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CAP’NN: A Class-aware Framework for Personalized Neural
Network Inference
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We propose a framework for Class-aware Personalized Neural Network Inference (CAP’NN), which prunes

an already-trained neural network model based on the preferences of individual users. Specifically, by adapt-

ing to the subset of output classes that each user is expected to encounter, CAP’NN is able to prune not

only ineffectual neurons but also miseffectual neurons that confuse classification, without the need to retrain

the network. CAP’NN also exploits the similarities among pruning requests from different users to mini-

mize the timing overheads of pruning the network. To achieve this, we propose a clustering algorithm that

groups similar classes in the network based on the firing rates of neurons for each class and then implement

a lightweight cache architecture to store and reuse information from previously pruned networks. In our ex-

periments with VGG-16, AlexNet, and ResNet-152 networks, CAP’NN achieves, on average, up to 47% model

size reduction while actually improving the top-1(5) classification accuracy by up to 3.9%(3.4%) when the user

only encounters a subset of the trained classes in these networks.
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1 INTRODUCTION

Deep learning algorithms have gained significant success in many domains, ranging from im-

age and video classification to natural language processing. Convolutional Neural Networks

(CNNs) are among the most widely used family of deep learning methods, providing unprece-

dented accuracy in applications such as object localization and object detection [25]. The high

accuracy though comes with significant increase in required memory and computation resources,

which mandates efficient hardware implementation of these networks on local devices. To address

this, many approaches have been proposed to prune and compress the network. However, despite

their success in reducing model size, prior approaches are fundamentally limited in their oblivi-

ousness to the users of the model.
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Our Goal: Personalized Inference. Our key insight is that an individual user only encounters a

tiny fraction of the trained classes on a regular basis. Storing trained models (pruned or not) for all

possible classes on local devices is costly and overprovisioned for the user’s needs. For example,

as prior studies show [23], 22% of the top 100 Android applications only use a single output class

(e.g., faces, books, etc.) of the ImageNet dataset, which contains 1,000 output classes in total and

is the widely used for image classification. Our study with a social media user also finds that

among their 600 photos, seven classes make up 93% of the total observed classes. However, simply

retraining bespoke neural network models for every user is not cost-effective, since there can be

many users, all of whom are unique.

Our Solution: CAP’NN. We propose a Class-aware Framework for Personalized Neural

Network Inference (CAP’NN), which provides a personalized inference framework, taking a

commodity trained model and pruning it based on the preferences of the user.1 This minimizes

the memory and computation overheads on the local device, processing neurons on a need basis

(i.e., only when the user expects to encounter a specific output class).

This form of class-aware pruning is novel in its ability to consider which classes the user expects

to encounter and weighs the pruning based on how frequently the user encounters them. It exploits

the fact that not all neurons contribute equally towards correctly classifying a given output class.

While prior class-unaware works are limited to pruning only ineffectual neurons (i.e., neurons that

have low contribution to the final classification), CAP’NN uncovers the concept of miseffectual

neurons, which are neurons that actually work against the correct identification of a specific class.

Prior class-unaware pruning techniques are oblivious to miseffectual neurons, since, by nature of

the training algorithm, all neurons contribute positively towards at least one class in the dataset.

However, by personalizing the trained model and removing some classes, miseffectual neurons

are left behind that are no longer useful and in fact confuse the classification of the remaining

classes. By pruning miseffectual neurons, CAP’NN is able to achieve even higher accuracy than

the original unpruned model, despite its much smaller model size. CAP’NN is also different from

recent works [8, 23], which prune a network for a predefined subset of classes by identifying and

removing unnecessary convolutional filters from the convolutional layers. Compared to CAP’NN,

these works have limited opportunity for model size reduction and accuracy improvement, because

(1) they do not consider per-class usage of each user and (2) they are oblivious to the concept of

miseffectual neurons.

CAP’NN also exploits similarities among pruning requests from different users to reduce the

timing overheads of pruning. Specifically, we first cluster the output classes of the network into

groups based on the similarities between the firing rate of neurons. Next, we implement a light-

weight cache architecture to store information about how the original network gets pruned for a

given subset of classes. This information can be reused if a new user requests a pruning request

for a different subset of classes with overlap and similarities with previous ones.

Contributions. Our work makes the following contributions:

• We introduce CAP’NN, a personalized inference framework that supplies neurons on a need

basis, given the user’s preferences.

• We propose new class-aware pruning schemes that take into account the distribution of

classes that the user expects to encounter, achieving greater reductions in model size (up

to 50% of the original model size as we pruned VGG-16 for 10 classes).

1The user is the captain now.
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Fig. 1. (a) Overview of CAP’NN. (b) Example showing different types of neurons.

• We uncover the concept of miseffectual neurons and derive an algorithm for pruning them,

achieving 2.3%(3.2%) improvement in top-1(5) accuracy of VGG-16 compared to the original

unpruned model when pruning for 10 user-specified classes.

• We propose a lightweight cache architecture to minimize timing overhead of CAP’NN. Our

technique exploits the similarities in the pruning requests from many users. Here, each user

requests to prune the network for a different subset of classes but there may be overlap and

similarities between the requested classes from different users.

2 OVERVIEW OF CAP’NN

In this section, we present our framework, CAP’NN, which enables personalized inference by

pruning the network for a specific subset of classes based on the user’s preferences. Figure 1(a)

shows a high-level overview of our proposed framework. CAP’NN takes in a trained network as

input and generates a class-aware pruned network, greatly reducing model size and improving

accuracy for the user’s subset of classes. Class-aware pruning exploits the correlation between

neurons and output classes and without need to retrain the network [12].

Preprocessing Class-specific Firing Rates. First, as a preprocessing step, we need to obtain

the correlation between neurons and output classes. To achieve this, we propose to measure the

class-specific firing rate of neurons in the network. The class-specific firing rate represents how

often a neuron gets fired when classifying the inputs that belong to a given output class. The key

observation here is that in neural networks, the presence (or absence) of a particular feature in the

received input is encoded as a positive (or negative) value for the feature’s neurons. The negative

neurons are clamped to zero as they pass through a ReLU function and are thus withheld from

firing. As a result, the class-specific firing rate can serve as a proxy for how useful a neuron is

in recognizing a given class. This preprocessing step is performed once offline, and class-specific

firing rates are stored in the cloud server along with the network’s architecture parameters.

Class-aware Pruning Techniques. Next, class-specific firing rates are utilized to prune the net-

work for a subset of user-specified classes. We propose three variations of class-aware pruning:

• CAP’NN-Basic pruning (CAP’NN-B) uses the class-specific firing rates to first find a subset of

neurons to be pruned for each output class while maintaining the per-class accuracy degra-

dation below a threshold. The neurons that get pruned are thus ineffectual for a specific class.

Then, for a user-specified subset of classes, CAP’NN-B prunes the neurons that are ineffectual

for all classes.

• CAP’NN-Weighted pruning (CAP’NN-W) extends this to account for the expected per-class

usage for each individual user, leading to more aggressive pruning. Specifically, CAP’NN-W
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Fig. 2. Architecture view of the local device.

considers the likelihood of encountering each class to estimate an effective firing rate for

each neuron. The effective firing rate is then used to find pruning candidates.

• CAP’NN-Miseffectual pruning (CAP’NN-M) enables pruning of miseffectual neurons in addi-

tion to the ineffectual ones already pruned by CAP’NN-W. It identifies and prunes neurons

that work against the correct classification of the user classes.

