Ghostwriter: A Cache Coherence Protocol for Error-Tolerant
Applications

Henry Kao®
University of Toronto
Toronto ON, Canada

h.kao@mail.utoronto.ca

Abstract

Coherence induced cache misses are an important aspect limiting
the scalability of shared memory parallel programs. Many coher-
ence misses are avoidable, namely misses due to false sharing -
when different threads write to different memory addresses that are
contained within the same cache block causing unnecessary invali-
dations. Past work has proposed numerous ways to mitigate false
sharing from coherence protocols optimized for certain sharing pat-
terns, to software tools for false-sharing detection and repair. Our
work leverages approximate computing and store value similarity
in error-tolerant multi-threaded applications. We introduce a novel
cache coherence protocol which implements an approximate store
instruction and coherence states to allow some limited incoher-
ence within approximatable shared data to mitigate both coherence
misses and coherence traffic for various sharing patterns. For ap-
plications from the Phoenix and AxBench suites, we see dynamic
energy improvements within the NoC and memory hierarchy of
up to 50.1% and speedup of up to 37.3% with low output error for
approximate applications that exhibit false sharing.

Keywords
Cache Coherence, Approximate Computing, Parallel Programming

ACM Reference Format:

Henry Kao, Joshua San Miguel, and Natalie Enright Jerger. 2021. Ghost-
writer: A Cache Coherence Protocol for Error-Tolerant Applications. In 50th
International Conference on Parallel Processing Workshop (ICPP Workshops
'21), August 9-12, 2021, Lemont, IL, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3458744.3474045

1 Introduction

Proliferation of multi- and many-core processors has made paral-
lel shared-memory applications increasingly important for higher
throughput and energy efficiency. Most recent advances focus on
improving compute rather than data movement even though en-
ergy spent on data movement is significantly greater [7, 20]. Conse-
quently, the communication infrastructure and bandwidth between
cores is one of the main bottlenecks [35]. A key component of the

“Now at Huawei Technologies Canada.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPP Workshops 21, August 9-12, 2021, Lemont, IL, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8441-4/21/08...$15.00
https://doi.org/10.1145/3458744.3474045

Joshua San Miguel
University of Wisconsin-Madison
Madison WI, USA
jsanmiguel@wisc.edu

Natalie Enright Jerger
University of Toronto
Toronto ON, Canada

enright@ece.utoronto.ca

communication substrate is the cache coherence protocol which
maintains correctness of shared memory among private caches.
Although the coherence protocol ensures a system-wide agreement
on cache block values, it can lead to communication inefficiencies
when multiple writers access data that falls within the same block.

Most cache-coherent chip multiprocessors (CMPs) use write-
invalidate coherence protocols; a write to a local cache block in-
validates all copies of the cache block within other private caches
through invalidation requests. Invalidations operate at a cache
block granularity. Coarse granularity is desirable to reduce meta-
data such as tag storage but can become a bottleneck when multiple
cores access the same block repeatedly—as in the case of false shar-
ing. One core’s write to a single byte or word in a block invalidates
all values within that cache block for all other cores, even if those
values are untouched. Subsequent loads and stores to the invalidated
blocks, which may still hold values that are technically coherent,
result in coherence misses and require the blocks to be fetched from
remote caches. Shared data structures are susceptible to superflu-
ous false-sharing coherence misses if they are not programmed
skillfully [32]. These misses not only incur additional energy and
latency, they also produce avoidable coherence traffic.

Within the last decade, prior works have proposed numerous
coherence optimizations in the traditional domain of architecture re-
search [13, 21, 52]. However, our work explores coherence through
an emerging paradigm for processor design-approximate comput-
ing. As many application domains are inherently error-tolerant
(e.g., machine learning, multimedia, scientific computing), we can
leverage the approximate computing domain to trade-off computa-
tion accuracy for greater energy efficiency and performance. Most
exploration of hardware support for approximation targets compute
resources [19, 55, 56]. Approximation in the memory system has
seen less work, and the designs that exist mostly address memory
storage by leveraging value similarity for greater storage capacity
and energy efficiency [48-50].

We propose a novel coherence protocol, Ghostwriter, for error-
tolerant applications. Ghostwriter leverages the inherent value
similarity within approximate applications to mitigate the perfor-
mance degrading effects of false sharing from the source-store
instructions. We extend the ISA with a new approximate store
instruction used to access shared data structures amendable to ap-
proximation. We also implement two new approximate coherence
states which allows for approximate stores to update values that
show high similarity without broadcasting coherence requests; this
reduces both coherence traffic and coherence misses. To summarize,
our main contributions are:

https://doi.org/10.1145/3458744.3474045
https://doi.org/10.1145/3458744.3474045

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

-B-False Sharing —#—Fix Ideal

Speedup
OFRPNWAUO DO

Threads

Figure 1: Speedup for the false sharing examples in Listing 1
for different thread counts.

e We observe that multi-threaded applications exhibit consider-
able value similarity between store values and the values being
overwritten in a cache block.

e We propose Ghostwriter, a coherence protocol which exploits
value similarity to mitigate coherence misses in approximate
applications.

e We show that our Ghostwriter protocol provides energy savings
of up to 50.1% within the NoC and memory hierarchy (11.2% on
average), as well as speedups of up to 37.3% (6.5% on average)
for error-tolerant applications that exhibit false sharing, all with
very low error.

2 Background & Motivation

False Sharing: In contrast to true sharing (multiple nodes writing
to the same address) which is a property of the application, false
sharing occurs due to cache coherence and memory accesses occur-
ring at the cache block granularity and is mostly avoidable. How-
ever, it is notoriously difficult to manually debug false sharing as it
is only implicitly defined in the source code [32]. Implementation
of shared data structures can lead to extraneous amounts of cache
contention if not programmed carefully, limiting the performance
benefits offered by parallelization (up to an order of magnitude [9]).
These effects can be found in a range of multi-threaded software
from benchmark suites like Phoenix [38] to the Linux Kernel [11].

Listing 1 and 2 illustrates false sharing examples using two dif-
ferent implementations of parallel dot-product. The first is a naive
implementation where separate threads directly store their own dot
product results into a portion of the shared array total. Although
the code is simple, it causes substantial cache contention (in the
form of coherence misses) through false sharing. Different threads
are accessing elements within the shared array total which map
to the same cache block. The coherence protocol invalidates all
shared/exclusive copies of the block for every write to total. In-
creasing thread counts lead to greater amounts of invalidations and
coherence misses as shown in Fig. 1, slowing down execution time
over single-threaded performance. A simple fix shown in Listing 2
to the the naive implementation is for each thread to write to its
own private variable, mapped to different cache blocks. This de-
creases the amount of sharing, and hence invalidations improving
multi-threaded performance using more threads as seen in Fig. 1.
Such code transformations can be done automatically by the com-
piler; however, they are difficult and rarely applied to real-world use
cases as they require strict static analysis criteria to be met [37, 54].

Henry Kao, Joshua San Miguel, and Natalie Enright Jerger

As code bases become larger and parallelism becomes more perva-
sive with increased core counts, locating performance bottlenecks
due to false sharing will be an increasingly difficult, yet important
problem [34].

