The Runahead Network-On-Chip

Zimo Li
University of Toronto
zimo.li@mail.utoronto.ca

ABSTRACT

With increasing core counts and higher memory de-
mands from applications, it is imperative that networks-
on-chip (NoCs) provide low-latency, power-efficient
communication. Conventional NoCs tend to be over-
provisioned for worst-case bandwidth demands leading
to ineffective use of network resources and significant
power inefficiency; average channel utilization is typi-
cally less than 5% in real-world applications. In terms
of performance, low-latency techniques often introduce
power and area overheads and incur significant com-
plexity in the router microarchitecture. We find that
both low latency and power efficiency are possible by
relaxing the constraint of lossless communication. This
is inspired from internetworking where best effort deliv-
ery is commonplace. We propose the Runahead NoC),
a lightweight, lossy network that provides single-cycle
hops. Allowing for lossy delivery enables an extremely
simple bufferless router microarchitecture that performs
routing and arbitration within the same cycle as link
traversal. The Runahead NoC operates either as a
power-saver that is integrated into an existing conven-
tional NoC to improve power efficiency, or as an accel-
erator that is added on top to provide ultra-low latency
communication for select packets. On a range of PAR-
SEC and SPLASH-2 workloads, we find that the Runa-
head NoC reduces power consumption by 1.81x as a
power-saver and improves runtime and packet latency
by 1.08x and 1.66x as an accelerator.

1. INTRODUCTION

With increasing on-chip core counts, networks-on-
chip (NoCs) are an effective way of communicating be-
tween these many components. However, NoCs con-
sume a significant amount of power in modern chip
multiprocessors (CMPs) [26,42], and energy efficiency
has been a primary concern for researchers and design-
ers [10,11]. Reducing the power of the NoC while in-
creasing performance is essential for scaling up to larger
systems for future CMP designs.

Minimizing power consumption requires more effi-
cient use of network resources. Though buffers consume
a significant portion of network power and area [26], tra-
ditional NoC designs tend to provision large amounts
of buffers to meet worst-case throughput requirements.
Yet large buffers are often unnecessary as single-flit

978-1-4673-9211-2/16/$31.00 (©2016 IEEE

Joshua San Miguel
University of Toronto
joshua.sanmiguel@mail.utoronto.ca

Natalie Enright Jerger
University of Toronto
enright@ece.utoronto.ca

packets represent a high fraction of the total network
traffic in real applications [33]. Several bufferless NoC
designs have been proposed in the past [18,23, 35, 37].
These designs achieve significant power savings at a
cost of lower saturation throughput compared to con-
ventional buffered routers. NoC channel utilization
of single-threaded and multi-threaded CMP workloads
tends to be low, with average injection rates of only
5% [5,22,25]. Low resource utilization translates into
inefficient use of network resources. To address this,
several multi-NoC systems have been proposed in the
past [1,16,17,19,39,40,44]. Multi-NoCs use total band-
width more efficiently since they can be designed with
heterogeneous physical subnetworks; messages can be
categorized and injected into different networks depend-
ing on packet type. For example, latency sensitive mes-
sages are injected into a low-latency, high-power net-
work, while non-critical messages are injected into a
low-power network [1,40].

Minimizing NoC latency is essential to meet the
higher communication demands of future CMPs. Tech-
niques include reducing the number of router pipeline
stages through lookahead routing [20] and bypassing via
express virtual channels [31]. Non-speculative single-
cycle routers allocate router switches in advance of
packet arrival [30]. Route predictions can also reduce
NoC latency [24,34]. Though these designs improve per-
formance, they come at a cost of increased complexity,
power and area.

We propose the Runahead NoC* which serves as 1) a
power-saver that exploits heterogenous traffic for more
efficient use of network resources, or 2) an accelerator
that provides lightweight, low-latency communication
on top of a conventional NoC. The Runahead NoC is
designed for simplicity; it is bufferless with a lightweight
router architecture which consumes very little area and
power. To accomplish this simplicity, the Runahead
NoC is lossy, allowing packets to be dropped in the
presence of contention. It is inspired by the “best ef-

!The proposed network allows select packets to take a head
start compared to the rest of the network traffic, hence the
name Runahead. The name for our network is also inspired
by runahead execution [38] which allows the processor to
speculatively prefetch loads from the instruction window to
tolerate long latency operations. The Runahed NoC is an
orthogonal design that could be easily combined with pro-
cessor optimizations such as runahead execution.

fort” concept in internetworking, meaning that there is
no guarantee a packet will arrive at its destination.?
Our design is not meant to be a stand-alone network; it
is meant as a plug-and-play network that either replaces
resources in an existing NoC to save power or is added
on top as an accelerator.

Contributions. We make the following contributions:

e Propose the Runahead NoC, which through its
simplicity, provides single-cycle hops and “best ef-
fort” delivery for latency-sensitive packets;

e Evaluate the Runahead NoC as a power-saver and
show that it achieves 1.81x and 1.73x savings in
power and active silicon area while still providing
1.33x lower latency (1.05x application speedup);

e Fvaluate the Runahead NoC as an accelerator and
show that it improves packet latency by 1.66x
on average (1.08x application speedup), with only
10% and 16% overheads in power and active area.

2. THE RUNAHEAD NETWORK

In this section, we present our Runahead NoC archi-
tecture which is lightweight, lossy, and achieves a single-
cycle per-hop latency. It must be paired with a regular
lossless NoC to provide guaranteed delivery of all pack-
ets. The Runahead NoC can be 1) added to a regular
NoC as an accelerator, providing low-latency transmis-
sion of latency-sensitive packets, or 2) integrated into
a regular NoC as a power-saver, providing power and
area savings without harming performance.

As an Accelerator: When used as an accelerator,
the configuration of the existing regular NoC is left un-
changed and its operation is undisturbed. All packets
are injected into the regular NoC, while only latency-
sensitive single-flit packets are injected into the Runa-
head NoC. Multi-flit packets are excluded to minimize
the complexity when one or more flits of a packet are
dropped. The Runahead network carries all coherence
control packets, which are typically single flit. It also
carries single-flit data response packets. These packets
are sent in response to a cache miss and only contain
the critical word (i.e., the initially requested word) of
the data block. This is described in Section 2.3. Since
the regular NoC is lossless, any packets dropped by the
Runahead NoC will still arrive at their destination. The
goal of the accelerator is to provide an opportunity for
ultra-fast delivery of latency-sensitive packets while in-
curring low power and area overheads.

As a Power-Saver: When used as a power-saver,
the existing regular NoC is under-provisioned to allow
for the integration of the Runahead NoC. As in the ac-
celerator case, the Runahead NoC only carries latency-
sensitive single-flit packets. The regular NoC still car-
ries all packets to guarantee delivery of any packets that
may be dropped. In our experiments, we assume a reg-
ular multi-NoC system and replace one of the subnet-
works with our Runahead NoC. The Runahead network

2In contrast, "best effort” in NoC literature usually means
that there is no guarantee on bandwidth and latency. Best
effort NoCs have been explored in the context of quality of
service [2,32,43].

consumes very little power and area. This is because
it is bufferless and consists of a simplified router ar-
chitecture with no routing tables nor complex arbiters.
Despite the increased congestion in the smaller regular
NoC, overall application performance is unharmed since
latency-sensitive packets are transfered quickly. The
goal of the power-saver is to minimize area and power
consumption while maintaining comparable or better
performance.