Figure 1(b) shows an example of different types of neurons for a specific class (i.e., dogs). Here

neuron n6 is ineffectual, because it is not contributing to any of the output classes due to its low

firing rate. Neurons n2 and n4 are miseffectual, because they work toward identifying a wrong

output class (i.e., horses).

Pruning Process. In CAP’NN, the original network model is in the cloud. The cloud is responsible

for pruning the network appropriately and sending the final model to the local device. Network

pruning starts upon the user’s request. To prune the network, the cloud receives the user’s prefer-

ences (i.e., subset of classes as well as their expected usage). This information can either be directly

provided by the user or obtained from a dedicated monitoring period. During the monitoring pe-

riod, the cloud is responsible to track the network’s prediction and determine the most frequently

used classes and their usages, since original network resides in the cloud. Once the information is

provided, the original network is pruned in the cloud (without the need for retraining) and is sent

back to the device to be used for local inference. Note that the network can be pruned again if the

user’s preferences change.

Online Inference. A high-level overview of our hardware on the local device is shown in Figure 2.

It is modeled after Google’s Tensor Processing Unit (TPU) [16]. The weights and input data

are stored in off-chip memory. To perform the inference computations, the weights and data are

fetched from the off-chip buffer to fill up the on-chip weight and input buffers. The data values

are then fed into various multiply-accumulate (MAC) units. The generated results are then

propagated to the activations and pooling units. The outputs are stored in output buffers and are

used as inputs to the next layer. A control unit is required to provide all necessary control signals.

On-chip buffers are large enough to hold intermediate results generated by network. To execute

the convolutional layers, we assume that the input feature maps are processed in parallel and the

output feature maps are processed sequentially [30].

Summary. The advantage of CAP’NN is its novel approach of class-aware pruning, removing

both miseffectual and ineffectual neurons based on user preferences. We show in our experiments

that class-aware pruning of ineffectual neurons significantly reduces the network model size and

energy consumption. On top of this, pruning miseffectual neurons can significantly boost per-

class classification accuracy compared to the original network model. The next section describes

our class-aware pruning algorithms in detail.
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3 CLASS-AWARE PRUNING TECHNIQUES

Our class-aware pruning techniques require to first calculate class-specific firing rates for each

neuron (or channel in case of convolutional layers2). This process is done once offline and the

results are stored in the cloud. To obtain the neuron firing rates, we run the network using the

training dataset with equal number of samples for each class. The class-specific firing rate of a

neuron is then calculated as the fraction of effectual neurons (i.e., non-zero neurons that actively

fire for the input samples representing a given class). In case of a convolutional layer, we calculate

the class-specific firing rate of a channel as the average percentage of non-fired neurons in its

corresponding feature map as described in Reference [14]. In this section, we focus our explanation

on pruning neurons; it is straightforward to adapt the discussions to pruning channels. We propose

three variations of CAP’NN for class-aware pruning [12].

3.1 CAP’NN-B: Basic Class-aware Pruning

Our basic class-aware pruning technique receives as input a CNN along with the user’s preferences:

a set ofK output classes that the user expects to encounter as well as an acceptable degradation in

classification accuracy denoted by ϵ . It also receives the class-specific firing rates for each neuron

that we calculate in the cloud a priori. It outputs a set of neurons to be pruned while guaranteeing

that the post-pruning degradation in accuracy is below ϵ for each output class. More specifically,

the inputs are denoted as below:

• CNN specified by a set of output classes C and set of layers3 L with neurons N� ∀� ∈ L
• Firing rate matrix F� of dimension |N� |×|C| ∀� ∈ L
• Accuracy degradation ϵ
• Set K of user-specific classes

Offline Algorithm: Identifying Pruning Candidates. CAP’NN-B first applies Algorithm 1 to

identify for each class, a set of neurons that can be pruned while guaranteeing the degradation in

accuracy remains below ϵ in all the classes. Algorithm 1 is independent ofK . It receives the CNN

as input along with ϵ and layer-specific matrix of neuron firing rates F� , as explained before. It

returns a layer-specific pruning matrix P� of dimension |N� | × |C| for all � ∈ L. An element (n,c)

in P� is a binary value indicating if neuron n in layer � may be pruned for class c . Given a class

c , the non-zero elements in vectors (:, c ) in P�s (∀� ∈ L) specify the set of neurons that may be

pruned simultaneously across all layers for class c while guaranteeing the accuracy degradation

is below ϵ , for all the output classes.

We first explain how Algorithm 1 operates and then explain how its output is utilized at run-

time to find the neurons to prune for the user-specified classes. Starting from line 1, it visits each

of the last layers in the network and computes pruning matrix P� for that layer, considering the

accuracy degradation of all pruned layers up to that point. Specifically, in lines 7–15, it flags a

set of candidate neurons to be temporarily pruned for each class c in the current layer. These

are the neurons with firing rate below a threshold T (set to T 1
star t in line 5). Next in lines 14–

16, it adds the set of neurons that have been pruned so far from the previously visited layers. In

lines 17–19, it measures accuracy degradation in each class for this combined pruning set. If the

accuracy degradation is below ϵ in all classes, then the candidate neurons identified in the layer

are permanently marked as pruned in line 21. Otherwise, the firing threshold T is decreased by a

2Channel pruning for convolutional layers reduces memory overhead of storing the firing rates and alleviates sparsity of

the weight matrices and irregular memory accesses, leading to a more efficient hardware implementation.
3We consider L to be the last few layers of the CNN and prune only from the last layers, because earlier layers are typically

not class-specific and extract more general features from the input.
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ALGORITHM 1: CAP’NN-B(CNN, ϵ , F� ∀� ∈ L , &P� ∀� ∈ L)

Inputs: CNN given by set of output classes C and set of layers L with neurons N� ∀� ∈ L, accuracy this

degradation ϵ , firing rates matrices F� of dimension |N� | × |C| ∀� ∈ L. this is added to adjust the line; this is

Outputs: Pruning matrix P� of dimension |N� | × |C| ∀�L. this is added to adjust the line; this is added to

adjust the line; this

1: for each layer � = lstar t to |L| do

2: CAP-PerLayer(�, N� , F� , C, ϵ , &P� )

3: end for

4: procedure CAP-PerLayer(�, N� , F� , C, ϵ , &P� )

5: T = T 1
star t

6: H (n, c ) = 0 ∀n ∈ N� ∀c ∈ C
7: for each class c ∈ C do

8: for each neuron n ∈ N� do

9: if F� (n, c ) ≤ T then � Firing rate for class c is below T
10: H (n, c ) = 1 � Flag to temporarily prune

11: end if

12: end for

13: Temporarily prune neurons n from � if H (n, c ) = 1 ∀n ∈ N�

14: for each layer l = lstar t to � − 1 do

15: Temporarily prune neuron n from layer l if Pl (n, c ) = 1

16: end for

17: for each i ∈ C do

18: Measure accuracy degradation di at class i of pruned CNN

19: end for

20: if di ≤ ϵ ∀i ∈ C then

21: Set P� (n, c ) = H (n, c ) ∀n ∈ N� � Prune permanently

22: else

23: T = T − step and go to line 2

24: end if

25: end for

26: end procedure

step and the process is repeated to identify fewer neurons until accuracy degradation is below ϵ
for all classes.

The outputs of this per-layer procedure are the neurons that are permanently marked for prun-

ing for each class (i.e., P (n, c ) = 1) in that layer (i.e., P� pruning matrix). The algorithm terminates

once P� is computed for all layers in lines 1–3.