Listing 1: False sharing prone parallel dot-product

int a[N], b[N];
int total [NUM_THREADS];
void dot_product (...) {

for (i = 0; i <N; i++) { // parallel loop
total [thread_id] +=a[i] * b[i];
}

Listing 2: Privatized parrallel dot-product

int a[N], b[N];
int total [NUM_THREADS];
void dot_product (..) {
int sum = 0;
for (i = 0; i <N; i++) { // parallel loop
sum +=a[i] * b[i];
}

total [thread_id] = sum;

Value Similarity: Prior work leverages the concept of value
locality-the recurrence of previously seen values—for architecture
optimizations [30, 31]. One form of value locality is bit-wise value
similarity (or Hamming similarity), which is a measure of how
similar values are in binary. For example, values such as 1241
(011111002) and 12719 (011111113) can be considered bit-wise simi-
lar because only the least significant two bits are different. Values
such as 12719 (011111113) and 12819 (100000002) are arithmetically
close; however, they are not bit-wise similar since all their bits differ.
Value similarity has been used for further optimizations, especially
in the domain of approximate computing [48-50]. In this paper, we
quantify bit-wise value similarity using d-distance [57] where the d
represents the maximum number of least significant bits that differ
between two values. Values 1211 (11110013) and 12519 (11111015)
have 3-distance similarity because the most significant bits are
identical up until the 3 least significant bits.

We explore the multi-threaded AxBench [58] and Phoenix [38]
benchmark suites for the prevalence of value similarity by com-
paring memory write values to the value currently in the cache
block (irrespective of coherence state). Fig. 2 shows the probability
of finding overwritten values with a given d-distance or lower. On
average, 22.8% of overwritten values have a 0-distance meaning the
incoming value and the value in the cache block are identical in all
bits. If the value being overwritten is in a cache block with write
permissions, it would be a silent store [27]. Since silent stores have
no effect on system state, they add unnecessary memory traffic if
the block does not have writing permissions incurring both energy
and latency overheads—a problem targeted in prior work [28, 29].
The inherent error-tolerance of approximate applications can al-
low for some deviation within data values. If we move beyond
pure silent stores, we find more opportunity for optimization by
using larger d-distances (e.g., 36.4% and 43.7% of written values
are 4-distance and 8-distance similar for sampled applications). A
possible optimization using bit-wise value similarity is to inhibit a

Ghostwriter: A Cache Coherence Protocol for Error-Tolerant Applications

-B-blksch -*=invk2j -4 jpeg -B-hist =%linreg -&pca

< % 100
< 100 g
2 2 80
E 80 =
60
e :
o 40 a 40
[e8]
Z 20 2 20
= s
> 0 > 0
E 0 2 4 6 8 10 12 14 16 E 0 2 4 6 8 10 12 14 16
© d-distance © d-distance
() (b)

Figure 2: Cumulative distribution of d-distance values ob-
served in multi-threaded approximate applications in (a)
AxBench and (b) Phoenix.

write to memory if the values are approximately similar; inhibiting
writes will yield performance improvements and energy savings.
For example, consider an image processing application modifying
a 24-bit RGB pixel. Allowing some deviation within the last few
bits would alter the blue coloring. It may change the accuracy of
the output image; however the change may be imperceptible or
acceptable to the user leading to good trade-off for potential energy
and performance improvements.

3 Ghostwriter Protocol

We present Ghostwriter, a coherence protocol that leverages both
error-tolerance and value similarity within approximate applica-
tions. Ghostwriter extends the baseline protocol with approximate
coherence states to allow some data value divergence for select
memory addresses to enable approximate execution. Approximat-
able data structures are labeled with simple programmer anno-
tations that are agnostic of the underlying hardware/coherence
protocol [5, 16, 45, 47].

3.1 Programmer Support

Programmers can annotate shared data structures amenable to ap-
proximation by specifying the memory locations and d-distance of
allowed approximations. The compiler then converts conventional
stores to our approximate stores (scribble instructions) using prior
compiler mechanisms [5] and ISA extensions for approximate pro-
gramming [16]. The scribble instructions are allowed to update
values in cache blocks regardless of the coherence state whenever
the store value and cache block value differ by less than or equal to
the d-distance statically set by the programmer for each approxi-
mate region, otherwise falling back to the conventional coherence
mechanisms. Compiler static analysis will also pad the annotated
heap and stack allocated memory regions to ensure delineation of
approximate data and non-approximateable data. A cache block
will only contain either approximate data or non-approximate data,
not both. Approximatable data structures are usually allocated in
long contiguous memory regions; the memory footprint overhead
from padding is small. Ghostwriter introduces three pragmas for
the programmer to annotate the approximate regions of code, and
the level of approximation:

e approx_begin(<var>,...) : Enables approximate (scribble)
instructions to be generated for the given set of memory locations

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

immediately following this annotation and enables coherence
transitions to the approximate states.

approx_end(<var>,...) : Disables approximate instructions to
be generated for the given set of memory locations following
this annotation and disables any further coherence transitions to
approximate states.

approx_dist(<val>) : Sets the level of approximation for the
subsequent approximate instructions where <val> is the d-distance.
The compiler ensures that the d-distance is legal for the cor-
responding data type/width to be approximated (i.e., using 8-
distance for byte-sized data would allow any value to be written
which is an undesirable level of approximation).

Listing 3 shows a simple example of programmer annotations in
false sharing prone code of shared arrays foo and bar. The level
of approximation this parallel loop is set using the approx_dist
pragma specifying the d-distance (4 in this example). The memory
locations of the arrays are passed to the approx_begin pragma
before the approximate computation region to enable scribbles.
Concurrent approximations of different data structures of different
data types/widths are allowed as long as they are annotated by the
programmer. Approximation on the data structures can be stopped
using the approx_end pragma; the blocks are not flushed, and can
continue to be used for computation.

Listing 3: Example of approximate programmer annotations

int a[N], b[N];
int foo[NUM_THREADS];
float bar[NUM_THREADS];

void approx_kernel (...) {
#pragma 4)
#pragma (foo, bar)
for (i = 0; i <N; i++) // parallelizable loop
foo[thread_id] +=a[i] = b[i];
bar[thread_id] +=a[i] + b[i];
#pragma (foo, bar)

The d-distance settings can be varied throughout the applica-
tions in different approximate regions by using the approx_dist
pragma and can be further fine-tuned via profile-guided optimiza-
tion (PGO) and/or auto-tuning techniques [5, 14, 19, 44, 46]. Each
new d-distance setting would require our modified cache con-
troller (see Sec. 3.4) to be re-programmed. An additional instruction
setaprx is used to update the controller, which encodes as an
immediate value for the new d-distance to be programmed. In-
struction endaprx is used to denoted the end of the approximate
region, and disable approximate writes. The setaprx, endaprx, and
scribble instructions are implemented in unused opcodes of the
existing ISA. No other hardware changes in the instruction pipeline
are needed. Setting new d-distances should be used sparingly (e.g.,
not in extensive loops); used properly, they will have negligible
effect on dynamic instruction count and execution time. Shared
data structures that see the most benefit from approximation are
ones being frequently updated in long loops or frequent function
calls. Note that the programmer does not have to exactly identify
sharing within the code, only regions where memory is shared and
approximatable. The programmer should also treat the approximate
data as a volatile type — the approximate data can change at any

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

Scribble

Scribble
Store
Load

<

/\\ Store / GETX

Timeout
2|qqudS
&
2|qqudS

19910S

° LY
2900 52
-'gcg 29
Sin3 I S 2o
w o

Figure 3: Ghostwriter protocol with approximate states
Gs and Gy implemented on top of an MESI protocol. Note
that state I means the block is present in the cache (i.e., the
tag exists) but in the invalid coherence state.

time. If one thread exits the approximate region where another
thread is still in the approximate region, these values are still al-
lowed change. Data to approximate should be consistent across
threads. In cases where approximation is not consistent across all
threads, the conservative approach is to not annotate that data
structure for approximation. False and true sharing are mitigated
during runtime as explained in the following sections. Structures
for control flow and memory addresses should not be annotated as
it may cause unexpected execution.