Overview. In the following sections, we first give a
high-level overview of our Runahead router architecture
(Section 2.1). We then describe how routing computa-
tion and port arbitration are performed (Section 2.2),
enabling the single-cycle per-hop latency. Finally, we
discuss critical word forwarding for data response pack-
ets (Section 2.3) and how to integrate our Runahead
NoC with the regular NoC (Section 2.4).

2.1 The Runahead Routers

To achieve single-cycle hops and ensure low area and
power consumption, the routers in the Runahead net-
work need to be simple. In this work, we target a 2D
mesh, which is commonplace in modern systems (e.g.,
Tilera [45] and Intel Terascale [26]). Figure 1 illustrates
the design of the Runahead router. It consists of five
multiplexers: one for each of the output ports of the four
cardinal directions and one for the ejection port. The
Runahead routers share the same injection port as the
routers in the regular network. Runahead routers are
bufferless. Only four latches are needed to store up to
four single-flit packets that may come in from the input
ports of the 4 cardinal directions at any cycle. Injected
packets are stored in the input buffer in the regular
router. Header information is extracted from incoming
packets at the input ports and directed to the routing
computation and port arbitration unit. For clarity, data
connections are not shown in the figure.

Lossy Delivery. Our Runahead routers use XY
dimension-order routing (DOR), which greatly simpli-
fies routing and arbitration. Port arbitration directs
packets from input ports to their corresponding out-
put ports and determines which packets to drop in the
event of a conflict. The Runahead router does not col-
lect dropped packets, and the Runahead NoC does not
try to forward them again. This is different from prior
work, such as SCARAB [23] and BPS [21], where a
NACK is sent to the source for packet re-transmission.
In the Runahead NoC, the dropped packet will always
be delivered by the lossless regular NoC. The Runa-
head NoC is inherently deadlock-free since packets are
dropped instead of blocked upon conflicts. This elimi-
nates the need for complex deadlock prevention mech-
anisms. Section 2.2 describes the routing computation
and port arbitration.

Single-Cycle Hops. Unlike conventional virtual-
channel routers with 3 to 5 pipeline stages, the Runa-
head router delivers packets in a single cycle per hop.
Route computation, port arbitration and link traver-
sal are all combined into a single step. The Runahead
routers are hardcoded for XY DOR; no routing tables

\ Legend:

Route Computation & Port
w Arbitration E

E
i

Figure 1: Runahead router design

are necessary. The output port of an incoming packet is
quickly determined from the destination information in
the header. By allowing for dropped packets, the Runa-
head router greatly simplifies port arbitration. Our de-
sign uses a fixed arbitration scheme where the prior-
ity of incoming packets is static for each output port.
Specifically, our port arbitration scheme always priori-
tizes packets going straight over packets turning. Thus
the logic that controls the output port multiplexers is
very simple, allowing the entire process to fit within one
cycle. Since all hops are single cycle, the latency of a
packet is fully deterministic from source to destination,
assuming it is not dropped along the way. The latency
in cycles is equal to the number of hops travelled. Be-
cause of this, it is impossible for a packet to arrive on
the regular NoC earlier than on the Runahead network.
Single-Flit Packets. Since there are no buffers, the
Runahead router does not have virtual channels, just
a single physical channel per output port. Handling
multi-flit packets introduces too much complexity in the
Runahead NoC since at any moment, any flit can be
dropped. As a result, a multi-flit packet could arrive
at its destination with some missing flits. We would
need additional complexity at the cache controllers and
memory controllers to support incomplete data packets.
Thus, to minimize overheads and complexity, our design
only supports single-flit packets.

2.2 Route Computation and Port Arbitration

Route computation and port arbitration are per-
formed together to allow packets to traverse each hop in
a single cycle. The destination is encoded in the header
as signed X and Y values that indicate the relative num-
ber of hops remaining until the destination. The sign
indicates the direction of travel. Route computation is
a simple matter of determining the correct output port
based on these values.

We employ a fixed arbitration scheme for each out-

put port. A packet that is going straight has higher
priority than a packet that is turning. If packets from
two different input ports are turning towards the same
output port, one of the input ports is hardcoded to al-
ways take precedence. For example, if both the east
and west input ports are contending for the north port,
the arbitration always selects the west port. Similarly,
for the ejection port, arbitration is hardcoded such that
specific input ports always win. This minimizes com-
plexity and allows us to combine the route computation
and port arbitration steps into a single cycle.

With XY DOR routing, our fixed arbitration scheme
yields only three places where a packet can be dropped:
1) At injection, 2) When the packet is making a turn
from the X to Y direction, or 3) At ejection when a rout-
ing conflict occurs at the ejection port. This applies to
all packets no matter how far they are traveling. Thus
the number of places where a packet can be dropped is
constant and does not scale with network size.

The route computation and port arbitration unit is
shown in Figure 2. The inputs are obtained from the
header information of the incoming packets at each in-
put port. The required signals from each input packet
are denoted by Xdirectiona Ydirectiony Vdirection7 which
correspond to the destination X and Y values and a
valid bit; the valid bit indicates that there exists a valid
packet waiting at the input port. The figure shows the
logic for different output ports. In parallel with route
computation and port arbitration, the X or Y value in
the packet header is updated for the next hop.

East and West Output: The advantage of using
XY DOR is that it simplifies east and west routing and
arbitration, as shown in Figure 2a. The east and west
direction output ports only need to consider the latches
of their opposing input ports, as well as the injection
port. Anytime a packet arrives at either the east or west
input port with a non-zero X value, it is guaranteed to
be forwarded straight since it has the highest priority
in our fixed arbitration scheme. It is impossible for a
packet to turn on to either the E or W directions. It
is also impossible for a packet to be forwarded back to
the direction from which it arrived.

North and South Output: Routing and arbitra-
tion are more complicated for the north and south out-
put ports since they need to consider packets that are
turning. Figure 2b shows that arbitration is hardcoded
such that the outermost multiplexer always chooses the
opposing input port if there is a valid incoming packet;
this enforces our straight-first arbitration. The logic
for this only needs to look at the header’s Y value to
check that the packet has not reached its destination. If
there is no valid packet at the opposing input port, the
fixed arbitration scheme first checks to see if the west
input port is turning, followed by the east input port,
and finally the injection port. In our implementation, a
packet at the west input port always takes precedence
over a packet at the east port when both of them are
trying to turn to the same output port. A packet at the
east or west input port is determined to be turning if it
contains a zero X value with a non-zero Y value. Note

East Input
VE XE YE
Packet

West Input

v,

Packet

| Vig && X,y 1=0 |

East Output

BN

Injection

v

Packet

(a)

West Output

East Input
Ve [Xe [Ye
Packet

West Input

South Output

Vw XW YW
Packet

North Input
Vo [X [
Packet =
South Input

Vs

Packet

v,
Packet
(b) Structure for N and S output

North Output

East Input
VE [XE ‘ YE
Packet

West Input

Vw l xW [YW

Packet
Ejection
North Input
Ve X Y
Packet
South Input
Vs [Xs IYS
Packet ™
Injection
[N

(c) Structure for Ejection

Figure 2: Route computation and port arbitration.

that a packet traverses at most three 2-to-1 multiplex-
ers from its input port to its output port, keeping the
critical path delay low.

