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Abstract—We propose CAP’NN, a framework for Class-Aware Per-
sonalized Neural Network Inference. CAP’NN prunes an already-trained
neural network model based on the preferences of individual users.
Specifically, by adapting to the subset of output classes that each user
is expected to encounter, CAP’NN is able to prune not only ineffectual
neurons but also miseffectual neurons that confuse classification, without
the need to retrain the network. CAP’NN achieves up to 50% model size
reduction while actually improving the top-1(5) classification accuracy by
up to 2.3%(3.2%) when the user only encounters a subset of VGG-16
classes.

I. INTRODUCTION

Deep learning algorithms have gained significant success in many
domains, ranging from image and video classification to natural
language processing. Convolutional Neural Networks (CNNs) are
among the most widely used family of deep learning methods,
providing unprecedented accuracy in applications such as object
localization and object detection [12]. The high accuracy though
comes with significant increase in required memory and computation
resources, which mandates efficient hardware implementation of
these networks on local devices. To address this, many approaches
have been proposed to prune and compress the network. However,
despite their success in reducing model size, prior approaches are
fundamentally limited in their obliviousness to the users of the model.
Our Goal: Personalized Inference. Our key insight is that an
individual user only encounters a tiny fraction of the trained classes
on a regular basis. Storing trained models (pruned or not) for all
possible classes on local devices is costly and overprovisioned for
the user’s needs. For example, as prior studies show [11], 22% of
the top 100 Android applications only use a single output class
(e.g., faces, books, etc.) of the ImageNet dataset, which contains 1000
output classes in total and is the widely used for image classification.
However, simply retraining bespoke neural network models for every
user is not cost-effective, since there can be many users, all of whom
are unique.
Our Solution: CAP’NN. We propose Class-Aware Personalized Neu-
ral Network Inference (CAP’NN). CAP’NN provides a personalized
inference framework, taking a commodity trained model and pruning
it based on the preferences of the user.1 This minimizes the memory
and computation overheads on the local device, processing neurons
on a need basis (i.e., only when the user expects to encounter a
specific output class). This form of class-aware pruning is novel in
its ability to consider which classes the user expects to encounter
and weighs the pruning based on how frequently the user encounters
them. It exploits the fact that not all neurons contribute equally
towards correctly classifying a given output class. While prior works
are limited to pruning only ineffectual neurons (i.e., neurons that
have low contribution to the final classification), CAP’NN uncovers
the concept of miseffectual neurons, which are neurons that actually
work against the correct identification of a specific class. Prior class-
unaware pruning techniques are oblivious to miseffectual neurons

1The user is the captain now.

since, by nature of the training algorithm, all neurons contribute
positively towards at least one class in the dataset. However, by per-
sonalizing the trained model and removing some classes, miseffectual
neurons are left behind that are no longer useful and in fact confuse
the classification of the remaining classes. By pruning miseffectual
neurons, CAP’NN is able to achieve even higher accuracy than the
original unpruned model, despite its much smaller model size.
Contributions. Our work makes the following contributions:
• We introduce CAP’NN, a personalized inference framework that

supplies neurons on a need basis, given the user’s preferences.
• We propose new class-aware pruning schemes that take into

account the distribution of classes that the user expects to
encounter, achieving greater reductions in model size (up to 50%
of the original model size as we pruned VGG-16 for 10 classes).

• We uncover the concept of miseffectual neurons and derive an
algorithm for pruning them, achieving 2.3%(3.2%) improvement
in top-1(5) accuracy compared to the original unpruned model
when pruning for 10 user-specified classes.

II. OVERVIEW OF CAP’NN
In this section, we present our framework, CAP’NN, which enables

personalized inference by pruning the network for a specific subset of
classes based on the user’s preferences. Figure 1(a) shows a high-level
overview of our proposed framework. CAP’NN takes in a trained
network as input and generates a class-aware pruned network, greatly
reducing model size and improving accuracy for the user’s subset of
classes. Class-aware pruning exploits the correlation between neurons
and output classes and without need to retrain the network.
Preprocessing Class-specific Firing Rates. First, as a preprocessing
step, we need to obtain the correlation between neurons and output
classes. To achieve this, we propose to measure the class-specific
firing rate of neurons in the network. The class-specific firing rate
represents how often a neuron gets fired when classifying the inputs
that belong to a given output class. The key observation here is that
in neural networks, the presence (or absence) of a particular feature
in the received input is encoded as a positive (or negative) value for
the feature’s neurons. The negative neurons are clamped to zero as
they pass through a ReLU function and are thus withheld from firing.
As a result, the class-specific firing rate can serve as a proxy for how
useful a neuron is in recognizing a given class. This preprocessing
step is performed once offline, and class-specific firing rates are stored
in the cloud server along with the network’s architecture parameters.
Class-aware Pruning Techniques. Next, class-specific firing rates
are utilized to prune the network for a subset of user-specified classes.
We propose three variations of class-aware pruning:
• CAP’NN-Basic pruning (CAP’NN-B) uses the class-specific