3.2 Protocol Description

In conventional write-invalidate coherence protocols, cache blocks
in shared state (S) have read-only permissions. These blocks only
allow loads to hit as the data contained within them are unmod-
ified and multiple copies may be shared between private caches.
Blocks in the invalid state (I) contain stale and incoherent values
and both loads and stores will miss when accessing invalid blocks.
A cache’s block is invalidated when some other cache wishes to
update to its own copy of that block, marking all other copies that
exist as incoherent and thus invalid. Blocks in S state and I state
share a commonality-both send out coherence requests to obtain
exclusive access to the block upon a store. This results in the in-
validation of all other copies of the block held within every other
private cache. Although the write-invalidate procedure maintains
a system-wide agreement on coherent cache block values, it can
lead to performance degradation for certain sharing patterns. More
specifically when stores from different cores continuously access
the same block, this causes a ping-pong effect in invalidations and
hence an increase in coherence misses, incurring both energy and
latency penalties.

Ghostwriter introduces two new coherence states to support ap-
proximate execution of error-tolerant applications, Gs and G1. The
intuition behind these states are to allow private caches have their
own locally modified (hidden from the system-wide view) copies of
shared cache blocks; these states are entered when scribbles wish
to update data that is approximately similar to what is already
present. These approximate states mitigate the detrimental effects

Henry Kao, Joshua San Miguel, and Natalie Enright Jerger

of stores on blocks in S and I state by suppressing requests for ex-
clusive access on approximatable stores (scribbles). These stages
can be added to most existing protocols. Without loss of generality,
we use a a baseline MESI write-invalidate directory protocol for
Ghostwriter as seen in Fig. 3.

Approximate state Gs reduces the amount of UPGRADE re-
quests and subsequent invalidations for stores to approximatable
data. A store to approximatable data that meets current d-distance
set by the application enables a scribble instruction to transition
from shared to Gs. The scribble can immediately update the data
within the shared cache block with a value that is approximately
similar, and the block is now locally modified-hidden from global
view. Blocks in Gg are granted both read and write permissions,
so conventional loads, stores, and scribbles all results in cache
hits. The directory sharer list still holds the cache as sharer, and
transitions to I when an invalidate request arrives from another
core requesting exclusive access to the block due to the execution
of a conventional store.

Approximate state Gt reduces the amount of get exclusive (GETX)
requests for stores to approximatable data. Conventional stores to a
block in the I state would forward GETX requests to the cache that
currently has exclusive access to the block (i.e., in the modified (M)
or exclusive (E) state). The block data is transferred to the requestor
and invalidated in the responder. A scribble to a block in I transi-
tions to Gy without sending a GETX. The data within the invalid
block is also updated immediately with a value that is approxi-
mately similar. Similar to blocks in Gs, blocks in Gt are now locally
modified and subsequent loads, stores and scribbles have read
and write permissions to the block. To prevent unlimited read and
writes, blocks in Gt transition back to I using a periodic timeout for
each cache controller.! The timeout is necessary since the transition
from I to Gr does not add the cache as a sharer in the directory,
so no invalidation requests would reach it as opposed to the case
of Gs. Adding G1 blocks as sharers would require changes further
into the cache hierarchy/directories which can be a substantial im-
plementation and verification task, especially for more complicated
protocols [2]. We keep our modifications to the protocol simple and
local to the L1 level of the hierarchy.

3.3 Protocol Operation

We illustrate the operation of approximate states Gs and Gy in
the Ghostwriter protocol through two example sharing patterns.
Time is artificially delineated using epochs for the sake of clarity.

Migratory sharing is when different threads first load, then
store to the same cache block—the block migrates between different
threads. An example is depicted in Fig. 4a for our baseline MESI
protocol. The sharing pattern is as follows:

e In Epoch 0, Core 0 stores value < a > to a shared block at offset
0 resulting in an UPGRADE request being sent to the directory.
All shared copies are invalidated so that Core 0 has exclusive
access and completes the write.

e In Epoch 1, Core 1 attempts to read from block offset 1, however
misses due to the previous invalidation. A GETS request is issued
to obtain read permissions (S state). The following store of value
< b > to block offset 1 misses due the the block being in S. An

!We empirically set this value to 1024 as detailed in Sec. 4.4.

Ghostwriter: A Cache Coherence Protocol for Error-Tolerant Applications

Core 0 &
Local Cache

Corel &
Local Cache

Directory &
Shared Cache

STOREa —u =~ | UPGRADE | Sharers

o \’
5 : Inv
g e WG — |
w o
[: 55
g = o k=
T B8 3
& g8 :
£5 toap | GeTs |
Fwd_GETS [|
| Fwd GETS
%
S
. Data
z
g STORE b UPGRADE
Q
i} Data
| W] [6]3] 22—
nv
m
LoAD _ GETS
—— GETS |
Fwd_GETS [oTo]
N Data [b]a] Qﬁd o]
& STOREC (—— | UPGRADE
H \’
Inv
[bl fe——"]

E Data
®

(a) Migratory false-sharing pattern in baseline MESI directory pro-
tocol. Core 0 and Core 1 each first loads, and then stores values to

block offsets 0 and 1, respectively.

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

Core 0 & Corel & Directory &
Local Cache Local Cache Shared Cache
o STORE2 o | UPGRADE | Sharers
: N
& Y | Data — g9
[; 55
0 = o)
-
P> v o .
h gp :
55 toab [GETs |
|Fwdeers L
S Data
T
— ; Data
g Q
S SCRIBBLE b s
LOAD:]
Hit
.
<
g STOREC m——— | UpGRADE |
o :
: Inv 111
Data
[

(b) Migratory false-sharing pattern using Ghostwriter approximate
state Gs. Coherence transactions are reduced by allowing the same
block in Core 0 and Core 1 to be valid, but have incoherent data.

Figure 4: Migratory sharing within (a) baseline protocol and (b) Ghostwriter protocol.

UPGRADE request is sent, invalidating all shared copies before
obtaining exclusive access block and writing the value.

e In Epoch 2, Core 0’s load will miss due to the invalidation from
Epoch 1, and the process repeats itself.