Ejection Output: The ejection port, shown in Fig-
ure 2c, is similar to that of the north and south output

ports. Incoming packets are ranked based on the follow-
ing order of input ports: N, S, W, E. As with the north
and south output ports, an ejecting packet traverses at
most three multiplexers. To determine if a packet is
destined for the ejection port, both the X and Y values
need to be zero. A packet can never be injected with the
same source and destination nodes, thus eliminating the
need to connect the ejection port to the injection port.
Starvation and Fairness. Hardcoding arbitration
leads to some potential unfairness or starvation. How-
ever, since all data injected into the Runahead NoC
is also injected into the regular NoC, forward progress
for the application is guaranteed. Our port arbitration
scheme is stateless. There is no mechanism to detect
and prevent starvation. For example, when arbitrating
for the north output port, packets at the south input
port will always take precedence over those at the east
and west input ports even if it means the packets at
these two ports are always dropped. This keeps com-
plexity at a minimum, allowing for low overhead and
ensuring that the design fits within a single clock pe-
riod. The goal of the Runahead network is not to pro-
vide fair communication because the regular NoC would
already provide such a platform. In Section 4, we eval-
uate unfairness; in practice, arrival rates are relatively
uniform across all source nodes. Due to low contention
in these networks, packets are often delivered success-
fully, mitigating any concerns about fairness. Without
mechanisms to prevent starvation and ensure fairness,
the Runahead NoC has less overhead once it is com-
bined with a regular NoC.

2.3 Critical Word Forwarding

The Runahead network is meant to carry only
latency-sensitive packets. In a cache-coherent CMP, all
control packets (i.e., requests, invalidations, acknowl-
edgements) and data response packets are latency-
sensitive. However, the Runahead network is designed
for single-flit packets to avoid the complexity of dropped
flits in multi-flit packets. As a result, data response
packets cannot be carried on the Runahead network.
Fortunately, 67% of the critical words are the first word
in a cache block in real applications [12]. Also, many
modern CMPs can support critical word forwarding.
When composing the data response packet, the initially
requested (critical) word is sent in the first flit. This
way, when the first flit arrives at the L1 cache, the
critical word is forwarded directly to the processor so
that it can continue executing before the rest of the
packet has arrived. Naturally, the critical word is the
most latency-sensitive word in the data block. Thus in
our implementation, we assume critical word forward-
ing and inject the first flit of all data response packets
(bound for the L1 cache) into the Runahead network.

2.4 Integration into the Regular Network

The Runahead network can be easily integrated with
an existing network. Its routers’ injection and ejection
ports are simply connected to the injection and ejection
queues of the regular network. The injection port of
each Runahead router connects directly to the head of

the regular input buffer, so that single-flit packets wait-
ing to be injected into the regular network are also in-
jected into the Runahead network. In our experiments,
we find that a large portion of packets are dropped at
injection, accounting for up to 50% of all dropped pack-
ets in the Runahead network. This is because in port
arbitration, packets from the injection ports have lowest
priority, as explained in Section 2.2. To improve this,
we design the Runahead router to try to inject a packet
multiple times for as long as it is at the head of the
injection queue. If the packet at the head of the queue
does not succeed in arbitrating for its output port, we
try again in the next cycle if the packet is still at the
head (i.e., if the packet has not yet been injected into
the regular network either). If the packet is injected
into the Runahead network successfully, a flag is set at
the input port so that we do not try to inject it again
in subsequent cycles.

The ejection ports connect to the regular output
buffers. When a packet is ejected from the Runahead
network, it is immediately forwarded to the correspond-
ing cache controller or memory controller. It is then
stored in a small buffer until the same packet is ejected
from the regular network. This ensures that packets
that are successfully delivered via the Runahead net-
work are not sent to the controllers twice. Note that
a packet will never be ejected from the regular net-
work before the Runahead network, as discussed in Sec-
tion 2.1. For the applications we have studied, the max-
imum number of entries that a buffer needs to hold is
15. Conservatively assuming packet IDs of 8 bytes, this
buffer would be less than 128 bytes which is small com-
pared to the size of buffers in regular NoC routers. In
the unlikely event that the buffer is full, the network
interface will discard packets that arrive on the Runa-
head network. This is safe since any packet that arrives
in the Runahead network will also arrive on the regular
network.

2.5 Discussion

This section discusses and reiterates some key points
in our design. The Runahead network does not com-
promise correctness in the communication fabric despite
being a lossy design, since it serves as a companion to a
lossless network. The use of such specialized networks
with general-purpose networks is timely in the dark sili-
con era, providing efficiency gains analogous to accelera-
tors for general-purpose cores. As discussed previously,
to ensure correctness, the Runahead network requires
buffers at ejection ports for packets that are still in-
flight in the lossless network. However, this does not
introduce much overhead; the size of these buffers can
be fixed and does not need to scale with network size
nor network usage. In the rare event that the buffers
are full, packets can simply be dropped upon ejection
without compromising correctness. The drop rate also
does not scale with network size due to the fact that for
any given packet, there will always be 3 (and only 3)
places where the packet can be dropped: 1) at injection,
2) when turning, and 3) at ejection. Furthermore, the
drop rate does not necessarily scale with network usage;

Topology
Channel width
Virtual channels
Router pipeline stages
Routing algorithm
Flit size
Packet size

4x4 mesh (8x8 for SynFull)
8 byte

6 per port (4 flit each)

3

X-Y dimension-order
8-byte
1 (Control) /9 (Data) Flits

Table 1: Baseline network simulation parameters

Topology
Channel width

4x4 mesh (8x8 for SynFull)
10 byte (8B for flit, 2B for other
metadata)
Virtual channels None
Routing algorithm || X-Y dimension-order
FIit size 8-byte

Table 2: The Runahead network simulation parameters

of Cores/Threads || 16/16, 1GHz
Private LT Cache 16KB 4-way LRU 64Byte
blocks
Shared L2 Cache fully distributed, 8-way LRU,
4 MB total

4 directories Tocated at each
corner of the topology
MOESI distributed directory

of Directories

Cache Coherence

Table 3: Full-system simulation system parameters

the Runahead network can handle high network load by
being selective. Our design thrives on the common case
of low network load. However, at high load, the Runa-
head network can simply be more selective when in-
jecting packets, selecting only those deemed to be most
latency critical.

3. METHODOLOGY

We evaluate the effectiveness of the Runahead net-
work in conjunction with a baseline lossless network.
The configuration parameters for our baseline network
are listed in Table 1. The Runahead network simulation
parameters are listed in Table 2.