firing rates to first find a subset of neurons to be pruned for each
output class while maintaining the per-class accuracy degrada-
tion below a threshold. The neurons that get pruned are thus
ineffectual for a specific class. Then, for a user-specified subset
of classes, CAP’NN-B prunes the neurons that are ineffectual
for all classes.
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Fig. 1: (a) Overview of CAP’NN; (b) Example showing different types of neurons.
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Fig. 2: Architecture view of the local device.
• CAP’NN-Weighted pruning (CAP’NN-W) extends this to account

for the expected per-class usage for each individual user, leading
to more aggressive pruning. Specifically, CAP’NN-W considers
the likelihood of encountering each class in order to estimate an
effective firing rate for each neuron. The effective firing rate is
then used to find pruning candidates.

• CAP’NN-Miseffectual pruning (CAP’NN-M) enables pruning of
miseffectual neurons in addition to the ineffectual ones already
pruned by CAP’NN-W. It identifies and prunes neurons that work
against the correct classification of the user classes.

Figure 1(b) shows an example of different types of neurons for a
specific class (i.e., dogs). Here neuron n6 is ineffectual because it
is not contributing to any of the output classes due to its low firing
rate. Neurons n2 and n4 are miseffectual because they work towards
identifying a wrong output class (i.e., horses).
Pruning Process. In CAP’NN, the original network model is in the
cloud. The cloud is responsible for pruning the network appropriately
and sending the final model to the local device. Network pruning
starts upon the user’s request. To prune the network, the cloud
receives the user’s preferences (i.e., subset of classes as well as their
expected usage). This information can either be directly provided
by the user or obtained from a dedicated monitoring period. In the
monitoring period, the network’s predictions are tracked and the most
frequently used classes and their usages are determined. Once the
information is provided, the original network is pruned in the cloud
(without the need for retraining) and is sent back to the device to be
used for local inference. Note that the network can be pruned again
if the user’s preferences change.
Online Inference. A high-level overview of our hardware on the
local device is shown in Figure 2. It is modeled after Google’s
Tensor Processing Unit (TPU) [7]. The weights and input data are
stored in off-chip memory. To perform the inference computations,
the weights and data are fetched from the off-chip buffer to fill up
the on-chip weight and input buffers. The data values are then fed
into various multiply-accumulate (MAC) units. The generated results
are then propagated to the activations and pooling units. The outputs
are stored in output buffers and are used as inputs to the next layer.
A control unit is required to provide all necessary control signals.
Summary. The advantage of CAP’NN is its novel approach of
class-aware pruning, removing both miseffectual and ineffectual

neurons based on user preferences. We show in our experiments that
class-aware pruning of ineffectual neurons significantly reduces the
network model size and energy consumption. On top of this, pruning
miseffectual neurons can significantly boost per-class classification
accuracy compared to the original network model. The next section
describes our class-aware pruning algorithms in detail.

III. CLASS-AWARE PRUNING TECHNIQUES

Our class-aware pruning techniques require to first calculate class-
specific firing rates for each neuron (or channel in case of convo-
lutional layers2). This process is done once offline and the results
are stored in the cloud. To obtain the neuron firing rates, we run the
network using the training dataset with equal number of samples
for each class. The class-specific firing rate of a neuron is then
calculated as the fraction of effectual neurons (i.e., non-zero neurons
that actively fire for the input samples representing a given class).
In case of a convolutional layer, we calculate the class-specific firing
rate of a channel as the average percentage of non-fired neurons in
its corresponding feature map as described in [6]. In this section,
we focus our explanation on pruning neurons; it is straightforward
to adapt the discussions to pruning channels. We propose three
variations of CAP’NN for class-aware pruning.
A. CAP’NN-B: Basic Class-aware Pruning

Our basic class-aware pruning technique receives as input a CNN
along with the user’s preferences: a set of K output classes that the
user expects to encounter as well as an acceptable degradation in
classification accuracy denoted by ε. It also receives the class-specific
firing rates for each neuron that we calculate in the cloud a priori.
It outputs a set of neurons to be pruned while guaranteeing that the
post-pruning degradation in accuracy is below ε for each output class.
More specifically, the inputs are denoted as below:
• CNN specified by a set of output classes C and set of layers3 L

with neurons N` ∀` ∈ L
• Firing rate matrix F` of dimension |N`|×|C| ∀` ∈ L
• Accuracy degradation ε
• Set K of user-specific classes

