
2014.

[21] M. Sutherland, J. San Miguel, and N. Enright Jerger, “Texture cache
approximation on gpus,” in Workshop on Approximate Computing
Across the Stack, 2015.

[22] J. Y. F. Tong, D. Nagle, and R. A. Rutenbar, “Reducing power by
optimizing the necessary precision/range of floating-point
arithmetic,” IEEE Transactions on VLSI Systems, 2000.

[23] J. W. S. L. W-K. Shih and J.-Y. Chung, “Fast algorithms for
scheduling imprecise computations,” in Proceedings of the Real-Time
Systems Symposium, 1989.

[24] T. Yeh, P. Faloutsos, S. Patel, M. Ercegovac, and G. Reinman, “The
art of deception: Adaptive precision reduction for area efficient
physics acceleration,” in Int. Symp. on Microarchitecture, Dec 2007.

[25] S. Zilberstein, “Operational Rationality through Compilation of
Anytime Algorithms,” Ph.D. dissertation, Technion - Israel Institute
of Technology, 1982.


	Introduction
	Background and Motivation
	Approximate Computing
	Anytime Algorithms

	The Anytime Automaton
	Anytime Approximations via Sampling
	Input Sampling
	Output Sampling
	Sampling Permutations

	Anytime Pipeline

	Methodology
	Evaluation
	Conclusion
	References