NoC Configurations. We compare our proposed
Runahead network against conventional lossless NoCs,
some of which are multi-NoC designs. We also com-
pare the Runahead network against two existing de-
signs: Aergia [15], a prioritization scheme, and DejaVu
switching [1], a multi-plane NoC design. The configu-
rations are listed below:

e Baseline64*: This configuration has a single loss-
less NoC with 64-bit channels, as in Table 1.

e Baselinel28_Random™*: In this configuration,
the NoC is composed of two independent lossless
networks, each configured as in Baseline64. Total
channel width is 16 bytes (two 64-bit networks).
The workload is shared evenly between the two
NoCs (i.e., 50% of traffic is randomly injected into
each network).

e Baselinel28_Select: In this configuration, the

*Used in both full-system and SynFull evaluations.
TUsed only in SynFull evaluations.

NoC is configured identically to that of Base-
linel128_Random. However, instead of sharing the
traffic evenly, Network 1 is responsible for latency-
sensitive traffic (i.e., packets that we would inject
into the Runahead network). This includes single-
flit packets and critical words. Network 2 han-
dles all other traffic. Since delivery is guaranteed,
single-flit packets are only injected into Network 1
instead of both networks.

e Aergial is a prioritization scheme that uses the
notion of slack to determine the priorities of pack-
ets [15]. Aergia calculates packet priority based on
local slack which is defined to be the number of cy-
cles a packet can be delayed without delaying any
subsequent instructions. Aergia uses L2 hit/miss
status, number of L2 miss predecessors and num-
ber of hops to estimate the packet slack. In our
full-system simulations, we use the same setup as
the Baseline64 network. We modify Aergia’s pri-
oritization scheme for allocations and arbitrations;
we conservatively assume a perfect L2 miss predic-
tor for accurate slack calculations.

e DejaVu Switching? is a multi-plane NoC design
where single-flit control packets and multi-flit data
packets are separated in to different planes [1].
Reservation packets are sent out on the control
plane to reserve network resources on the data
plane routers. The reservations enable the data
packets to be forwarded without suffering delays
from making routing decisions at every router. In
our full-system simulations, the control plane uses
the same parameters as the baseline network listed
in Table 1. The reservation packets are sent 3 cy-
cles ahead of data packets and they travel in the
control plane. We assume the reservation queues
in the data plane have infinite size. To model the
simplified router design in the data plane of De-
jaVu switching, we use routers with single cycle
router delay and one VC. Also, we forward the
critical words to the processor as soon as the head
of the data packets arrive. Though DejaVu switch-
ing can use a slower data plane for energy savings,
we opt not to for a conservative performance com-
parison against Runahead.

e Runahead*: In this configuration, we have a sin-
gle Baseline64 network, which carries 100% of the
injected packets, along with the proposed Runa-
head network that carries latency-sensitive packets
(i.e., single-flit packets and critical words). As de-
livery is not guaranteed in the Runahead network,
duplicate injection of latency-sensitive packets into
both networks is required. The total channel width
in this case is 18 bytes (8 bytes for the Regular
network and 10 bytes for the Runahead network).
Note that we allocate two extra bytes to the Runa-
head network channel width to conservatively to
account for any additional metadata for support-
ing critical word forwarding. This does not give
our Runahead network a performance advantage

#Used only in full-system evaluations.

since all packets are single-flit; in fact, it incurs a
power and area disadvantage.

As an accelerator, Runahead is evaluated relative to
Baseline64 and compared against Aergia. As a power-
saver, Runahead is evaluated relative to the Baseline128
configurations and compared against DejaVu Switching.

Synthetic Traffic. We evaluate latency and
throughput of the Runahead network under several syn-
thetic traffic patterns covering a wide range of net-
work utilization scenarios. We use a modified version
of Booksim, a cycle-level network simulator [28]. All
configurations use an 8x8 2D mesh network, and we
assume all packets are single-flit.

Full-System Simulation. To evaluate the real sys-
tem performance of our Runahead network, we use
Booksim and Gemb [8]. The system parameters are
listed in Table 3. All network configurations use a 4x4
mesh topology with parameters listed in Tables 1 and
2. The full-system simulation workloads consist multi-
threaded workloads from SPLASH-2 [46] and PAR-
SEC [7]. For each multi-threaded workload, we run
16 threads with the simmedium input set until com-
pletion. We measure the execution time in the appli-
cation’s region of interest. For full-system simulations,
the memory controllers are located at the corners of the
mesh network. We keep the cache sizes small to provide
greater stress on the network. This does not give the
Runahead network an advantage because it drops more
packets when there is more network contention.

SynFull Workloads. To further evaluate our Runa-
head network design in a larger network, we use multi-
programmed SynFull traffic workloads [3] with Book-
sim. SynFull workloads are designed to reproduce the
cache coherent behavior of multi-threaded applications
from SPLASH-2 [46] and PARSEC [7]. These workloads
consist of single-flit control packets and multi-flit data
packets. All configurations use an 8x8 2D mesh net-
work. Other network configuration parameters are the
same as previous experiments. For each 64-core work-
load, we run 4 identical instances of a 16-way multi-
threaded application. Each instance is assigned a 4x4
quadrant of cores. For SynFull, memory controllers are
located at the left and right edge nodes of the 8 x8 mesh.
All four instances send memory traffic throughout the
chip. To keep measurements consistent across all config-
urations, we only measure the latency of unique packets
that are seen by the application. This means that if a
packet is injected into both the Runahead and regu-
lar lossless networks, we only measure the latency of
the packet that arrives first; subsequent arrival of the
same packet is discarded by the NoC. For data pack-
ets, latency is taken for the entire packet to arrive, not
just the critical word. To measure the potential benefit
of accelerating critical words, we report the difference
in arrival times between the critical word and the rest
of the data block. We did not compare with Aergia
and DejaVu switching as Aergia relies on information
from real system conditions and DejaVu generates ex-
tra reservation packets; neither of these can be easily
modeled with SynFull.

Power and Area. We model power and area us-

ing DSENT [41] and RTL. DSENT results are collected
using a 22nm bulk/SOI, low-V process node. Dynamic
power is obtained by modelling the system using the
average injection rates collected from the SynFull work-
loads. To ensure the feasibility of the Runahead router,
we use an open source RTL router design [6] as a con-
ventional router. The Runahead router is constructed
on top of the existing RTL design. We use Synopsys de-
sign compiler with TSMC 65nm technology to evaluate
the power and area for a single Runahead router.

4. EVALUATION

This section provides performance, power and area
evaluations of our proposed Runahead network. We
first evaluate latency and throughput under synthetic
traffic. We then evaluate the performance improve-
ments in the Runahead network in full-system simula-
tion, followed by a performance evaluation of the Runa-
head network using real application models from Syn-
Full. We then measure area and power consumption of
the Runahead network.

4.1 Latency and Throughput

Figure 3 shows the average packet latency for the
Baseline64 and Runahead configurations on different
synthetic traffic patterns. All simulations are done us-
ing single-flit packets, and all packets are injected into
the Runahead network. The Runahead NoC shows a
significant decrease in average packet latency compared
to Baseline64. Note that the packet latency increases
faster prior to saturation in the Runahead NoC for sev-
eral traffic patterns. This is because as injection rate
increases, the arrival rate decreases, leading to lower ef-
fectiveness of the Runahead network; more packets rely
on the regular lossless network for delivery.