Offline Algorithm: Identifying Pruning Candidates. CAP’NN-B
first applies Algorithm 1 to identify for each class, a set of neurons
that can be pruned while guaranteeing the degradation in accuracy
remains below ε in all the classes. Algorithm 1 is independent of K.
It receives the CNN as input along with ε and layer-specific matrix of
neuron firing rates F`, as explained before. It returns a layer-specific

2Channel pruning for convolutional layers reduces memory overhead of
storing the firing rates and alleviates sparsity of the weight matrices and irreg-
ular memory accesses, leading to a more efficient hardware implementation.

3We consider L to be the last few layers of the CNN and prune only from
the last layers because earlier layers are typically not class-specific and extract
more general features from the input.



pruning matrix P` of dimension |N`|× |C| for all ` ∈ L. An element
(n,c) in P` is a binary value indicating if neuron n in layer ` may be
pruned for class c. Given a class c, the non-zero elements in vectors
(:, c) in P`s (∀` ∈ L) specify the set of neurons which may be pruned
simultaneously across all layers for class c while guaranteeing the
accuracy degradation is below ε, for all the output classes.

We first explain how Algorithm 1 operates and then explain how
its output is utilized at run-time to find the neurons to prune for the
user-specified classes. Starting from line 1, it visits each of the last
layers in the network and computes pruning matrix P` for that layer,
considering the accuracy degradation of all pruned layers up to that
point. Specifically, in lines 7-15, it flags a set of candidate neurons
to be temporarily pruned for each class c in the current layer. These
are the neurons with firing rate below a threshold T (set to Tstart

in line 5). Next in lines 14-16, it adds the set of neurons that have
been pruned so far from the previously-visited layers. In lines 17-
19, it measures accuracy degradation in each class for this combined
pruning set. If the accuracy degradation is below ε in all classes, the
candidate neurons identified in the layer are permanently marked as
pruned in line 21. Otherwise, the firing threshold T is decreased by
a step and the process is repeated to identify fewer neurons until
accuracy degradation is below ε for all classes.

The outputs of this per-layer procedure are the neurons that are
permanently marked for pruning for each class (i.e., P (n, c) = 1)
in that layer (i.e., P` pruning matrix). The algorithm terminates once
P` is computed for all layers in lines 1-3.
Online Pruning. At run-time, given the set of user-specified classes
K, the actual pruned neurons for a layer ` are given by ∩c∈K(:, c)
in P`, which computes the intersection of per-class pruning vectors
over the classes in K. This computation is done for each layer to find
the final set of pruned neurons across all layers.

Given that Algorithm 1 guarantees a bound of ε in accuracy degra-
dation for the pruning set identified for each class, the intersection
(which is a smaller subset of neurons) also has the same property.

Overall, CAP’NN-B relies on storing binary pruning vectors
generated by Algorithm 1 and at run-time would only perform the
intersection operation among related pruning vectors; thus it is a fast
online procedure. It also guarantees that the pruned vectors always
result in an accuracy degradation of at most ε, regardless of |K|.

B. CAP’NN-W: Weighted Class-aware Pruning

CAP’NN-W is a generalization of CAP’NN-B that takes into
account the likelihood of encountering each class. The input user
preferences include a weight 0 ≤ wk ≤ 1 for each user-specified
class k∈K. For a single user, these weights add to 1.
Online Algorithm: Identifying Pruning Candidates. Similar to
CAP’NN-B, pruning is conducted layer by layer and at each layer
the neurons to be pruned are identified. This time, however, the per-
layer pruning matrix P` is of dimension |N`|×1. Algorithm 2 shows
the per-layer pruning procedure for CAP’NN-W.

First, in lines 2-6, for each neuron in the layer, the condition∑
k∈K wk × F`(n, k) ≤ T is evaluated. This condition computes

an effective firing rate given by wk × F`(n, k), which represents
how often a neuron n fires for class k, accounting for how likely k
will be encountered by the user. It then temporarily flags the neuron
to be pruned if the sum of its effective firing rates across the classes
in K is below a threshold.

The next steps in lines 8-17 are similar to Algorithm 1: it
permanently prunes the flagged neurons if the per-class degradation
in accuracy is below ε for all used classes, while accounting for the
neurons pruned so far in earlier layers.