Note that this migratory sharing example also exhibits false shar-
ing since Core 0 and Core 1 are loading and storing to different
offsets in the same cache block. Even though both cores access
different memory addresses, this false sharing generates avoidable
coherence transactions and subsequently, unnecessary coherence
misses. Ghostwriter is able to minimize these negative effects
using approximate state Gg illustrated in Fig. 4b as follows:

e In Epoch 0, the store follows the same behaviour as the store in
the baseline MESI example.

e In Epoch 1, the initial load also proceeds the same ways as in the
baseline. However, if instead the store from Core 1is a scribble,
the block transitions from state S to approximate state Gs and the
value is updated immediately without needing exclusive access.

e In Epoch 2, the load from Core 0 hits since the block was not
invalidated from Core 1’s scribble in the Epoch 1, hiding the
coherence misses seen in the baseline example.

Note that in this example, both Core 0 and Core 1’s loads still read
correct values since they are writing the different block offsets. If
Core 0’s load in Epoch 2 were to read from offset 1, a stale would
be returned leading to approximate execution.
Producer-consumer sharing exists when one producer thread
writes a value followed by one or more consumers threads read-
ing that value. In addition, the producer is not fixed to a single
node—more often the producer changes between nodes [6]. Fig. 5

Core 0 & Corel & Core 2 & Directory &
Local Cache Local Cache Local Cache Shared Cache
0 M EH
STOREa — |
o : s GETX | Sharers
< : —
g : Fwd_GETX |
: |
® 222
e R
g —~o : N = O
P
& 82 Loap — GETS |
N —
©o Fwd_GETS | ﬂﬂﬂ
Data
——— Data
: Tk
SCRIBBLEL |....
s { Hit
3 P LoAD
&] Hit
: =E [1o]1]
= = = =
o] Timeout
] 0] BOE
a8

Figure 5: Producer-consumer pattern using Ghostwriter ap-
proximate state Gi. Core 0 is the first producer storing to
an invalid block in offset 0, Core 1 is the next producer. Co-
herence transactions are reduced by allowing scribbles to
update invalid blocks.

illustrates an example of producer-consumer sharing in Ghost-
writer using the Gy approximate state as follows:

e In Epoch 0, assume Core 1 initially holds the block in M state.
Core 0 acts as the producer storing value < a > at offset 0 by first
requesting exclusive access through a GETX request. The value

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

SCRIBE

Add lress T e T

1
Write Buffer Addr |f

DATA-RAM

TAG-RAMY,
\

[

| Way
} Select

Comparator

approx
Hit/Miss Data Out
Figure 6: Cache controller modifications to support the

scribble ISA extension. An additional module, scribe, is
needed to compare incoming write data with block data.

is updated once Core 1 forwards the block data to Core 0. Core 2
acts as a consumer and sends a GETS to the directory for shared
access. The load completes once data is forwarded from Core 0.
Both Core 0 and Core 2 share the block at the end of Epoch 0,
with Core 1’s block invalidated. This depicts producer-consumer
sharing in the baseline MESI protocol.
In Epoch 1, Core 1 is the producer seeking to update block offset 1
with value < b >. Conventionally this would repeat the producer-
consumer process in Epoch 0, however if Core 1’s store is approx-
imatable (scribble), the write is immediate and transitions to
approximate state Gy. Following loads, stores and scribble in-
structions from Core 1 hit in its cache. Core 2 acts as consumer
again, however since no GETX requests were sent by Core 1, the
load hits reducing both latency and coherence traffic.
o After some time in Epoch 2, the timeout of Core 1’s cache con-
troller transitions the block back to the I state from Gg to return
to coherency, but loses the update from the scribble instruction.

Note that if Core 2’s load in Epoch 1 accesses block offset 0, it
reads the correct value. However if Core 2 reads from offset 1, it will
execute on a stale value — approximate execution. Ghostwriter not
only minimizes the impacts of coherence misses due to false sharing
in both examples, it also hides coherence misses due to true sharing
by sacrificing accuracy in shared approximatable data.

3.4 Cache Controller

Hardware support in the cache controller for the scribble ISA
extensions is shown in Fig. 6 which includes an additional mod-
ule, scribe, made of XNOR equality comparators. The scribe
module takes write data (W) and the cache block word (B) and
compares them given the d-distance defined by the programmer
for the application. Our design closely follows existing cache con-
troller designs [36]; upon a store, the whole block is first read and
registered into the Write Reg. The corresponding word is updated
before the whole block is written back into the data RAM. Write
data and the block data are compared during the write procedure.
The approx signal is set if scribe determines both values meet

Henry Kao, Joshua San Miguel, and Natalie Enright Jerger

the set d-distance and scribble coherence state transitions are
enabled as in Fig. 3, otherwise it falls back to the baseline protocol
state transitions. A minimum of one cycle latency is needed to
determine a tag hit before writing to the block in which the scribe
can execute in parallel, thus it is not on the critical path [1].

Signed integer values -1 (0xFFFF) and 0 (0x0000) can be con-
sidered arithmetically close, but are completely different bit-wise
using our definition of d-distance. Small d-distances only apply
to the mantissa in floating point values which can limit possible
approximation opportunities. These issues along with supporting
custom data types can be solved at the expense of greater hardware
complexity which is left as future work.

3.5 Error Tuning and Bounding

Ghostwriter aims to open a new dimension of optimizations for
current and future error-tolerant applications. Our technique can
enable both developers and end-users to exploit the features in ap-
proximate coherence to obtain better energy-efficiency and perfor-
mance, however, there are some limitations in which Scribbles can
introduce errors to approximate data:

o Invalidation of both Gs (from invalidations requests) and Gy (from
periodic timeouts) returns the blocks to system-wide coherency
again, however updates made to the data within Gs and Gg will
be lost upon returning to L

e When two or more cores hold a block in either approximate
states, neither core will see the updates made by any other core
to their copy of the block in Gg or Gr.

e When a block in either approximate state is evicted from the
cache (e.g., from replacement request), the data updates made
are forfeited.

o During context switches and thread migrations, The approximate
data cannot be switched/migrated since approximate blocks are
not tracked by the directory; the data updates are forfeited.

A difficult challenge that approximate computing techniques
face is ensuring output error is bounded. Even though an approx-
imate execution of an application may yield low error values on
average, the worst-cases errors can be high [24]. A pathological
case in Ghostwriter occurs when multiple cores are accessing
copies of a cache block in approximate states Gg and/or Gg, and
one core is continuously updating a value that meets the d-distance
setting for approximation. In this rare case, the values seen by dif-
ferent cores can be considerably different and approximation can
be unbounded. Prior work in approximate computing has explored
schemes that can detect and resolve unbounded approximation to
an acceptable error level. These techniques span the stack from ap-
proximate programming languages and static analysis that expose
the recovery mechanisms to the programmer [3, 10], to light-weight
dynamic schemes that monitor error during runtime [17, 24, 25, 43].
Ghostwriter also allows for fine grained tuning of an applica-
tion by the programmer using d-distance, however it may be a
hassle if details of the application are not known. In addition to
PGO techniques [14, 44], we can also employ existing approximate
auto-tuning frameworks to automatically select the approximate
regions and d-distance for an output quality target specified by the
user [5, 19, 46] Work on error control/recovery mechanisms, PGO,
and auto-tuning is orthogonal to ours, but can be readily applied