Both NoC setups saturate around the same injec-
tion rate for most traffic patterns. This is because our
Runahead network’s injection ports are connected to
the same injection queues of the routers in the regular
lossless network. If congestion occurs at injection in the
lossless network, the Runahead network does not pro-
vide any benefit. However, in other traffic patterns such
as Bit Reverse where congestion occurs within the net-
work rather than at the injection ports, the Runahead
NoC saturates at a higher injection rate.

4.2 Full-System Simulation

In this section, we evaluate the performance of Runa-
head as an accelerator and as a power-saver, compared
against various NoC configurations (Section 3). We sim-
ulate benchmarks from PARSEC and SPLASH-2 using
the Gemb simulator.

As an Accelerator. We compare speedup between
Baseline64, Aergia and Runahead. The speedups are
shown in Figure 4. These results are normalized to
Baseline64, since the Runahead configuration is essen-
tially our proposed design added on top of the baseline
64-bit lossless network. We first notice that in our ex-
periments, Aergia has little impact on system perfor-
mance. The reasons are twofold. First, most PARSEC

B
=)

> T v @ == Uniform-

:é: 35 4 " Runahead

3 (] e====Uniform-

5 30 [] (] Baseline64

w25 N] == == Transpose-

<20]] Runahead

I3 e====Transpose-

S5 7 1 i

o e Baseline64

& 10 p——— [odendnd Asymmetric-

55 Runahead

2 0 Asymmetric-
1% 1% 21% 31% 41% Baseline64

Injection Rate

(a) Uniform Random, Transpose and Asymmetric

40 v v
> [] (] == == Bitrev-

35
§ I [} /’l Runahead
& 30 T] "
: 25 I ' e Bitrev-
2 1 1 Baseline64
Jd - - Bj -
- itcomp-
g 15 =y S Runahead

- o o= = Bitcomp-

Baseline64

1% 7% 13% 19%
Injection Rate

(b) BitRev and BitComp

Figure 3: Load-latency curves under synthetic traffic

W Baseline64 W Aergia Runahead
1.20x

1.15x

S 1.10x
B vos
@ 1.05x
& 1.00x
0.95x
ooox [HES HES BNC BRSO BN BN BN ||
o 3 & » & D> S
& & & L3 & < < _QQ?‘ @Q:b
& @6‘ N ed .‘{,Q & S
S <« s <~ &
N)
‘b\e
&

Figure 4: Runahead speedup as an accelerator

and SPLASH benchmarks do not have high L2 miss
rates, which is one of the key factors in computing prior-
ity in Aergia.% Second, the benchmarks have very little
congestion. Omne of our key motivations is that aver-
age channel utilization is low in real-world applications.
Because of this, prioritization schemes are unlikely to
find opportunities to accelerate packets in the absence
of congestion. On the other hand, Runahead achieves
1.08x speedup compared to the baseline (Baseline64).

As a Power-Saver. When using the Runahead net-
work as a power-saver, speedup is shown in Figure 5.
Unlike in the previous section, these results are normal-
ized to Baselinel28_Random, since the Runahead con-
figuration effectively under-provisions the baseline 128-
bit lossless NoC to make space for our proposed design.
DejaVu has a speedup of 1.035x compared to Base-
linel28_Random. Runahead delivers a greater speedup
of 1.045x, due to its lower per-hop latency for control
packets and critical data words. Note that DejaVu has
an advantage in situations where applications tend to
access other words in the cache line (aside from the crit-

6 Aergia was originally proposed and evaluated using multi-
programmed SPEC workloads.

i Baseline128-Random & DejaVu Runahead

Q
3 1.05x
(7]
2 1.00x
v
0.95x
OgoxIlIlJJJIlIlJ Ll
o o & » N D> S
f»‘& &o\e & L . So 9Q»oo ¢ o 4‘,@‘ @Q"’
0’ W N O
& .906 & & 54
X7

Figure 5: Runahead speedup as a power-saver

ical word) much earlier. This is because data packets,
as a whole, travel faster in DejaVu due to advanced
reservations at data plane routers. The separation of
data and control packets in DejaVu causes both net-
works to be less congested, unlike in Runahead where
the smaller lossless network carries all types of packets.
Although we forward the critical word in both cases, De-
jaVu populates lines in the cache sooner than Runahead
after unblocking the stalled processor with the critical
word. This explains the higher speedups for f ft, lu_ncb
and 264 compared to the Runahead network. Despite
this, the Runahead network achieves 1.045x speedup
while using fewer network resources compared to both
Baselinel28_Random and DejaVu switching.

We obtain Runahead network activity by collecting
results without the critical word forwarding optimiza-
tion. Critical word packets are single-flit duplicated
packets that travel in the Runahead network; to keep
the percentage of single-flit packets accurate, we do not
include these packets when collecting the results. Con-
sidering that data packets are 9 flits in size, on average,
only 23% of all flits that travel through the network
are injected into the Runahead network. We observe
that applications with a higher percentage of single-flit
packets see more performance benefit from the Runa-
head NoC. Fortunately, since over 72% of packets in the
network are single-flit, the Runahead network is still ca-
pable of speeding up the majority of network messages
despite the fact that it only carries 23% of the flit traf-
fic. The Runahead NoC is most effective at improving
performance if a large fraction of packets are success-
fully delivered; all applications studied have over 95%
arrival rate.

4.3 SynFull

In this section, we evaluate Runahead as an acceler-
ator and as a power-saver given a larger network topol-
ogy, compared against varying NoC configurations (Sec-
tion 3). We simulate 14 different SynFull applications.

As an Accelerator. Figure 6 compares the aver-
age packet latency between Runahead and Baseline64.
Recall that in the Runahead configuration, the NoC
is configured with a regular lossless network (identical
to Baseline64) augmented with our proposed Runahead
design, which serves as an accelerator. Given that the
our design offers very low per-hop latency, Runahead
achieves 1.66x faster packet delivery on average. Note

w
«

z “ Runahead i Baseline64
< 30
4
2
82
-
L2
=]
&£ 15 &
$wolBE BN BN N SN BN BN OB o N N BN N of |
a0 10
o
<
0
2 & O D . ¢ ® P .Q & @ & R N
& &K 0‘,\6‘ '&‘(‘@u S & o & &
& S & W S &
N S S & < A 4
N S LY
o Q &
&

Figure 6: Average packet latency as an accelerator

that the performance increase is significant since arrival
rates are very high, even with a larger network topology,
as we show later in this section.

As a Power-Saver. Figure 7 compares the av-
erage packet latency of Runahead against the two
128-bit baselines: Baselinel28_Random and Base-
line128_Select. The packet latency is normalized to
Baseline128_Random. Recall that both of these base-
lines are configured with two 64-bit lossless subnetworks
each; the only difference is that Baselinel28_Select se-
lectively injects packets based on latency-sensitivity.
Baseline128_Random generally performs better than
Baselinel28_Select due to better load balancing between
subnetworks. Given that both subnetworks are identi-
cal, selective injection offers minimal latency improve-
ment. However, the Runahead NoC performs the best
across all benchmarks. On average, Runahead deliv-
ers packets 1.33x and 1.49x faster compared to Base-
line128_Random and Baselinel28_Select.