Algorithm 1 CAP’NN-B(CNN, ε, F` ∀` ∈ L , &P` ∀` ∈ L)

Inputs: CNN given by set of output classes C and set of layers L with
neurons N` ∀` ∈ L, accuracy degradation ε, firing rates matrices F` of
dimension |N`| × |C| ∀` ∈ L.
Outputs: Pruning matrix P` of dimension |N`| × |C| ∀`L.
1: for each layer ` = lstart to |L| do
2: CAP-PerLayer(`, N`, F` , C, ε, &P`)
3: end for
4: procedure CAP-PERLAYER(`, N`, F` , C, ε, &P`)
5: T = Tstart
6: H(n, c) = 0 ∀n ∈ N` ∀c ∈ C
7: for each class c ∈ C do
8: for each neuron n ∈ N` do
9: if F`(n, c) ≤ T then . Firing rate for class c is below T

10: H(n, c) = 1 . Flag to temporarily prune
11: end if
12: end for
13: Temporarily prune neurons n from ` if H(n, c) = 1 ∀n ∈ N`

14: for each layer l = lstart to `− 1 do
15: Temporarily prune neuron n from layer l if Pl(n, c) = 1

16: end for
17: for each i ∈ C do
18: Measure accuracy degradation di at class i of pruned CNN
19: end for
20: if di ≤ ε ∀i ∈ C then
21: Set P`(n, c) = H(n, c) ∀n ∈ N` . Prune permanently
22: else
23: T = T − step and go to line 2
24: end if
25: end for
26: end procedure

Algorithm 2 CAP’NN-W-PerLayer(`, N`, F` , K, w, ε, &P`)

Inputs: layer ` with set of neurons N`, firing rate matrix F`, set of used
classes C with vector of class-usage weights w, accuracy degradation ε.
Outputs: Pruning matrix P` of dimension N` × 1.
1: T = Tstart; H(n) = 0 ∀n ∈ N`

2: for each neuron n ∈ N` do
3: if

∑
k∈K wk × F`(n, k) ≤ T then

4: H(n) = 1 . Flag to temporarily prune
5: end if
6: end for
7: Temporarily prune neurons n from ` if H(n) = 1 ∀n ∈ N`

8: for each layer l = lstart to `− 1 do
9: Temporarily prune neuron n from layer l if Pl(n) = 1

10: end for
11: for each i ∈ K do
12: Measure accuracy degradation di at class i of pruned CNN
13: end for
14: if di ≤ ε ∀i ∈ K then
15: Set P`(n) = H(n) ∀n ∈ N` . Prune permanently
16: else
17: T = T − step and go to line 2
18: end if

Note that Algorithm 2 cannot be performed offline because it
depends on the distribution of user-specified classes, which is only
known (and may even change) at run-time. Therefore CAP’NN-W
takes longer to execute at run-time compared to CAP’NN-B. How-
ever, the procedure is still fast, especially when limited to only a
few classes, i.e., |K| is small. This is because the per-class loop
in Algorithm 1 (line 7) is completely removed. CAP’NN-W also
incurs a higher memory overhead compared to CAP’NN-B since
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Fig. 3: Comparison of CAP’NN-B and CAP’NN-W.
it needs to store the floating-point firing rates to be used at run-
time. This overhead can be alleviated by encoding the floating-point
firing rates with fewer number of bits. Finally, similar to CAP’NN-B,
CAP’NN-W guarantees that the pruned neurons cannot yield accuracy
degradation beyond ε.
Online Pruning. Accounting for the likelihood of each class allows
for more aggressive pruning of neurons in CAP’NN-W compared to
CAP’NN-B at runtime. Consider the example shown in Figure 3
with three neurons and three classes. Assume the pruning threshold
determined by both algorithms is T = 0.1. The per-class weights
are listed for CAP’NN-W along with the effective firing rate for each
neuron. Here, neuron n1 is not pruned by CAP’NN-B because its
firing rate is above T for one of the three classes (i.e., c2). In contrast,
CAP’NN-W prunes n1 because its effective firing rate is below T ,
considering that class c2 is only encountered 10% of the time.

C. CAP’NN-M: Class-aware Pruning of Miseffectual Neurons

So far, our proposed schemes have only pruned ineffectual neurons.
CAP’NN-M is an extension to CAP’NN-W that identifies and prunes
miseffectual neurons. We say that a neuron is miseffectual if it fires
in the direction of an incorrect class. That is, for a user-specified
class k ∈ K, a miseffectual neuron has a higher contribution to one
or more wrong classes (i.e., class c 6= k ∀c ∈ C).
CAP’NN-M first identifies a set of miseffectual neurons Mc for

each class c ∈ C. This is done as a one-time process offline. Next, the
firing rate of each miseffectual neuron n for class c is set to 0 in the
firing rate matrix (Flast(n, c) = 0). Next, our CAP’NN-W algorithm
is invoked with this updated firing rate matrix to find the pruned set
of neurons for CAP’NN-M.