Ghostwriter: A Cache Coherence Protocol for Error-Tolerant Applications

Table 1: Simulation Configuration

Parameter | Values

Cores 24 in-order cores, X86 ISA, 1GHz
[6] Ubuntu 16.04
L1 Private 32kB D-Cache/32kB I-Cache,
2-Way Set Assoc., 64B Block, Pseudo-LRU, 2-cycle
L2 Shared, 128kB per core, 8-Way Set Assoc.,

64B Block, Pseudo-LRU, 10-cycle

Coherence Ghostwriter Protocol (Baseline MESI),
d-distance 4 and 8, 1024-cycle Gy Timeout.
Network Mesh, XY Routing, 1-cycle router, 1-cycle link,
4 Directory Controllers at Mesh Corners
DRAM 2GB, DDR3 1600MHz
Table 2: Benchmarks
[Application [Domain [Input [Error
Phoenix
histogram Image Processing 400MB image | MPE
linear_regression | Machine Learning 50MB file MPE
pca Machine Learning 4MB matrix NRMSE
AxBench
blackscholes Financial Analysis 200K options | MPE
inversek?j Robotics 1000K points | NRMSE
jpeg Image Compression | 512x512 RGB | NRMSE

to Ghostwriter to ensure worst-case error is bounded for better
reliability.

3.6 Memory Consistency and Correctness

Scribbles from different cores may access the same approximate
datum simultaneously during data races, and the value of a read
from an approximate state may not yield up-to-date values. Hence
Ghostwriter’s approximate state may not follow the consistency
model of the underlying hardware. We relax the memory model for
approximate data as with prior work in this domain for improved
energy efficiency and performance [41, 46, 50]. However Ghost-
writer still maintains strict consistency for non-approximate data
since its follow the baseline coherence protocol. Only data that is
labeled as approximate may not follow the consistency model of
the underlying hardware, however this is practical since we are
operating on error-tolerant applications where imprecise execution
of approximate data is accepted.

4 Evaluation

We implement Ghostwriter on top of a MESI write-invalidate
directory protocol and evaluate in full-system gem5 [8]. The sim-
ulated CMP consists of 24 cores, each with private L1 caches and
a slice of physically distributed, logically shared L2 cache. Time-
out for approximate state Gy is set to 1024 cycles. Table 1 lists
detailed simulation parameters. We model cache and DRAM energy
using CACTI [33] and NoC energy using DSENT [53]. Table 2 lists
the applications we use from various error-tolerant domains from
Phoenix [38] (multi-threaded using pthreads), and AxBench [58],
which we multi-thread ourselves using OpenMP. Output error is
either measured in maximum percent error (MPE) or normalized
root-mean-squared error (NRMSE) depending on suitability for
each application [4]. Although Ghostwriter supports different d-
distance setting within each application, we fix it to 4-distance or
8-distance for all approximatable regions of code for simplicity.

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

30 hist linreg pca blksch invk2j jpeg Avg.

(2]
(=]

N
(=]

Serviced by Gs (%)
ey
o

o

4 8 4 8 4 8 4 8 4 8 4 8 4 8
d-distance
(@)
50 hist linreg pca blksch invk2j ipeg Avg.
S
<40 S
o
P 0 e | e |
a
3 P | e
2
S L0p
@
n 0

8 4 8 4 8 4 8 4 8
d-distance
(b)
Figure 7: Percentage of stores that would have missed on: (a)
S but were serviced by Gs, (b) I but were serviced by Gr.

4.1 Approximate States Utilization

We first look at utilization of Ghostwriter’s approximate states
Gs and Gy using 4-distance and 8-distance. Fig. 7a shows the per-
centage of stores that would have missed on read-only blocks (S)
that are serviced by Gs through the scribble ISA extension. For
linear_regression, sees 63.7% to 69.1% of stores to S that are
serviced by Gswith 4 and 8-distance. Setting larger d-distance val-
ues for each application allows for more difference in the least
significant bits between the new store value and the value being
overwritten, hence more scribble state transitions to Gg . Simi-
larly, benchmark jpeg observes an increase in store/scribble hits
on Gs from 48% to 64.7%. On average, approximate state Gs ser-
vices 18.7% and 21.5% of store coherence misses on S for d-distance
of 4 and 8 respectively.

Fig. 7b shows the percentage of stores that would have missed
on invalid blocks but now hit due to Ghostwriter’s Gy state. Com-
parable to Gg, increasing d-distance with the application from 4
to 8 allows for more scribbles to be enabled. In the case of pca,
Gy services 3.7% to 38.9% of the stores that would have missed on
invalid blocks in the baseline protocol. The large jump in G utiliza-
tion comes from only 4.1% of updating values having 4-distance in
contrast to 31.8% for 8-distance for the pca benchmark. On average
for 4-distance and 8-distance, G1 reduces store coherence misses
on I by 4.2% to 9.7%, respectively.

4.2 Coherence Transaction Reduction

Approximate states Gs and Gy can hide a considerable percentage
of store misses on shared and invalid blocks as seen in Fig. 7. How-
ever, an application may not see much benefit from Ghostwriter if
coherence misses only make up a small percentage of total misses.
Reduction in coherence transactions can give insight to how much
the approximate states affect the overall application. Fig. 8 shows
the reduction in the L1D cache coherence requests, namely GETX,
UPGRADE, GETS, and data transfers.

Linear_regression observes significant false sharing, and hence
significant coherence misses on its 1reg_args data structure. Over
12% of all stores in 1inear_regression miss on shared blocks, and

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

[J Other [J Data [GETS [l UPGRADE Ml GETX
hist linreg ca blksch _ _invk2j ipeg Avg.

=
o
o

o
u
a1

o
N
1

048 048 048 048 048048048
d—distance

Normalized Coherence Traffic
o ¢ o ¢ b
o n
o o

Figure 8: Coherence traffic reduction for Ghostwriter using
d-distance 4 and 8, with 0 being the baseline MESI protocol.

[0 Memory [Network

hist linreg pca blksch invk2j ipeg Avg.