To further investigate the benefits of the Runahead
network, we look at the cycle count between the time a
critical word arrives and the time when the rest of the
data block arrives in Baseline128_Select and the Runa-
head NoC in Figure 8. The Runahead network on aver-
age delivers critical words almost 23 cycles faster than
the rest of the cache block.

The arrival rate of packets in the Runahead network
for each application is listed in Table 4. The average
arrival rate across all applications is over 97% and the
average hop count is 3.7. This means that the Runa-
head network delivers almost all of the single-flit pack-
ets that travel through it, with an average latency of
3.7 cycles. In comparison, the lowest latency that can
be achieved in the lossless regular network, which has a
3-stage pipeline router plus link traversal, is 14.8 cycles
(3.7x(34+1)). As the majority of packets in the network
are single flit, the use of the Runahead network enables
average packet latency to drop significantly.

To investigate the fairness of our port arbitration
scheme, we show the arrival rate per source node for
blackscholes (Figure 9a) and fft (Figure 9b). Blacksc-
holes exhibits the lowest arrival rate while fft exhibits
the highest hop count, as shown in Table 4. Lower av-
erage arrival rate may be an indication that some nodes
experience starvation especially when applications have
light traffic. On the other hand, as the distances trav-

line128_Select - Runahead

-

Normalized Packet Latency

Figure 7: Normalized packet latency as a power-saver

w
o

“Runahead “ Baseline128_Select

N
a

N
=]

-
«

Critical Word Cycle Difference

o w &
6 g
J T

Arrival Rate

I T N N ¢ » . & @ e N
& &S z‘,\é‘ & ¢ L& & S & & L &
&F & SRR S & &
& S« & & PO &
& © &b < & & &
& [&7

q"b

Figure 8: Average time difference between arrival of
critical word and corresponding cache block

eled by packets increase, packets stay in the network
longer and have a higher chance of causing contention
in the Runahead network. For fft, the source node ar-
rival rate is very even across all nodes; we do not see
any particular node suffering from low arrival rate. On
the other hand, blackscholes exhibits low arrival rate for
some nodes due to small variations in packet destina-
tion. Packets are destined to only a few nodes, creating
congestion around these nodes, which causes the Runa-
head network to drop more packets. However, the dif-
ference in arrival rates is modest, leading us to believe
that the unfairness of our arbitration scheme does not
have a negative impact on application performance.

4.4 Power and Area

In this section, we evaluate power and area consump-
tion of the Runahead network. We first evaluate the
8% 8 network power and area usage using DSENT. Next,
we evaluate the power and area of a single router using
RTL modeling.

Critical Path: DSENT reports a minimum clock
period for the Runahead network of 481.073 ps when
optimized for a frequency of 2GHz. As a result, we are
confident that a Runahead network router can be tra-
versed in a single cycle in a 2GHz system. The critical
path reported by Synopsys in 65nm for a single regular
router is 1.5 ns. However, the RTL results show that the
critical path of the Runahead router does not increase
compared to the regular lossless router. This ensures
that the combined design can still operate in the orig-

Application Packet Arrival Rate | Hop Count
barnes 96.29% 3.44905
blackscholes 95.63% 3.61983
bodytrack 95.78% 3.41479
cholesky 98.43% 3.77890
facesim 97.66% 4.10944
fft 97.12% 4.43595
fluidanimate 96.94% 3.57521
lu_cb 97.93% 3.98956
lu_ncb 98.17% 3.56591
radiosity 97.54% 3.52332
radix 97.33% 4.41145
raytrace 96.51% 3.48362
swaptions 98.69% 3.51006
water_nsquared 97.18% 3.45227

| Average I 97.23% [37371 |

Table 4: Packet arrival rate and hop count

(a) blackscholes

|J|l.l 1L =
B LI
09
0.8 -
0.7 -

Arrival Rate

06 -
0.5

Figure 9: Source node arrival rate

inal clock speed. To ensure that the Runahead router
can forward packets in one cycle, we measure the crit-
ical path of the Runahead router alone. The Synopsys
design compiler reports a critical path of 800 ps for the
Runahead network logic alone, after timing optimiza-
tions. The Runahead network can operate almost twice
as fast as the regular router. As a result, we are confi-
dent that the Runahead network can function correctly
in a single router cycle.

Area: The Runahead network incurs 16% active
silicon area overhead compared to the 64-bit baseline
NoC (i.e., the Runahead network as an accelerator) and
achieves 1.73x area savings compared to the 128-bit
baseline NoC (i.e., the Runahead network as a power-
saver), as shown in Figure 10a. However, the Runahead
NoC has the highest usage of global wire area. This
is due to the wider channels used to carry additional
metadata, as discussed in Section 3.

Table 6 shows area consumption of the Runahead

14.00

i Baseline64
12.00

& Runahead

-
o
o
=)

Baselline128
8.00

6.00

4.00 1
m J

0.00
Global Wire Area

Area (mm~2)

Active Silicon Area

(a) Area comparison

2.50 i Baseline128_Random
& Baseline128_Select 2.00 2.00 1.98 1.98
2.00
= Runahead
[
g i Baseline64
< 1.50
-8 1.11 1.10 1.10
N .08 + . .
2 105 1 N 1 1
g 1.00 1 1
S
2
=1 | | | ' |
o IR . - -
Dynamic power Leakage power Total power
(b) Power comparison
Figure 10: Power and area comparison
Configuration || Area(um2) | Difference in Area
Baselinet4 218777.398 1
Baseline128 437554.796 2
Runahead 225427.679 1.030

Table 5: RTL router area comparison

network alone as well as total area consumption when
added on top of the regular lossless 64-bit baseline. The
Runahead subnetwork only accounts for 13.67% of the
active silicon area of the total NoC. The Runahead net-
work uses more than half of the global wire area because
it has wider physical channels as discussed previously.

The details of the RTL area comparison for a sin-
gle router can be found in Table 5, for the Baseline64,
Baselinel28 and Runahead configurations (Section 3).
Links are not included in this evaluation. As an accel-
erator, there is only a 3.2% increase in area usage. This
slight increase consists of the additional multiplexers
and registers in the Runahead router. As a power-saver,
Runahead decreases area usage by almost 1.94x. This
is due to the fact that Runahead effectively replaces
network resources in the 128-bit baseline NoC with our
lightweight design.

Power: Figure 10b shows dynamic and leak-
age power normalized to Baseline64, obtained using
DSENT. As shown, Runahead significantly reduces
leakage power compared to the baseline 128-bit NoCs
(i.e., the Runahead network as a power-saver) and in-
curs only a 10% overhead in leakage power compared
to the baseline 64-bit NoC (i.e., the Runahead network
as an accelerator). When measuring dynamic power,
we use the average injection rate obtained in our Syn-

Configuration || Power(mW) | Difference in Power
Baseline64 50.5851 1
Baselinel28 101.1702 2
Runahead 52.3573 1.035

Table 7: RTL router power comparison

Full simulations across all benchmarks. In general, the
Runahead NoC consumes more dynamic power than the
other network setups due to packet duplication in the
Runahead network. Unlike in a multi-NoC design (such
as the Baselinel28 configurations) where the injection
rates of each subnetwork is lower, Runahead has an in-
jection rate that is no less than that of Baseline64, in-
curring additional switching in the Runahead network
to carry duplicate latency-sensitive packets. However,
in our measurements, dynamic power accounts for only
a small portion of total power, ranging from 1.1% for
the 128-bit baselines to 2.09% for Baseline64 and Runa-
head. Leakage power tends to dominate total NoC
power consumption. Overall, the Runahead NoC re-
duces total power usage by 1.81x when used as a power-
saver and incurs only a 10% total power overhead when
used as an accelerator.