Online Pruning. At run-time, given the set of user-specified classesK , the actual pruned neurons

for a layer � are given by ∩c ∈K (:, c ) in P� , which computes the intersection of per-class pruning

vectors over the classes inK . This computation is done for each layer to find the final set of pruned

neurons across all layers.

We note that Algorithm 1 is able to maintain the accuracy of the model after pruning for two

reasons. First, the algorithm guarantees a bound of ϵ in accuracy degradation for each class; Given

that the intersection of the neurons (which is a smaller set) are removed for a subset of classes,

CAP’NN-B will not be an aggressive pruning scheme. Second, CAP’NN-B prunes the network layer

by layer and sequentially, providing an for the model to compensate for accuracy loss from previ-

ous layers if an effectual neuron gets pruned.
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Overall, CAP’NN-B relies on storing binary pruning vectors generated by Algorithm 1 and at

run-time would only perform the intersection operation among related pruning vectors; thus, it

is a fast online procedure. It also guarantees that the pruned vectors always result in an accuracy

degradation of at most ϵ , regardless of |K |.

Timing Complexity. Algorithm 1 involves finding per-layer pruning matrix (lines 4–26) for all

layers in L. For each layer, the main following operations are executed: (1) the algorithm iterates

through all classes in the original network (line 7), (2) for each class, it iterates through all neurons

in the layer (lines 8–11), and (3) the algorithm temporary prunes the neurons from previous layers

to find pruning matrix for the current layer (line 14).

Assume the network has |C| output classes and each layer has at most |N | neurons. Also, assume

we are interested to find pruning matrices for the last |L| layers. Then, finding pruning matrix for

each layer has timing complexity ofO (max ( |N |, |L|).|C|). Given that number of neurons per layer

in a network is generally greater than the number of the layers in the network, the complexity of

CAP-PerLayer algorithm will beO ( |N |.|C|) for each iteration. The algorithm though may run for

multiple iterations to find the appropriate pruning thresholdT for the layer. This is done by reduc-

ing the threshold at each iteration and repeating the same procedure (line 23). While the number

of pruning iteration is not pre-determined, it is limited to itmax = �T
1
st ar t

step
�. (In our experiments,

we show that only a small number of pruning iteration is required to prune the model.) With that

said, CAP-PerLayer has time complexity ofO (itmax .|N |.|C|). Since CAP-PerLayer is executed for

last |L| layers, the complexity of CAP’NN-B will be O ( |L|.itmax .|N |.|C|).

3.2 CAP’NN-W: Weighted Class-aware Pruning

CAP’NN-W is a generalization of CAP’NN-B that takes into account the likelihood of encountering

each class. The input user preferences include a weight 0 ≤ wk ≤ 1 for each user-specified class

k∈K . For a single user, these weights add to 1. Recall that this information is either obtained from

user directly or is collected by cloud from a dedicated monitoring period, as discussed in Section 2.

Online Algorithm: Identifying Pruning Candidates. Similar to CAP’NN-B, pruning is con-

ducted layer by layer and at each layer the neurons to be pruned are identified. This time, however,

the per-layer pruning matrix P� is of dimension |N� | ×1. Algorithm 2 shows the per-layer pruning

procedure for CAP’NN-W.

First, in lines 2–6, for each neuron in the layer, the condition
∑

k ∈K wk×F� (n,k ) ≤ T is evaluated.

This condition computes an effective firing rate given bywk ×F� (n,k ), which represents how often

a neuron n fires for class k , accounting for how likely k will be encountered by the user. It then

temporarily flags the neuron to be pruned if the sum of its effective firing rates across the classes

in K is below a threshold.

The next steps in lines 8–17 are similar to Algorithm 1: it permanently prunes the flagged neu-

rons if the per-class degradation in accuracy is below ϵ for all used classes, while accounting for

the neurons pruned so far in earlier layers.

Note that Algorithm 2 cannot be performed offline, because it depends on the distribution

of user-specified classes, which is only known (and may even change) at run-time. Therefore,

CAP’NN-W takes longer to execute at run-time compared to CAP’NN-B. However, the procedure

is still fast, especially when limited to only a few classes, i.e., |K | is small. This is because the

per-class loop in Algorithm 1 (line 7) is completely removed. CAP’NN-W also incurs a higher mem-

ory overhead compared to CAP’NN-B, since it needs to store the floating-point firing rates to be

used at run-time. This overhead can be alleviated by encoding the floating-point firing rates with

fewer number of bits. Finally, CAP’NN-W guarantees that the pruned neurons cannot yield accuracy
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Fig. 3. Comparison of CAP’NN-B and CAP’NN-W.

ALGORITHM 2: CAP’NN-W-PerLayer(�, N� , F� , K , w, ϵ , &P�)

Inputs: layer � with set of neuronsN� , firing rate matrix F� , set of used classes C with vector of class-usage

weights w, accuracy degradation ϵ . This is added to adjust the line; this is added to adjust the line; this is

addedOutputs: Pruning matrix P� of dimensionN� × 1. matrix F� , set of used classes C with vector of class-usage

weights w, accuracy degradation ϵ .

1: T = T 1
star t ; H (n) = 0 ∀n ∈ N�

2: for each neuron n ∈ N� do

3: if
∑

k ∈K wk × F� (n,k ) ≤ T then

4: H (n) = 1 � Flag to temporarily prune

5: end if

6: end for

7: Temporarily prune neurons n from � if H (n) = 1 ∀n ∈ N�

8: for each layer l = lstar t to � − 1 do

9: Temporarily prune neuron n from layer l if Pl (n) = 1

10: end for

11: for each i ∈ K do

12: Measure accuracy degradation di at class i of pruned CNN

13: end for

14: if di ≤ ϵ ∀i ∈ K then

15: Set P� (n) = H (n) ∀n ∈ N� � Prune permanently

16: else

17: T = T − step and go to line 2

18: end if

degradation beyond ϵ . This is because the algorithm estimates accuracy degradation for each

class in K (line 11) before pruning neurons from a layer permanently. Also, similar to Algo-

rithm 1, CAP’NN-W prunes the network layer by layer, providing more control to maintain network

performance.

Online Pruning. Accounting for the likelihood of each class allows for more aggressive prun-

ing of neurons in CAP’NN-W compared to CAP’NN-B at runtime. Consider the example shown in

Figure 3 with three neurons and three classes. Assume the pruning threshold determined by both

algorithms isT = 0.1. The per-class weights are listed for CAP’NN-W along with the effective firing

rate for each neuron. Here, neuron n1 is not pruned by CAP’NN-B, because its firing rate is above

T for one of the three classes (i.e., c2). In contrast, CAP’NN-W prunes n1, because its effective firing

rate is below T , considering that class c2 is only encountered 10% of the time.

Timing Complexity. Timing complexity of Algorithm 2 is similar to Algorithm 1. The only dif-

ference is that in Algorithm 2 the per-class loop is removed and it only iterate through all neurons
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in each layer to find effective firing rates and temporarily prune the neurons from previous layers.

With that said, the timing complexity of CAP-PerLayer algorithm will be O (max ( |N |, |L|, |K |))
for each iteration where |K | is the subset of classes the user is interested in. Again, assuming that

number of neurons in each layer exceeds the number of layers and the number of user-specified

classes, the timing complexity to find per-layer pruning matrix is O (itmax .|N |) and timing com-

plexity for CAP’NN-W will be O (itmax .|L|.|N |).