(2]
o

a
o

|

=N
o O

Energy Saved (%)
8 Iy

4 8 4 8 4 8 4 8
d-distance
Figure 9: NoC and memory hierarchy dynamic energy sav-

ings for Ghostwriter using 4-distance and 8-distance.

o

4 8 4 8 4 8

9% of all loads miss on invalid blocks. Each thread is passed an
lreg_args via pointer, however the size of the structure is 52B
(smaller than a typical 64B block) resulting in multiple structures
mapping to the same block. Different threads then read and update
their own memory addresses that are mapped to the same blocks,
exhibiting migratory false sharing. There is a 22.8% reduction in co-
herence transactions using 8-distance since 69.1% of the stores that
would have missed, instead hit on blocks in Gg. It comes as a direct
result of reducing 22.5% of UPGRADE requests that would have
been sent by conventional stores to blocks in S. jpeg exhibits a mix-
ture of migratory sharing and producer-consumer sharing spread
across multiple shared data structures, using both Gs and Gy ap-
proximate states. Conventional stores to invalid cache blocks would
send GETX requests to the directory. However, transitions to Gt us-
ing 8-distance scribbles directly reduce the amount of GETX
requests by 23.6% for an overall reduction of 15.8%. On average
across the sampled applications, we see an reduction in coherence
transactions of 2.75% using 4-distance and 6.25% using 8-distance.

pca has a small percentage of coherence misses, 0.1% out of all
cache accesses compared to 10.1% for linear_regression. Even
though 38.8% of stores to invalid blocks in pca are serviced by the
G state, the small percentage of coherence misses make Ghost-
writer’simpact inconsequential. Both histogramand blackscholes
show similar behaviour with negligible amount of coherence misses
(0.2% and 0.3%, respectively). Prior software tools have found false
sharing within histogram’s shared array arg.blue [12]; however,
false sharing is dependent on allocation and scheduling of threads.
Given our machine setup, we observed very little false sharing
within histogram during runtime. Even if data structures are sus-
ceptible to false sharing, Ghostwriter will have little to no impact
on the application’s performance if this false sharing does not
present itself during execution in the form of coherence misses. If
it does, then Ghostwriter minimizes the impact on-the-fly as in
the case for linear_regression and jpeg.

Henry Kao, Joshua San Miguel, and Natalie Enright Jerger

40 hist linreg pca blksch invk2j ipeg Avg.

w
(=]

[u
o

Speedup (%)
N
o

o

4 8 8 4 8 4 8 4 8

)

d-distance

Figure 10: Speedup for Ghostwriter using 4-distance and 8-
distance.

0.12 hist linreg pca blksch invk2j jpeg Avg.

4 8 4 8 4 8 4 8 4 8 4 8 4 8
d—distance

Figure 11: Output error for Ghostwriter using 4-distance and
8-distance. Note the scale on the y-axis only goes up to 0.12%

4.3 Energy, Performance and Output Error

Dynamic energy saved using Ghostwriter for both the NoC and
the memory hierarchy normalized to the baseline MESI protocol
is shown in Fig. 9. The memory hierarchy includes accesses to L1
and L2 caches, as well as main memory. Improvements seen by
using Ghostwriter is proportional to the amount of false sharing
and hence coherence misses within each application during run-
time. Ghostwriter has the largest performance impact on linear-
_regression due to significant coherence misses on its lreg_args
data structure. The reduction in coherence transactions and con-
sequently network traffic provides up to 32.3% and 50.1% energy
savings within the NoC and memory hierarchy for 4-distance and
8-distance. jpeg uses both approximate states Gs and Gy for dy-
namic energy improvements up to 10.3% and 12.5% for 4-distance
and 8-distance. On average, across the sampled applications Ghost-
writer delivers dynamic energy savings of 7.8% and 11.2% for
4-distance and 8-distance within the NoC and memory hierarchy.
Speedup is shown in Fig. 10. Similar to the dynamic energy reduc-
tion, speedup is also proportional the amount of coherence misses
Ghostwriter can mitigate. We see up to 27.2% and 37.3% speedup
in applications with extensive false sharing (linear_regression),
and on average 4.7% to 6.5% speedup across all benchmarks for
4-distance and 8-distance. Note that Ghostwriter has no negative
impact on applications that do not exhibit false sharing; Ghost-
writer provides the same performance as the baseline protocol.
Fig. 11 shows output error using Ghostwriter. The average per-
cent error across all sampled applications is extremely low, less
than 0.02% for both 4-distance and 8-distance demonstrating the
applications’ resiliency to approximation. In the case of false shar-
ing under Ghostwriter, different threads can read and update the
same cache block without the ping-pong effect of passing the block
back and forth as seen in Fig. 4. As long as both threads write to
different memory address within the block, they still execute on
correct data. Errors are introduced for true sharing when different
threads are accessing the same memory address in the same block
in which case Ghostwriter allows threads to update simultane-
ously without seeing updates from the other threads. Data updates
are also lost when Gg timeouts to I, or Gg gets invalidated to I;

Ghostwriter: A Cache Coherence Protocol for Error-Tolerant Applications

100 —

o
]

<
R IS || B 75 2
& B g
> I ~ @ Output Error
& 50 e 50 m 3
kel =
3 S [0 Serviced by Gi
> 25 e e 25 R
5 S
3 B

0 0

128 512 1024

Timeout Period (cycles)
Figure 12: Utilization of Gp state (bars) and output error
(points) sensitivity to different timeout periods for false
sharing microbenchmark using 4-distance.

however, the inherent value similarity and limiting d-distance to 4
and 8 within the applications palliates the shared data divergence
upon scribble updates.

Ghostwriter does not provide performance gains nor does it
degrade performance for applications that do not show false sharing
during execution time. It also does not introduce error to these
applications. At worst, the application performs as it would in
the baseline protocol as seen in benchmarks histogram, pca and
blackscholes.

4.4 Timeout Sensitivity

Fig. 12 shows a sensitivity study for the timeout period used to
transition Gt back to invalid. We test the effect of different timeout
period on the utilization of Gr, namely the percent of stores that
would have missed on I, but was serviced by G1 and output error.
The microbenchmark (bad_dot_product) from Listing 1 is used to
thoroughly exercise the G state. Inputs to the microbenchmark are
8 million integers ranging in values from 0 to 255; we test with 4-
distance scribbles. Larger timeout periods see greater utilization
of the Gp state, where stores and scribbles can update values
immediately, reducing coherence transactions, up to 72.4% using
timeout period of 1024 cycles. Although longer timeout periods
result in more store/scribble hits on blocks in G, the updates
are lost once the timeout period ends so shorter timeout periods
lose less updates, and longer periods lose more updates. Error (in
MPE) increases from 15.3% using 128-cycle timeout to 60.8% using
1024-cycle timeout; however, this microbenchmark exaggerates the
effects of false sharing and is not representative of real applications.
We use a 1024-cycle timeout period for Gy for greater coherence
traffic reduction since our applications show high tolerance to error.

5 Related Work

Coherence Optimizations: Numerous cache coherence protocols
have been proposed over the past decades to improve performance
on specific sharing patterns such as migratory sharing [22, 52],
and producer-consumer sharing [13, 23]. Other proposed protocols
dynamically adapt to different sharing patterns [21, 39]. Alternative
software-hardware codesign approaches exposes coherence to pro-
grammers through software primitives, as in user-level/cooperative
shared memory [18], Stanford FLASH [26], Wisconsin Tempest/Ty-
phoon [40], CACHET [51], and Denovo [15]. These require knowl-
edge of underlying hardware which can prove too difficult for most
programmers [21], and can have high implementation complexity
as they propose completely new protocols, and require relaxed
consistency models.

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

Approximate Computing: Prior works in approximate com-
puting has explored value similarity [50]. Doppleganger [49] and
Bunker Caches [48] exploit value similarity within cache blocks
to improve performance and energy efficiency within memory ac-
cesses. Cache coherence has not been well explored within the
approximate computing domain. To the best of our knowledge,
Rengasamy et al. [42] are the first to propose approximate coher-
ence protocols. Their work stems off of Coherence Decoupling [21],
which speculatively executes on stale data from all invalid cache
blocks while waiting for coherent data to arrive. However instead
of roll-backs when speculative execution in incorrect, they continue
computing with the stale values, hence the approximate execution.
We extend work in this space by considering approximation to
stores that induce false-sharing based cache coherence misses.