As shown in Table 6, the Runahead subnetwork only
accounts for 9.13% of total power usage in the com-
bined network (i.e., Runahead subnetwork on top of
the 64-bit baseline). As discussed, much of this is at-
tributed to leakage power due to the wider channels and
larger multiplexers to accommodate additional meta-
data in the Runahead network. Fortunately, the Runa-
head network generally accelerates application perfor-
mance, which naturally leads to additional overall en-
ergy savings due to shorter runtimes.

RTL results for the individual routers in TSMC 65nm
are listed in Table 7. Compared to the baseline 64-bit
lossless router, the Runahead router only uses 3.5% ad-
ditional power as an accelerator. However, as a power-
saver, power consumption is decreased by 1.93x com-
pared to the routers of the 128-bit baseline networks.
This is expected as the Runahead network effectively
replaces the routers in the multi-NoC baselines with our
proposed lightweight router microarchitecture.

S. RELATED WORK

In this section, we explore related work in multi-
NoCs, bufferless NoCs, low-latency designs and critical
word optimizations.

Multi-NoC Designs. Employing multiple NoCs
can improve performance while simultaneously improv-
ing area and power efficiency [4]. Flit-reservation flow
control [39] uses a separate network for reservation mes-
sages; these messages reserve buffers and channels for
the exact time a data packet will use them. Doing so
speeds up message handling, improving performance.
Deja Vu switching [1] proposes a two-network design:
one network for control and coherence packets and one
for data packets. Both of their NoC planes use conven-
tional NoC routers with VCs. They achieve power sav-
ings by slowing down the data plane. Flores et al. [19]

Total Usage | Runahead Usage [[Percentage
Dynamic Power 0.0237 W 0.00398 W 16.81%
Leakage Power 1.ITW 0.0995 W 8.97%
Total Power 1.13 W 0.103 W 9.13%
Global Wire area 11.8 mm? 6.55 mm? 55.56%
Active Silicon Area 1.34 mm? 0.183 mm? 13.67%

Table 6: Power composition of Runahead on top of 64-bit baseline

propose two networks for critical and non-critical traf-
fic. They use heterogeneous networks composed of low-
latency wires for critical messages and low-energy wires
for non-critical ones. Mishra et al. [36] propose a het-
erogeneous multi-NoC system where one network has
low latency routers, and the other has high bandwidth
channels. Multiple networks also provide opportuni-
ties for traffic partitioning [44] and load balancing [4].
Catnap [16] is an energy-proportional multi-NoC de-
sign; rather than separating the types of traffic sent to
each NoC, networks are turned on and off to respond to
changes in network load. Enright Jerger et al. [17] pro-
pose a hybrid NoC design where a separate NoC exists
on a silicon interposer. In their design, the interposer
NoC carries memory traffic while the NoC on the chip
carries the rest of the traffic.

Prioritization Schemes in NoCs. Traditional
NoCs employ simple arbitration strategies like round-
robin or age-based arbitration for packets. Bolotin et
al. [9] propose prioritizing control packets over data
packets in the NoC. They see substantial performance
improvement when small control packets are priori-
tized over data packets. Globally Synchronized Frames
(GSF) [32] is proposed as a local arbitration, QoS-
oriented prioritization scheme. GSF provides prior-
itization mechanisms within the network to ensure
each application receives equal amount of network re-
sources. Application-Aware Prioritization Mechanism
(STC) [14] is proposed as a prioritization scheme to ac-
celerate network-sensitive applications. STC ranks ap-
plications at regular intervals based on their network
intensity. Aergia [15] uses the notion of slack to priori-
tize packets. Aergia may increase network throughput
if network is congested. However, from our evaluations,
we see little performance impact because of the absence
of contention in our simulations. Prioritization schemes
can best show their full potential when the network car-
ries heavy traffic. On the other hand, the Runahead
network performs well with a lack of contention.

Bufferless NoC Designs. Bufferless networks have
received significant research attention [18,23,35,37]. In
BLESS [37] and CHIPPER [18], packets are deflected
until they reach their destination. In SCARAB [23]
and Millberg et al. [35], packets are dropped upon
contention and a retransmission message is issued to
the source. Our Runahead network does not react to
dropped packets and does not deflect packets in the face
of contention. This keeps the design of the Runahead
network routers simple.

Low-Latency NoC Designs. The goal of our net-
work design is to accelerate packet transmission. Simi-

larly, there has been significant research on low-latency
NoCs to improve performance. Express virtual chan-
nels [31] reduce latency by allowing packets to bypass
intermediate routers. A non-speculative single-cycle
router pipeline improves performance by allocating the
switch in advance of the message arrival [30]. A low-
cost router design [29] reduces latency using a simple
ring-stop inspired router architecture for fast traversal
of packets traveling in one direction; packets changing
direction pay additional latency when they are buffered.
Lookahead routing [20] is another common technique
to reduce the number of pipeline stages in the router.
Route predictions can also speed up the network [24,34].
Often these low-latency designs increase complexity, en-
ergy and area in order to achieve better performance.
SMART [13] is proposed to reduce overall communi-
cation latency by allowing packets to travel multiple
hops in a single cycle. They observed that the wire de-
lay is much shorter then a typical router cycle. The
links in SMART require specialized repeaters to en-
able multi-hop traversal. Our simple Runahead net-
work achieves performance improvements with minimal
power and area overhead.

Critical Word Optimizations. Delivering the crit-
ical word as soon as possible can improve application
performance. Separating critical data in either main
memory [12] or the caches [27] can efficiently deliver
critical data faster. NoCNoC [40] proposes a two net-
work design that separates critical words from non-
critical ones in a cache line. It saves power by DVFS
for the non-critical network.

6. CONCLUSION

In this paper, we propose the Runahead NoC, which
can serve as either a power-saver for more efficient use
of network resources, or as an accelerator that pro-
vides lightweight, low latency communication on top of
a conventional NoC. The Runahead NoC is designed
to provide single-cycle hops across the network. To
accomplish this, the network is lossy in nature, drop-
ping packets when contention occurs. We present the
design of the Runahead NoC router architecture that
combines route computation and port arbitration with
link traversal. From experiments with SynFull work-
loads, we find that the Runahead network can maintain
over 97% packet arrival rate on average. As an accel-
erator, the Runahead network reduces average runtime
and packet latency by 1.08x and 1.66x with only 10%
overhead. As a power-saver, Runahead achieves 1.73x
and 1.81x savings in active area and power respectively.