3.3 CAP’NN-M: Class-aware Pruning of Miseffectual Neurons

So far, our proposed schemes have only pruned ineffectual neurons. CAP’NN-M is an extension to

CAP’NN-W that identifies and prunes miseffectual neurons. We say that a neuron is miseffectual if it

fires in the direction of an incorrect class. That is, for a user-specified class k ∈ K , a miseffectual

neuron has a higher contribution to one or more wrong classes (i.e., class c � k ∀c ∈ C).

CAP’NN-M first identifies a set of miseffectual neuronsMc for each class c ∈ C. This is done as a

one-time process offline. Next, the firing rate of each miseffectual neuron n for class c is set to 0 in

the firing rate matrix (Flast (n, c ) = 0). Next, our CAP’NN-W algorithm is invoked with this updated

firing rate matrix to find the pruned set of neurons for CAP’NN-M.

To identify miseffectual neurons, CAP’NN-M follows a two-step procedure. In the first step, it

identifies the top confusing classes using a confusion matrix. In the second step, it characterizes

neurons as miseffectual if they contribute more to these top confusing classes. We describe these

two steps in more detail.

Step 1: Finding Top Confusing Classes. Given a class k ∈ K , we identify the top-5 classes4

c � k that have the highest probability of being triggered during inference if the inputs were only

from class k . These classes are thus most likely to be confused with k and can be found using a

confusion matrix of dimension |K | × |C|. Specifically, for class k , we run the network for N input

samples from class k . We fill each entry (k, c ) in the confusion matrix with the fraction of times

that c is triggered. We then select the 5 classes with the largest entry values.

Step 2: Finding Miseffectual Neurons for Top Confusing Classes. At this step, we focus on

identifying miseffectual neuron candidates among the neurons in the last layer, denoted as Nlast .

These neurons connect to the |C| output neurons as a fully connected layer. For each output

neuron j:

c j =
∑

n∈Nl ast

wi j × ni + bj . (1)

The contribution of neuron i ∈ Nlast to output neuron j is measured by
d (c j )
d (ni ) = wi j . We measure

the contribution of each neuron in Nlast for each top-5 confusing class using its corresponding

weight from the equation above.

Using the above two-step process, CAP’NN-M identifies and prunes miseffectual neurons in addi-

tion to the ineffectual ones found in CAP’NN-W. These two schemes are similar in terms of memory

overhead and execution runtime. As we show in our experiments, removing miseffectual neurons

actually improves classification accuracy in addition to pruning more neurons overall compared

to CAP’NN-W.

4 CACHING PER-LAYER PRUNING THRESHOLDS

In this section, we propose a lightweight cache architecture to reduce the timing overhead of the

CAP’NN-W algorithm. The proposed cache architecture is particularly helpful when several users

4We identify the top-5 classes, because it relates to the top-5 accuracy, which we report in our experiments.
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Fig. 4. Overview of the proposed cache architecture.

are sending their pruning requests to CAP’NN, each requesting to prune the network for a differ-

ent subset of user-specified classes but there is an overlap among the requested classes for some

users.

As discussed earlier, CAP’NN-W requires finding per-layer pruning thresholds at run-time, which

is determined based on user-specified classes and per-class usages. This can be a time-consuming

process, since it involves finding a set of candidate neurons for pruning based on the effective firing

rates of neurons and running the pruned network for each of the user-specified classes (lines 8–13

in Algorithm 2).

To alleviate the overhead, we propose to exploit similarities between the class-specific firing rate

of neurons and reuse previously computed pruning thresholds if the two subsets of user-specified

classes are found to have sufficient similarity. Our observation is that classes with similar layer-

wise firing rates will have almost the same pruning threshold. This relationship is originated from

how CAP’NN-W algorithm works. Recall in Algorithm 2, the firing rate of a neuron is compared

against a threshold and the neuron is flagged for temporary pruning if its firing rate is below the

threshold. The flagged neurons are then withheld from firing when measuring accuracy degrada-

tion. Let’s assume neuron Nj has similar firing rates for classes c1 and c2. This is a proxy showing

that neuron Nj has almost similar contribution toward the correct classification of inputs belong-

ing to classes c1 and c2. With that said, if the neuron can be pruned for class c1, it can also be

removed for class c2 without incurring much loss in accuracy. Given that decision on pruning a

neuron depends on the pruning thresholdT 2, two classes have almost the same pruning threshold

as well. This can be extended to the effective firing rate of neurons when a user is interested in

several classes; The contribution of a neuron to a subset of classes K1, denoted by the effective

firing rate of the neuron, is almost similar to another subset of classes K2 if classes in K1 and K2

have similar class-specific firing rates. To appropriately store and reuse the pruning thresholds, we

propose to integrate a lightweight cache architecture into our design, and we follow a two-step

procedure as below:

Step 1: Finding Similar Classes. For each layer in the network, we first run a clustering algorithm

that divides the class-specific firing rates into P clusters by merely looking at the class-specific

firing rate of individual neurons in that layer. Once clustering is done, output classes with the

most similar firing rates are grouped together. The clustering is done once offline, and it works at
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granularity of layers. The clustering results are then stored in the cloud along with the network

parameters to help evaluate the similarities among the pruning requests at run-time.

Step 2: Storing and Reusing the Computed Thresholds. Next, we use a lightweight cache ar-

chitecture to store the computed pruning thresholds at run-time. More specifically, for each value

of K (i.e., number of user-specified classes), we propose to store up to M subset of user-specified

classes along with their corresponding per-layer pruning thresholds, obtained from running Algo-

rithm 2, as shown in Figure 4.

At run-time and upon receiving a pruning request from the user, CAP’NN looks up the cache

table with an equal number of user-specified classes instead of running CAP’NN-W. For each entry in

the cache table, CAP’NN first measures the similarity between the current subset of user-specified

classes and the existing one in the entry by utilizing the information from the clustering phase.

Here, two classes are considered similar if they belong to the same cluster. The cache look-up

results in a cache hit if an entry can be found such that all the classes in that entry are similar

to the current subset of classes. In the case of a cache hit, CAP’NN picks the already-computed

thresholds to prune the network. If such an entry is not found, then a cache miss occurs. In this

case, CAP’NN-W is executed to find the pruning thresholds. The thresholds are then stored as a new

entry in the cache table. If the cache is full, then CAP’NN evicts the least-recently used entry.

Figure 4 shows an example of our proposed architecture. In this example, two different pruning

requests from two users, color-coded in green and red, are sent to CAP’NN. For each of the

pruning requests, CAP’NN first looks up the appropriate cache table. In the case of User 1 with

four user-specified classes, also color-coded in green, a similar cache entry is found. So, CAP’NN

only takes the already-computed thresholds and prunes the network. For User 2 with three

user-specified classes, the cache look-up results in a cache miss. Therefore, CAP’NN-W will be

executed and the computed thresholds along with the user-specified classes are then stored in a

new entry of the cache.

4.1 Details of Clustering

Here, we discuss our procedure to cluster per-layer class-specific firing rates. In this work, we opt

to employ a K-means clustering algorithm, where the objective is to minimize Within-cluster

Sum of Squares (WCSS) of the clustered elements [24], which in turn maximizes the similar-

ity between elements in the same cluster. To compute WCSS for a cluster, the sum of squares is

measured using the distances of the elements in a cluster from the centroid of that cluster. To

determine the number of clusters for each layer, we use the Elbow algorithm [2]. In the Elbow

algorithm, WCSS is reported as a function of the number of clusters, P. By increasing P, WCSS is

initially decreased. Based on our observations, there exists a point where the rate of reduction in

WCSS as a function of P will be the most, and after that point, increasing the number of clusters

does not significantly reduce WCSS. We choose that point to select the number of clusters, which

achieves a reasonably small value of WCSS with a reasonably small number of clusters.