6 Conclusion

Multi-threaded shared-memory applications are pervasive as com-
puters progress towards higher core counts. Shared data structures
can bottleneck an otherwise performant parallel application due
to false-sharing induced coherence cache misses and coherence
traffic. As a result, we present a novel cache coherence protocol for
the approximate computing domain names Ghostwriter. Ghost-
writer implements approximate states that reduces the amount of
coherence traffic due to stores to shared and invalid cache blocks
resulting in fewer coherence misses. We leverage the intrinsic
error-tolerance and value similarity present multi-threaded approx-
imate applications to trade off accuracy in shared approximate data
for energy and performance improvements. We show that Ghost-
writer protocol can achieve energy savings up to 50.1% within
the NoC and memory hierarchy, and speedups of 37.3% for error-
tolerant applications that exhibit false sharing, all with very low
output error.

References

[1] [n.d.]. ARM1156T2-S Technical Reference Manual. https://developer.arm.com/
docs/ddi0338/latest/level-one-memory-system/cache-organization. Accessed:
2019-10-10.

[n.d.]. gem5 MOESI CMP directory. http://gem5.org/MOESI_CMP_directory.

Accessed: 2019-03-04.

[3] Sara Achour and Martin C. Rinard. 2015. Approximate Computation with Outlier
Detection in Topaz. In Proc. of the 2015 Int’l Conf. on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2015).

[4] Ismail Akturk, Karen Khatamifard, and Ulya R. Karpuzcu. 2015. On Quantification
of Accuracy Loss in Approximate Computing. In in Workshop on Duplicating,
Deconstructing and Debunking (WDDD).

[5] Woongki Baek and Trishul M. Chilimbi. 2010. Green: A Framework for Supporting

Energy-conscious Programming Using Controlled Approximation. In Proc. of the

31st Conf. on Programming Language Design and Implementation.

N. Barrow-Williams, C. Fensch, and S. Moore. 2009. A communication charac-

terisation of Splash-2 and Parsec. In IEEE International Symposium on Workload

Characterization (IISWC).

Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William

Dally, Monty Denneau, Paul Franzon, William Harrod, Jon Hiller, Sherman Karp,

Stephen Keckler, Dean Klein, Robert Lucas, Mark Richards, Al Scarpelli, Steven

Scott, Allan Snavely, Thomas Sterling, R. Stanley Williams, Katherine Yelick,

Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally,

Monty Denneau, Paul Franzon, William Harrod, Jon Hiller, Stephen Keckler, Dean

Klein, Peter Kogge, R. Stanley Williams, and Katherine Yelick. 2008. ExaScale

Computing Study: Technology Challenges in Achieving Exascale Systems Peter

Kogge, Editor & Study Lead.

[8] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SSIGARCH Comput. Archit.
News (2011).

[2

G

7

https://developer.arm.com/docs/ddi0338/latest/level-one-memory-system/cache-organization
https://developer.arm.com/docs/ddi0338/latest/level-one-memory-system/cache-organization
http://gem5.org/MOESI_CMP_directory

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

=

[10

[11]

[12]

[13

[14]

(15

(16]

[17]

[18]

[19

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27

[28]

[29

[30]

(31

[32]

[33]

[34]

William J. Bolosky and Michael L. Scott. 1993. False Sharing and Its Effect on
Shared Memory Performance. In USENIX Systems on USENIX Experiences with
Distributed and Multiprocessor Systems - Volume 4.

Brett Boston, Zoe Gong, and Michael Carbin. 2018. Leto: Verifying Application-
Specific Hardware Fault Tolerance with Programmable Execution Models. Proc.
ACM Program. Lang. OOPSLA (2018).

Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev,
M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. 2010. An Anal-
ysis of Linux Scalability to Many Cores. In Proc. of the 9th USENIX Conference on
Operating Systems Design and Implementation.

Milind Chabbi, Shasha Wen, and Xu Liu. 2018. Featherlight On-the-fly False-
sharing Detection. In Proc. of the 23rd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming.

L. Cheng, J. B. Carter, and D. Dai. 2007. An Adaptive Cache Coherence Protocol
Optimized for Producer-Consumer Sharing. In IEEE 13th Int’l Symposium on High
Performance Computer Architecture.

V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan. 2013. Analysis and
characterization of inherent application resilience for approximate computing.
In 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC).

B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V. Adve, V. S.
Adve, N. P. Carter, and C. Chou. 2011. DeNovo: Rethinking the Memory Hier-
archy for Disciplined Parallelism. In 2011 International Conference on Parallel
Architectures and Compilation Techniques.

H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. 2012. Architecture Support
for Disciplined Approximate Programming. In Proc. of the 17th Int’l Conf. on
Architectural Support for Programming Languages and Operating Systems.

B. Grigorian and G. Reinman. 2014. Dynamically adaptive and reliable approxi-
mate computing using light-weight error analysis. In 2014 NASA/ESA Conference
on Adaptive Hardware and Systems (AHS).

Mark D. Hill, James R. Larus, Steven K. Reinhardt, and David A. Wood. 1992.
Cooperative Shared Memory: Software and Hardware for Scalable Multipro-
cessor. In Proc. of the Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems.

Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant
Agarwal, and Martin Rinard. 2011. Dynamic Knobs for Responsive Power-aware
Computing. In Proc. of the 16th International Conference on Architectural Support
for Programming Languages and Operating Systems.

M. Horowitz. 2014. 1.1 Computing’s energy problem (and what we can do about
it). In IEEE Int’l Solid-State Circuits Conference Digest of Technical Papers (ISSCC).
Jaehyuk Huh, Jichuan Chang, Doug Burger, and Gurindar S. Sohi. 2004. Coherence
Decoupling: Making Use of Incoherence. In Proc. of the 11th Int’l Conference on
Architectural Support for Programming Languages and Operating Systems.

S. Kaxiras and C. Young. 2000. Coherence communication prediction in
shared-memory multiprocessors. In Proc. 6th International Symposium on High-
Performance Computer Architecture.

A. Kayi, O. Serres, and T. El-Ghazawi. 2015. Adaptive Cache Coherence Mecha-
nisms with Producer-Consumer Sharing Optimization for Chip Multiprocessors.
IEEE Trans. Comput. (2015).

D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke. 2015. Rumba: An online
quality management system for approximate computing. In 2015 ACM/IEEE 42nd
Annual International Symposium on Computer Architecture (ISCA).

D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke. 2016. Quality Control for
Approximate Accelerators by Error Prediction. IEEE Design Test 33 (2016).

J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chapin,
D. Nakabhira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy.
1994. The Stanford FLASH multiprocessor. In Proc. of 21 International Symposium
on Computer Architecture.

Kevin M. Lepak and Mikko H. Lipasti. 2000. On the Value Locality of Store
Instructions. In Proc. of the 27th Int’l Symposium on Computer Architecture.

K. M. Lepak and M. H. Lipasti. 2000. Silent stores for free. In Proc. 33rd Annual
IEEE/ACM Int’l Symposium on Microarchitecture.