Acknowledgements

The authors thank the anonymous reviewers for their
insightful feedback. This work is supported by a Queen
Elizabeth IT Scholarship in Science and Technology, the
Natural Sciences and Engineering Research Council of
Canada, the Canadian Foundation for Innovation, the
Ministry of Research and Innovation Early Researcher
Award and the University of Toronto.

7.
(1]
2]

(3]
(4]
(5]

[6]

[7]

(8]

[9]

(10]

(11]

(12]

[13]
[14]
[15]
[16]
[17]
18]

(19]

20]
21]

(22]

REFERENCES

A. Abousamra et al., “Deja vu switching for multiplane
NoCs,” in NOCS, May 2012, pp. 11-18.

P. Avasare et al., “Centralized end-to-end flow control in a
best-effort network-on-chip,” in Proceedings of the 5th ACM
International Conference on Embedded Software, ser.
EMSOFT ’05, 2005, pp. 17-20.

M. Badr and N. Enright Jerger, “SynFull: Synthetic traffic
models capturing cache coherent behaviour,” in ISCA, 2014.

J. Balfour and W. J. Dally, “Design tradeoffs for tiled cmp
on-chip networks,” in ICS, 2006.

N. Barrow-Williams et al., “A communication
characterisation of splash-2 and PARSEC,” in IEEE
International Symposium on Workload Characterization,
Oct 2009, pp. 86-97.

D. U. Becker, “Efficient microarchitecture for
network-on-chip routers,” Ph.D. dissertation, Stanford
University, 2012.

C. Bienia et al., “The PARSEC benchmark suite:
Characterization and architectural implications,” in PACT,
2008.

N. Binkert et al., “The gem5 simulator,” ACM SIGARCH
Computer Architecture News, vol. 39, no. 2, pp. 1-7, 2011.

E. Bolotin et al., “The power of priority: NoC based
distributed cache coherency,” in NOCS, May 2007, pp.
117-126.

S. Y. Borkar, “Future of interconnect fabric: a contrarian
view,” in Proc. Int. Workshop on System Level
Interconnect Prediction, 2010.

S. Borkar, “Thousand core chips: A technology
perspective,” in DAC, 2007.

N. Chatterjee et al., “Leveraging heterogeneity in dram
main memories to accelerate critical word access,” in
MICRO, Dec 2012, pp. 13-24.

C.-H. O. Chen et al., “Smart: a single-cycle reconfigurable
noc for soc applications,” in DATE, 2013.

R. Das et al., “Application-aware prioritization mechanisms
for on-chip networks,” in MICRO, 2009.

, “Aergia: exploting packet latency slack in on-chip
networks,” in ISCA, 2010.

X “Catnap} qurgy proportional multiple
network-on-chip,” in ISCA, 2013.

N. Enright Jerger et al., “NoC architectures for silicon
interposer systems,” in MICRO, 2014.

C. Fallin et al., “Chipper: A low-complexity bufferless
deflection router,” in HPCA, 2011.

A. Flores et al., “Heterogeneous interconnects for
energy-efficient message management in cmps,” Computers,
IEEE Transactions on, vol. 59, no. 1, pp. 16-28, Jan 2010.

M. Galles, “Spider: A high-speed network interconnect,”
Micro, IEEE, vol. 17, no. 1, pp. 34-39, 1997.

C. Gémez et al., “An efficient switching technique for nocs
with reduced buffer requirements,” in ICPADS, 2008.

P. Gratz and S. W. Keckler, “Realistic workload
characterization and analysis for networks-on-chip design,”
in The 4th Workshop on Chip Multiprocessor Memory

23]

[24]

25]

[26]
[27]
28]
[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37)

(38]

39]
(40]

[41]

42]

(43]

[44]

[45]

(46]

Systems and Interconnects (CMP-MSI), 2010, pp. 1-10.

M. Hayenga et al., “SCARAB: A single cycle adaptive
routing and bufferless network,” in MICRO, 2009.

Y. He et al., “Predict-more router: A low latency NoC
router with more route predictions,” in Parallel and
Distributed Processing Symposium Workshops PhD Forum
(IPDPSW), 2018 IEEE 27th International, May 2013, pp.
842-850.

R. Hesse et al., “Fine-grained bandwidth adaptivity in
networks-on-chip using bidirectional channels,” in NOCS,
2012.

Y. Hoskote et al., “A 5-GHz mesh interconnect for a
Teraflops processor,” Micro, IEEE, 2007.

C.-C. Huang and V. Nagarajan, “Increasing cache capacity
via critical-words-only cache,” in ICCD, 2014.

N. Jiang et al., “A detailed and flexible cycle-accurate
network-on-chip simulator,” in ISPASS, 2013.

J. Kim, “Low-cost router microarchitecture for on-chip
networks,” in MICRO, 2009.

A. Kumar et al., “A 4.6tbits/s 3.6GHz single-cycle NoC
router with a novel switch allocator in 65nm CMOS,” in
1CCD, 2007.

, “Express virtual channels: Towards the ideal
interconnection fabric,” in ISCA, 2007.

J. W. Lee et al., “Globally-synchronized frames for
guaranteed quality-of-service in on-chip networks,” in
ISCA, 2008.

S. Ma et al., “Whole packet forwarding: Efficient design of
fully adaptive routing algorithms for networks-on-chip,” in
HPCA, 2012.

H. Matsutani et al., “Prediction router: Yet another low
latency on-chip router architecture,” in HPCA, 2009.

M. Millberg et al., “Guaranteed bandwidth using looped
containers in temporally disjoint networks within the
nostrum network on chip,” in Design, Automation and Test
in Europe Conference and Exhibition, 200/4. Proceedings,
vol. 2, Feb 2004, pp. 890-895 Vol.2.

A. K. Mishra et al., “A heterogeneous multiple
network-on-chip design: an application-aware approach,” in
DAC, 2013.

T. Moscibroda and O. Mutlu, “A case for bufferless routing
in on-chip networks,” in ISCA, 2009.

O. Mutlu et al., “Runahead execution: an alternative to
very large instruction windows for out-of-order processors,”
in HPCA, 2003.

L.-S. Peh and W. Dally, “Flit-reservation flow control,” in
HPCA, 2000.

J. San Miguel and N. Enright Jerger, “Data criticality in
network-on-chip design,” in NOCS, 2015.

C. Sun et al., “DSENT - a tool connecting emerging
photonics with electronics for opto-electronic
networks-on-chip modeling,” in NOCS, 2012.

M. Taylor et al., “The Raw microprocessor: a
computational fabric for software circuits and
general-purpose programs,” Micro, IEEE, vol. 22, no. 2, pp.
25-35, Mar 2002.

J. van den Brand et al., “Congestion-controlled best-effort
communication for networks-on-chip,” in Design,
Automation Test in Europe Conference Exhibition, 2007.
DATE ’07, April 2007, pp. 1-6.

S. Volos et al., “CCNoC: Specializing on-chip interconnects
for energy efficiency in cache-coherent servers,” in NOCS,
May 2012, pp. 67-74.

D. Wentzlaff et al., “On-chip interconnection architecture of
the tile processor,” IEEE Micro, 2007.

S. Woo et al., “The splash-2 programs: characterization
and methodological considerations,” in ISCA, 1995.