To show the effectiveness of our clustering algorithm in finding similar classes, we measured

intra-cluster and inter-cluster distances for each cluster. Intra-cluster distance measures the nor-

malized distance between class-specific firing rate vectors of two classes in the same cluster while

inter-cluster distance corresponds to the distance between firing rate vectors of two classes in

different clusters.

Here, we define the average intra-cluster and inter-cluster distances of class ci belonging to

cluster p as follows:

Intra − cluster ci
p =

1

|p | − 1
×

∑

∀c j ∈p,ci�c j

∑
∀n∈N�

|F� (n, ci ) − F� (n, c j ) |
|N� |

, (2)
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Inter − cluster ci
p =

1

|C| − |p | ×
∑

∀c j�p

∑
∀n∈N�

|F� (n, ci ) − F� (n, c j ) |
|N� |

, (3)

where |p | refers to the number of classes in cluster p, F� is the firing rate matrix of layer �, |N� | is
the number of neurons at layer �, and |C| is the total number of classes in the network.

More specifically, the intra-cluster distance of class ci in cluster p measures the average distance

between firing rate vector of class ci and firing rate vector of all other classes in the same cluster,

when normalized to the number of classes in p (excluding the class ci ). Similarly, the inter-cluster

distance of class ci in cluster p is the distance between the firing rate vector of class ci and all

other classes outside p, when normalized to the total number of classes outside the cluster. In our

experiments, we show that intra-cluster distance is significantly smaller than the inter-cluster one,

indicating that classes in the same cluster have the most similar firing rate vectors.

5 RELATED WORKS

5.1 Class-aware Pruning

The majority of existing pruning and structure simplification techniques seek to create an equiva-

lent DNN model that operates on the same classes but requires less computation and smaller mod-

els. These techniques may be categorized into three groups: low-rank approximation, unstructured

pruning, and structured pruning.

Low-rank approximation techniques achieve a reduction in both model parameters and compu-

tation using techniques such as Singular Value Decomposition [6] and Tucker decomposition [17].

Unstructured pruning techniques are based on eliminating unimportant weights and connections.

They date back to the 1990s [5, 10], though recent works have emerged based on weight prun-

ing [9]. The key observation in these works is that many weights in a trained network end up

having relatively small magnitudes and hence may be reset to zero without affecting the network’s

performance.

Structured pruning applies pruning of entire layers or groups of weights. In the early 1990s, the

authors of References [15, 18] sought to directly find and remove redundant neurons by analyzing

the output neurons of the same layer as a function of the set of inputs. A neuron can then be

pruned if its output can be well approximated via a weighted linear combination of the outputs

of remaining neurons. More recently, channel pruning is studied [11, 14, 19–21, 27] as an effective

way to develop compact and efficient models for CNNs, since the majority of inference energy is

consumed by convolutional layers [3].

The above innovations can all be regarded as class-unaware pruning. They are fundamentally

different from the class-aware approach in this work. These two sets of techniques are orthogonal;

class-aware and class-unaware techniques may be applied simultaneously.

Recently, the works [8, 23] propose pruning techniques for a predefined subset of classes. Specif-

ically both works focus on channel pruning for convolutional layers. CAP’NN is different from

these prior works in several major ways. First, it takes per-class usage for each individual user

into account and shows that it can fundamentally improve pruning opportunities while still guar-

anteeing that the classification accuracy never falls below a user-specified bound. Second, CAP’NN

is applied to both fully connected layers (pruning neurons) as well as convolutional layers (prun-

ing channels). Third, by introducing the notion of miseffectual neurons, CAP’NN is able to prune

further and not only achieve a smaller model size but also improve classification accuracy, as we

show in our experiments.

Class-aware pruning should not be confused with context-aware pruning such as Reference [4],

where the pruning decision relies on the context of the received input, not based on a subset

of classes. It is also different from input-dependent and early-termination techniques such as
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Reference [26], where the correlation between neurons and output classes are utilized to prune

the network at run-time and on an input-by-input basis.

CAP’NN is also different from knowledge distillation techniques. Knowledge distillation trans-

fers the knowledge from a larger network (teacher) to the smaller one (student) by using the pre-

dicted probabilities generated by larger model as the labels for smaller one and minimizing the loss

function for the distilled network. Therefore, it is oblivious to user’s preference at run-time and it

does not take into account the likelihood of encountering each class. Also, transferring the knowl-

edge requires one to train the smaller model, which is not a cost-efficient approach for network

personalization problem, since there can be many users with different preferences.

5.2 Content Caching

Content caching is a promising approach to reduce overheads of accessing repetitive data in differ-

ent applications. Content caching exploits the benefits of caching commonly used data/content for

future use by other tasks/users [1, 28]. For instance, to cope with explosive growth of mobile data

on 5G networks, one solution is to find the most popular files for users and store them on local

caches. This, in turn, results in faster access to the files for future users. In CAP’NN, we utilize the

same approach to reduce the timing overheads of our class-aware pruning schemes by caching the

information from previously pruned models and reusing them for future pruning requests.

6 RESULTS AND DISCUSSION

In our experiments, we use the VGG-16, AlexNet, and ResNet-152 networks to evaluate the effi-

ciency of our CAP’NN implementations. All networks are recognized as representative networks

in applications involving object classification and localization tasks. VGG-16 and AlexNet are con-

sidered heavy models with a huge number of parameters while ResNet-152 has a smaller model size

and is particularly designed for mobile applications. All networks are implemented in Tensorflow

and are trained and tested on the ImageNet (2012) dataset with 1,000 output classes.

To compute class-specific firing rates for each network, we ran the network with 200 images for

each output class. In our implementation of different variations of CAP’NN, we set the following

parameters for Algorithms 1 and 2: maximum allowed accuracy degradation ϵ = 3%, the start

threshold to bound the firing rates T 1
star t = 0.4, reduction step of step = 0.025. We also pruned

from the last 6 layers of VGG-16 and AlexNet so lstar t = |L| − 6.

6.1 Comparison of the CAP’NN Variations

In this experiment, we prune the networks for different configurations when varying the num-

ber of user-specified classes K = |K |. Specifically, for each value of K , we randomly selected 200

combinations of classes (i.e., each combination has K randomly selected classes). For each combi-

nation, we pruned the network using the three CAP’NN variations and measured the classification

accuracy of the pruned network. Note, all variations of CAP’NN are applied to an already-trained

network, and retraining is not required. We then report the average top-1/top-5 classification ac-

curacies across the 200 combinations per K , along with the average model size.

Model Size. Figures 5, 6, and 7 show the average post-pruning model size for the three networks,

when the networks are pruned for |K | = 2, 3, 4, 5 user-specified classes. The model size is normal-

ized to the number of parameters in their corresponding original network. The model size is mea-

sured by the number of (unique) parameters in each network including the number of weights and

biases. Recall that CAP’NN-W and CAP’NN-M take into account the class usage distribution (i.e., like-

lihood of encountering each class). We consider different usage distributions, which are shown on

the x-axis for each plot (i.e., for each value of K ). For example for K = 2, we consider 10%–90% as
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Fig. 5. Model size of VGG-16 of various pruning schemes with different number of user-specified classes (K )

and usage weights.