Kevin M. Lepak and Mikko H. Lipasti. 2002. Temporally Silent Stores. In Proc.
of the 10th International Conference on Architectural Support for Programming
Languages and Operating Systems.

M. H. Lipasti and J. P. Shen. 1996. Exceeding the dataflow limit via value prediction.
In Proc. of the 29th Int’l Symposium on Microarchitecture.

Mikko H. Lipasti, Christopher B. Wilkerson, and John Paul Shen. 1996. Value
Locality and Load Value Prediction. In Proc. of the 7th Int’l Conf. on Architectural
Support for Programming Languages and Operating Systems.

L. Luo, A. Sriraman, B. Fugate, S. Hu, G. Pokam, C. J. Newburn, and J. Devi-
etti. 2016. LASER: Light, Accurate Sharing dEtection and Repair. In IEEE Int’l
Symposium on High Performance Computer Architecture.

Naveen Muralimanohar, Rajeev Balasubramonian, and Norman Jouppi. 2009.
Cacti 6.0: A tool to model large caches. HP Laboratories (2009).

Mihir Nanavati, Mark Spear, Nathan Taylor, Shriram Rajagopalan, Dutch T. Meyer,
William Aiello, and Andrew Warfield. 2013. Whose Cache Line is It Anyway?:
Operating System Support for Live Detection and Repair of False Sharing. In
Proc. of the 8th ACM European Conference on Computer Systems.

(35]

[36]

(37

[38

[40]

[41]

[42]

[43

(44

[45

[46

[47

[49]

[50]

[51

[52

[53

[54]

[55

[56

[57

[58

Henry Kao, Joshua San Miguel, and Natalie Enright Jerger

J. D. Owens, W. J. Dally, R. Ho, D. N. Jayasimha, S. W. Keckler, and L. Peh. 2007.
Research Challenges for On-Chip Interconnection Networks. IEEE Micro (2007).
David A. Patterson and John L. Hennessy. 2013. Computer Organization and
Design, Fifth Edition: The Hardware/Software Interface (5th ed.). Morgan Kaufmann
Publishers Inc.

Louis-Noél Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen,]J. Ra-
manujam, P. Sadayappan, and Nicolas Vasilache. 2011. Loop Transformations:
Convexity, Pruning and Optimization (POPL ’11).

Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos
Kozyrakis. 2007. Evaluating MapReduce for Multi-core and Multiprocessor
Systems. In Proc. IEEE 13th Int’l Symp. on High Performance Computer Architecture.
A. Raynaud, Zheng Zhang, and J. Torrellas. 1996. Distance-adaptive update pro-
tocols for scalable shared-memory multiprocessors. In Proc. 2nd Int’l Symposium
on High-Performance Computer Architecture.

S. K. Reinhardt, J. R. Larus, and D. A. Wood. 1994. Tempest and Typhoon: user-
level shared memory. In Proc. of 21th Int’l Symp. on Computer Architecture.
Lakshminarayanan Renganarayana, Vijayalakshmi Srinivasan, Ravi Nair, and
Daniel Prener. 2012. Programming with Relaxed Synchronization. In Proceedings
of the 2012 ACM Workshop on Relaxing Synchronization for Multicore and Manycore
Scalability (RACES ’12).

P. V. Rengasamy, A. Sivasubramaniam, M. T. Kandemir, and C. R. Das. 2015. Ex-
ploiting Staleness for Approximating Loads on CMPs. In International Conference
on Parallel Architecture and Compilation (PACT).

Michael Ringenburg, Adrian Sampson, Isaac Ackerman, Luis Ceze, and Dan
Grossman. 2015. Monitoring and Debugging the Quality of Results in Approxi-
mate Programs. In Proc. of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems.

Pooja Roy, Rajarshi Ray, Chundong Wang, and Weng Fai Wong. 2014. ASAC:
Automatic Sensitivity Analysis for Approximate Computing. In Proc. of the 2014
Conf. on Languages, Compilers and Tools for Embedded Systems.

Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott Mahlke.
2014. Paraprox: Pattern-based Approximation for Data Parallel Applications. In
Proc. of the 19th International Conference on Architectural Support for Programming
Languages and Operating Systems.

M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke. 2013. SAGE:
Self-tuning approximation for graphics engines. In 46th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO).

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis
Ceze, and Dan Grossman. 2011. EnerJ: Approximate Data Types for Safe and
General Low-power Computation. In Proc. of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation.

J. San Miguel, J. Albericio, N. Enright Jerger, and A. Jaleel. 2016. The Bunker
Cache for spatio-value approximation. In 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO).

J. San Miguel, J. Albericio, A. Moshovos, and N. Enright Jerger. 2015. Doppel-
ganger: A cache for approximate computing. In 48th Annual IEEE/ACM Int’l
Symposium on Microarchitecture (MICRO).

J. San Miguel, M. Badr, and N. Enright Jerger. 2014. Load Value Approximation.
In 47th Annual IEEE/ACM International Symposium on Microarchitecture.
Xiaowei Shen, Arvind, and Larry Rudolph. 1999. CACHET: An Adaptive Cache
Coherence Protocol for Distributed Shared-Memory Systems. In Proceedings of
the 13th International Conference on Supercomputing (ICS *99).

Per Stenstrém, Mats Brorsson, and Lars Sandberg. 1993. An Adaptive Cache
Coherence Protocol Optimized for Migratory Sharing. In Proc. of the 20th Annual
International Symposium on Computer Architecture.

C. Sun, C. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L. Peh, and V. Sto-
janovic. 2012. DSENT - A Tool Connecting Emerging Photonics with Electronics
for Opto-Electronic Networks-on-Chip Modeling. In IEEE/ACM 6th International
Symposium on Networks-on-Chip.

Jubi Taneja, Zhengyang Liu, and John Regehr. 2020. Testing Static Analyses
for Precision and Soundness. In Proceedings of the 18th ACM/IEEE International
Symposium on Code Generation and Optimization (CGO 2020).

S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan.
2013. Quality programmable vector processors for approximate computing. In
46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
S. Venkataramani, K. Roy, and A. Raghunathan. 2013. Substitute-and-simplify: A
unified design paradigm for approximate and quality configurable circuits. In
Design, Automation Test in Europe Conference Exhibition (DATE).

D. Wong, N. S. Kim, and M. Annavaram. 2016. Approximating warps with
intra-warp operand value similarity. In IEEE International Symposium on High
Performance Computer Architecture.

A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran. 2017.
AxBench: A Multiplatform Benchmark Suite for Approximate Computing. IEEE
Design Test (2017).

	Abstract
	1 Introduction
	2 Background & Motivation
	3 Ghostwriter Protocol
	3.1 Programmer Support
	3.2 Protocol Description
	3.3 Protocol Operation
	3.4 Cache Controller
	3.5 Error Tuning and Bounding
	3.6 Memory Consistency and Correctness

	4 Evaluation
	4.1 Approximate States Utilization
	4.2 Coherence Transaction Reduction
	4.3 Energy, Performance and Output Error
	4.4 Timeout Sensitivity

	5 Related Work
	6 Conclusion
	References