Fig. 6. Model size of AlexNet of various pruning schemes with different number of user-specified classes (K )

and usage weights.

Fig. 7. Model size of ResNet-152 of various pruning schemes with different number of user-specified classes

(K ) and usage weights.

one usage scenario of the two classes. Overall, we consider 24 different variations by changing K
and the usage distributions. (Note, the bars corresponding to CAP’NN-B do not vary within each

plot, because it is independent of per-class usage.)

As the results show, all variations achieve significantly smaller model sizes compared to the

original model. For example, in case of VGG-16 (AlexNet), when K = 5, CAP’NN-B, CAP’NN-W, and

CAP’NN-M yield relative model sizes of on average 66% (73%), 30% (55%), and 29% (53%), respectively.

For ResNet-152 architecture, the relative model size of CAP’NN-B, CAP’NN-W, and CAP’NN-M are

around 75%, 62%, and 60%, respectively, when K = 5.

As can be seen, both CAP’NN-M and CAP’NN-W find more opportunities for pruning compared to

CAP’NN-B, since they operate on effective firing rates defined by the usage distribution of classes.

CAP’NN-M is able to achieve a slightly smaller model size compared to CAP’NN-W by also pruning

miseffectual neurons; though as we show next, the main advantage of CAP’NN-M is its accuracy

gain. We also observe that model size reduction is less in the case of ResNet-152 compared to

VGG-16 and AlexNet. This originates from two facts. First, ResNet-152 is a more compact model

with a fewer number of redundant parameters. Second, the network architecture of ResNet-152 has

skip connections, which can limit the opportunity of CAP’NN for pruning neurons. More specifi-

cally, in ResNet architectures, a layer can be connected to more than one subsequent layer. In such

cases, CAP’NN should consider the layer with a smaller number of pruned neurons while remov-

ing the input neurons in the next subsequent layer. AlexNet also achieves less model size reduction
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Fig. 8. Top-1 accuracy using various pruning schemes with different number of user-specified classes (K )

and usage weights for VGG-16.

Fig. 9. Top-1 accuracy using various pruning schemes with different number of user-specified classes (K )

and usage weights for AlexNet.

Fig. 10. Top-1 accuracy using various pruning schemes with different number of user-specified classes (K )

and usage weights for ResNet-152.

compared to VGG-16. This is because AlexNet is a shallower network with fewer convolutional

layers; therefore the last convolutional layers (which are pruned by CAP’NN) tend to extract less

class-specific features from the inputs, limiting the potentials for model size reduction.

Accuracy. Figures 8, 9, and 10 show the comparison of top-1 accuracies for VGG-16, AlexNet,

and ResNet-152, respectively. As expected, post-pruning accuracy degradation is within ϵ = 3%

for all of the 24 configurations of each network. More importantly, pruning miseffectual neurons

in CAP’NN-M results in accuracy gains in all networks. For example, in case of VGG-16 (AlexNet),

CAP’NN-M achieves up to 10% (5.9%) for K = 2 and up to 5.6% (3.2%) for K = 5.

The plots comparing the top-5 accuracies are similar (not shown for brevity). For all networks,

top-5 accuracies are improved. Specifically, for K = 5, the top-5 accuracies of VGG-16, AlexNet,

and ResNet-152 are improved on average by 4.8%, 2.9%, and 2.5%, respectively.

Next, we evaluate our framework on a larger number of user-specified classes. In this exper-

iment, we applied CAP’NN-M to prune VGG-16 when varying K up to 100 user-specified classes.

The results are shown in Figure 11. A higher K increases the relative model size, because it makes

the pruning more conservative. We prune the network for only up to 100 user-specified classes,

since with 100 classes, the relative model size is 90% of the original model; we can no longer achieve

significant reductions beyond K = 100. However, the key takeaway of Figure 11 is that regardless
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Fig. 11. Model size vs. accuracy tradeoff of VGG-16 for CAP’NN-M as a function of the number of user-specific

classes K .

Table 1. Energy Consumption of Different Components in the Network and Relative Energy Consumption

of Various Networks for Different Number of Classes

Component Energy (pJ)
Number of

classes

Relative energy

consumption of VGG-16

Relative energy

consumption of AlexNet

Relative energy

consumption of ResNet-152

16-bit adder 0.4 2 0.33 0.46 0.51

16-bit multiplier 1.0 3 0.36 0.50 0.53

Max Pool/ReLU 1.2/0.9 4 0.38 0.53 0.59

SRAM 5 5 0.42 0.59 0.65

DRAM 640 10 0.56 0.64 0.73

of K , classification accuracy is bounded by ϵ = 3% as ensured by all three variations of CAP’NN.

We expect that in real use cases, the expected number of classes K is very small.

6.2 Energy Savings

We also evaluate the energy savings of CAP’NN after pruning the networks with CAP’NN-M. We

first employ the analytical energy model proposed in Reference [29] and adapt it for our architec-

ture, shown in Figure 2. The energy model is expressed in terms of the number of MAC operations,

SRAM accesses, and DRAM accesses per inference. We use the energy numbers of various compo-

nents from References [9, 22].

Table 1 reports the energy consumption of the components in the network as well as the av-

erage energy consumption of VGG-16, AlexNet, and ResNet-152 when normalized to the energy

consumption of their corresponding original network model for different values of K . For each K,

the relative energy consumption is averaged over different usage distributions and the 200 combi-

nations of K randomly selected classes. As can be seen, CAP’NN can achieve up to 44%, 36%, and

27% energy saving for VGG-16, AlexNet, and ResNet-152 networks, respectively.

6.3 Inference Latency Measurement

In this experiment, we measure the inference latency of the networks when pruned for various

numbers of user-specified classes. To measure latency, we first adapted the latency numbers of

each individual computation unit including Pooling and ReLU from References [22, 25]. We have

also used NVSIM [7] to measure latency of memory accesses. Then, according to the architecture

of the underlying layers in each network such as number of input channels, number of output

channels, and size of the convolutional kernels, we build our analytical model to map the network

into the hardware. The underlying hardware is modeled according to Google’s TPU design [16],

which is also shown in Figure 2. Since the mapping is done based on the network architecture,
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Table 2. Latency of Different Components in the Network and Relative Inference Latency of Various

Networks for Different Number of Classes

Component Latency (clock cycle)
Number of

classes

Relative inference

latency of VGG-16

Relative inference

latency of AlexNet

Relative inference

latency of ResNet-152

16-bit adder 1 2 0.37 0.49 0.59

16-bit multiplier 1 3 0.40 0.55 0.61

Max Pool/ReLU 2/1 4 0.42 0.58 0.65

SRAM 12 5 0.46 0.62 0.71

DRAM 120 10 0.59 0.67 0.79

our analytical model accounts for the available hardware resources. Last, we measure the network

latency as the total number of clock cycles that is required to finish the inference for a given input.

We then normalized the latency of the pruned network to the latency of the original unpruned

network.

Table 2 summarizes the latency of different components in the network as well as the inference

latency of the networks when pruned for different number of classes. As can be seen, CAP’NN is

successfully able to reduce the inference time of the networks on local devices. For example, in

VGG-16, the inference latency is reduced by more than 40% when the network is pruned for 10

user-specified classes. For ResNet-152, the latency improvement is about 20% for 10 user-specified

classes.

6.4 Memory Overhead

As discussed earlier, CAP’NN-W incurs a larger memory overhead compared to CAP’NN-B, as it

requires storing per-class firing rates. The incurred memory overhead in CAP’NN-W depends on

two factors: (1) the number of bits to represent the firing rates, and (2) the size of the firing rate

matrix per layer, which depends on the total number of classes and the number of output neu-

rons/channels in the layers selected for pruning.

Note that we need to store the firing rates of the last 5 layers of VGG-16 and AlexNet but do

not need to store the firing rates of the output layer. This is because we do not prune the output

neurons of the last layer, as each neuron corresponds to one output class in the network. Therefore,

CAP’NN requires storage for 5 firing rate matrices. These last 5 layers consist of 3 convolutional

layers, each with 512 output channels, and 2 fully connected layers, each with 4,096 output neu-

rons. Each matrix has 1,000 rows (one row per class) and 512 (4,096) columns for convolutional

(fully connected) layers. In the case of AlexNet, CAP’NN requires storing 3 firing rate matrices for

3 convolutional layers with 384, 384, and 256 channels as well as 2 fully connected layers each

with 4,096 output neurons.

We then linearly quantize the class-specific firing rates into 3-bit values. With this, the total

memory overhead incurred by CAP’NN-W for VGG-16 is 3.6 MB, a mere 1.3% of the original, un-

pruned network (with 16-bit weights), which requires 276 MB of storage. For AlexNet, the memory

overhead is 3.5% of the original network model.

6.5 Caching Per-layer Pruning Thresholds

Next, we assess the effectiveness of our proposed cache architecture to reduce the timing overheads

of CAP’NN.

Clustering Results. First, we apply K-means clustering algorithm to cluster the firing rates of the

last 5 layers (excluding output layer) in VGG-16 and AlexNet. The clustering led to 6 clusters for the

last 3 convolutional layers and 8 clusters for the last 2 fully connected layers in both networks. Next,

we measured intra-cluster and inter-cluster distances for each cluster to evaluate the effectiveness

of the algorithm in finding similar classes.
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Fig. 12. Average intra-cluster and inter-cluster distances of different clusters in the first convolutional layer

of VGG-16.

Fig. 13. Distribution of number of similar classes for last 5 layers of VGG-16.

Figure 12 shows average intra-cluster and inter-cluster distances of various clusters in the first

convolutional layer of VGG-16. Here, the x-axis shows the class index, and left and right y-axes

show average intra-cluster and inter-cluster distances, respectively. As the results show, for all

clusters, intra-cluster distance is significantly smaller than the inter-cluster one, indicating that

classes in the same cluster have the most similar firing rate vectors.

Next, we show the distribution of the number of similar classes for the last 5 layers in VGG-16.

We note that for each class, the number of similar classes is equal to the size of the cluster to which

it belongs. As the results in Figure 13 show, the number of per-class similar classes varies from

around 50 classes to more than 200 classes, indicating that the clustering algorithm is successful

at finding a sufficient number of similar classes for each class.

Cache Performance. Here, we evaluate the performance of our lightweight cache architecture. In

this experiment, for each value of K , we randomly selected 600 combinations of classes (i.e., each

combination has K randomly selected classes). Then, for each combination of classes, we followed

the procedure discussed in Section 4 to find pruning thresholds. More specifically, rather than

running Algorithm 2 for each combination, we first look up the cache table with a similar value of

K . If a similar subset of classes was found, then we use already-computed thresholds. Otherwise,
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Fig. 14. Cache hit rate as a function of number of entries per cache for various numbers of user-specified

classes (K ) for VGG-16.

we run Algorithm 2. Finally, we evaluate the cache hit rate by measuring the fraction of pruning

thresholds that were directly obtained from the stored thresholds in the cache table.

Figure 14 shows the cache hit rate as a function of the number of cache entries for various num-

bers of user-specified classes. As the figure shows, increasing the number of entries can improve

the cache hit rate for any value of K . This is because, with a larger cache, a greater number of

pruning requests can be stored, which in turn increases the chance of finding a similar subset of

classes. More importantly, the cache hit rate saturates as we reach around 30–40 entries per cache

table, indicating that a relatively small number of entries would be sufficient.

Accuracy. Next, we report post-pruning top-1 accuracy of VGG-16 and AlexNet networks with

and without cache architecture for various numbers of user-specified classes, as summarized in

Figure 15. Our results show that incorporating the cache architecture may slightly degrade the post-

pruning top-1 accuracies given that the pruning thresholds that are obtained from the cache may

differ from those that are actually computed by Algorithm 2. However, the post-pruning accuracies

are still improved compared to the base unpruned models. For example, the cache architecture

degrades accuracy for about 0.2% and 0.5% in AlexNet and VGG-16, respectively, for K = 30. Top-5

accuracies are also maintained after incorporating the cache architecture. Specifically, the cache

architecture degrades top-5 accuracy for less than 1.1% for both AlexNet and VGG-16 whenK = 30.

Time savings. Last, we report the time savings, obtained from the proposed cache architecture.

For this, we calculate the average number of required pruning iterations to find per-layer pruning

thresholds with and without the proposed cache architecture, averaged over 600 combinations

of classes. The number of entries per cache is also set to 40 entries, as it maximizes the cache

hit rate. Number of required iterations with and without cache as well as the time savings are

summarized in Table 3 for the various numbers of user-specified classes in VGG-16 and AlexNet

networks. As the results show, cache architecture can significantly reduce the number of required

pruning iterations for both networks and under all variations of the number of classes. In VGG-

16, the average number of pruning iterations is reduced by around 60% and 90% for 4 classes and

30 classes, respectively. For AlexNet, the time saving is around 37% and 84% for 4 classes and

30 classes, respectively.

6.6 Pruning Overhead

In this experiment, we estimate the time it takes for CAP’NN to prune the original model for a

subset of user-specified classes. We also compare the pruning time before and after integrating the

cache architecture.
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Fig. 15. The top-1 accuracy of the networks, pruned by CAP’NN-M, with and without the cache architecture.

Table 3. Average Number of Required Pruning Iterations with and without Cache Architecture

Number of classes
# Pruning iterations

(without cache)

# Pruning iterations

(with cache)
Time savings

VGG-16

4 classes 10 4 60%

5 classes 15 8 46%

8 classes 17 3 82%

10 classes 18 3 83%

13 classes 20 4 80%

15 classes 23 3 87%

20 classes 28 3 89%

25 classes 33 3 90%

30 classes 40 4 90%

AlexNet

4 classes 8 5 37.5%

5 classes 12 8 33%

8 classes 15 7 53%

10 classes 17 8 53%

13 classes 20 6 70%

15 classes 22 6 72%

20 classes 26 6 77%

25 classes 31 7 77%

30 classes 38 6 84%

Pruning time, incurred by CAP’NN, depends on three factors: (1) number of required iterations

to find per-layer pruning thresholds, (2) number of required input samples to measure per-class

accuracy degradation, and (3) inference latency on the cloud infrastructure for a batch of inputs

(recall the cloud is responsible to prune the model). We have used the average number of pruning

iterations for various numbers of user-specified classes from Table 3. Per-class accuracy is also

measured by running the inference on 50 inputs from each class by CAP’NN. Finally, we have
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Table 4. Average Pruning Time of CAP’NN (in Minutes) with and without Cache Architecture

VGG-16 AlexNet

Number of classes Without cache With cache Without cache With cache

4 classes 0.27 0.11 0.11 0.1

5 classes 0.52 0.28 0.21 0.14

8 classes 0.94 0.16 0.43 0.20

10 classes 1.25 0.20 0.61 0.29

13 classes 1.8 0.36 0.94 0.29

15 classes 2.4 0.31 1.2 0.32

20 classes 3.9 0.41 1.8 0.43

25 classes 5.7 0.52 2.8 0.63

30 classes 8.3 0.83 4.1 0.65

adopted the inference time of VGG-16 on cloud platforms from Reference [13]. As reported in

Reference [13], up to 120 images can be processed in a second on Google cloud with 4x Tesla K80

GPU. The throughput can be increased by up to 230 images per second with 8× Tesla K80 GPU.

For AlexNet, we scale the throughput by 1.9× according to latency numbers provided in Reference

[23] for AlexNet and VGG-16.

Table 4 reports the pruning time of CAP’NN with and without cache architecture for VGG-16

and AlexNet on Google cloud with 4× Tesla K80 GPU. As the results show, without the cache

architecture, the pruning time for VGGG-16 is around a minute for up to 10 user-specified classes

and it is increased to 8 min for 30 user-specified classes. After incorporating the cache architecture,

the pruning time is reduced to less than a minute for all variations of the number of classes. The

same trend is observed for AlexNet.

6.7 Cache Overhead

The incurred overhead in our proposed caching scheme depends on two factors: (1) the number of

user-specified classes (K ) and (2) number of entries per cache (M). More specifically, at each cache

entry, we need to store the class indices for the classes in K along with the obtained pruning

threshold for this set. Thus, the cache overhead can be calculated as follows:

Cache size = M × (K × log2 |C| +Thbits ), (4)

where |C| is total number of classes and Thbits is the required precision to store the pruning

threshold. Note that one cache table is needed for each value of K .

In our estimation, we limit the number of user-specified classes to 30 classes, given that we

expect users to encounter only a relatively small subset of classes. Also, to maximize the cache hit

rate, the number of entries per cache is set to 40 entries, as shown in Figure 14. Last, we use 16-bit

floating-point representation to store each threshold. We also note that we need five cache tables

for each value of K , since the last 5 layers of VGG-16 and AlexNet are pruned.

Given this configuration, the cache size is around 1.4 and 8 KB forK = 4 andK = 30, respectively.

Also, the total incurred overhead of cache for up to 30 classes is around 126 KB. The incurred

memory overheads is significantly smaller compared to the unpruned network model size (which

is around 276 MB for VGG-16 and 124 MB in case of AlexNet), thus negligible.

6.8 Comparison with Prior Works

As mentioned before, our proposed class-aware pruning techniques can be combined with existing

class-unaware approaches to further reduce the model size given a set of user-specified classes.
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Table 5. Results of Applying CAP’NN-M to Variants of VGG-16

#Classes Thinet-Conv [20] Channel pruning [11]

Relative model size

Without

CAP’NN

With

CAP’NN

Without

CAP’NN

With

CAP’NN

2 0.94 0.21 0.90 0.24

3 0.94 0.22 0.90 0.26

4 0.94 0.24 0.90 0.28

5 0.94 0.26 0.90 0.30

Top-1 Accuracy (%)

Without

CAP’NN

With

CAP’NN

Without

CAP’NN

With

CAP’NN

2 68.0 71.4 69.0 69.8

3 69.3 70.8 69.0 69.1

4 70.1 70.5 67.0 68.8

5 69.8 70.1 67.8 68.5

Top-5 Accuracy (%)

Without

CAP’NN

With

CAP’NN

Without

CAP’NN

With

CAP’NN

2 88.5 90.8 88.6 89.5

3 89.1 91.3 88.9 89.7

4 89.3 91.6 89.1 90.1

5 88.6 90.9 88.8 89.5

(The variants are pruned with class-unaware pruning techniques).

Table 6. Comparison of Normalized Energy Consumption, Normalized FLOP, and Top-1

Accuracy with Reference [23]

Normalized Energy Normalized FLOPs Top-1 Accuracy

% of classes CAP’NN [23] CAP’NN [23] CAP’NN [23]

10% 0.36 0.72 0.42 0.67 93.1 90.1

20% 0.48 0.63 0.5 0.61 92.5 89.5

30% 0.56 0.69 0.57 0.62 91.3 89.1

40% 0.68 0.72 0.63 0.67 90.8 88.5

50% 0.76 0.78 0.69 0.75 90.1 88.5

60% 0.81 0.81 0.73 0.77 89.5 88.2

70% 0.87 0.82 0.77 0.78 89.1 88.1

80% 0.91 0.89 0.85 0.85 88.5 87.5

90% 0.92 0.94 0.90 0.92 88.1 87.3

To show this, we first prune VGG-16 using two recently proposed works [11, 20]. This is done

by directly using their already-pruned, retrained models. We then apply CAP’NN-M to prune the

already-pruned networks for up to K = 5 user-specified classes. The results are summarized in

Table 5. As can be seen, CAP’NN-M is able to further reduce the relative model size of a class-

unaware pruned model by up to 60% as the network is pruned for up to five classes (e.g., relative

model size is reduced from 0.9 to 0.3 for K = 5 after applying CAP’NN-M on top of Reference [11]).

In addition, top-1/top-5 accuracies are improved.
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Next, we compare CAP’NN-M against a recent work that prunes based on classes [23]. In this

work, the authors trained VGG-16 on the CIFAR-10 dataset with 10 output classes. The network

achieves around 90.2% top-1 accuracy in this dataset. Then, they pruned the network for up to

10 user-specified classes and reported post-pruning energy consumption.

To compare with Reference [23], we follow the same procedure to train the network. Then, we

apply CAP’NN-M to prune the network for varying number of classes and report the normalized en-

ergy consumption and number of FLOPs in Table 6. Energy consumption and the number of FLOPs

are both normalized to those in the original network. As the table shows, for a small percentage

of user-specified classes, CAP’NN-M yields lower post-pruning energy compared to Reference [23].

As the percentage of classes increases, the energy consumption of CAP’NN-M approaches the en-

ergy reported in Reference [23]. A similar pattern can be observed for normalized FLOPs. Also,

as expected, the advantage of CAP’NN-M is most pronounced with a relatively small number of

classes.

We also compare post-pruning top-1 accuracies for both CAP’NN-M and Reference [23], sum-

marized in Table 6. As can be seen, CAP’NN achieves a higher accuracy for all number of user-

specified classes. Also, for a smaller number of classes, CAP’NN-M is even able to improve the

classification accuracy compared to that of the original unpruned model (i.e., 90.2%).

7 CONCLUSIONS

In this work, we propose CAP’NN as a framework that enables personalized inference by prun-

ing the network for a specific subset of classes based on the user’s preferences, thus reducing the

network model size. Uncovering the concept of miseffectual neurons, CAP’NN is also able to im-

prove post-pruning classification accuracy. Timing overheads of CAP’NN is significantly reduced

by incorporating a lightweight cache architecture that exploits the similarities among different

pruning requests from different users. As our experiments show, CAP’NN yields, on average, a

relative model size of 65% of the original network and 2.5% improvement in top-1 accuracy as

we prune different networks including VGG-16, AlexNet, and ResNet-152 for 10 classes. CAP’NN

also reduces the timing overheads for pruning the network up to 90%, when pruning VGG-16 and

AlexNet for various numbers of user-specified classes.
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