To identify miseffectual neurons, CAP’NN-M follows a two-step
procedure. In the first step, it identifies the top confusing classes
using a confusion matrix. In the second step, it characterizes neurons
as miseffectual if they contribute more to these top confusing classes.
We describe these two steps in more detail.
Step 1: Finding Top Confusing Classes. Given a class k ∈ K, we
identify the top-5 classes4 c 6= k that have the highest probability of
being triggered during inference if the inputs were only from class k.
These classes are thus most likely to be confused with k and can be
found using a confusion matrix of dimension |K| × |C|. Specifically,
for class k, we run the network for N input samples from class k.
We fill each entry (k, c) in the confusion matrix with the fraction of
times that c is triggered. We then select the 5 classes with the largest
entry values.
Step 2: Finding Miseffectual Neurons for Top Confusing Classes.
At this step, we focus on identifying miseffectual neuron candidates
among the neurons in the last layer, denoted as Nlast. These neurons
connect to the |C| output neurons as a fully-connected layer. For each
output neuron j:

cj =
∑

n∈Nlast

wij × ni + bj (1)

4We identify the top-5 classes because it relates to the top-5 accuracy, which
we report in our experiments.

The contribution of neuron i ∈ Nlast to output neuron j is measured
by d(cj)

d(ni)
= wij . We measure the contribution of each neuron in

Nlast for each top-5 confusing class using its corresponding weight
from the equation above.

Using the above two-step process, CAP’NN-M identifies and
prunes miseffectual neurons in addition to the ineffectual ones found
in CAP’NN-W. These two schemes are similar in terms of memory
overhead and execution runtime. As we show in our experiments,
removing miseffectual neurons actually improves classification ac-
curacy in addition to pruning more neurons overall compared to
CAP’NN-W.

IV. RELATED WORKS

The majority of existing pruning and structure simplification tech-
niques seek to create an equivalent DNN model that operates on
the same classes but requires less computation and smaller models.
These techniques may be categorized into three groups: low-rank
approximation, unstructured pruning and structured pruning. Low-
rank approximation techniques achieve a reduction in both model
parameters and computation using techniques such as Singular Value
Decomposition and Tucker decomposition [8]. Unstructured pruning
techniques are based on eliminating unimportant weights and con-
nections. They date back to the 90s [2], though recent works have
emerged based on weight pruning [4]. Structured pruning applies
pruning of entire layers or groups of weights. In this space, channel
pruning is recently studied [5], [13], [9] as an effective way to
develop compact and efficient models for CNNs, since the majority
of inference energy is consumed by convolutional layers.

The above innovations can all be regarded as class-unaware prun-
ing. They are fundamentally different from the class-aware approach
in this work. These two sets of techniques are orthogonal; class-aware
and class-unaware techniques may be applied simultaneously.

Recently, the works [11], [3] propose pruning techniques for
a predefined subset of classes. Specifically both works focus on
channel pruning for convolutional layers. CAP’NN is different from
these prior works in several major ways. First, it takes per-class
usage for each individual user into account and shows that it can
fundamentally improve pruning opportunities while still guaranteeing
that the classification accuracy never falls below a user-specified
bound. Second, CAP’NN is applied to both fully-connected layers
(pruning neurons) as well as convolutional layers (pruning channels).
Third, by introducing the notion of miseffectual neurons, CAP’NN is
able to prune further and not only achieve a smaller model size but
also improve classification accuracy, as we show in our experiments.

Class-aware pruning should not be confused with context-aware
pruning such as [1] where the pruning decision relies on the context
of the received input, not based on a subset of classes.

V. RESULTS AND DISCUSSION

In our experiments, we use the VGG-16 network to evaluate the
efficiency of our CAP’NN implementations. VGG-16 is recognized
as one of the representative networks in applications involving object
classification and localization tasks. The network consists of 13
convolutional layers and 3 fully connected layers, with each layer
being followed by a ReLU function. The network is implemented
in Tensorflow and is trained and tested on the ImageNet (2012)
dataset with 1000 output classes. To compute class-specific firing
rates, we ran the network with 200 images for each output class.
In our implementation of different variations of CAP’NN, we set
the following parameters for Algorithms 1 and 2: maximum allowed
accuracy degradation ε = 3%, the start threshold to bound the firing
rates Tstart = 0.4, reduction step of step = 0.025. We also pruned
from the last 6 layers of VGG-16 so lstart = |L| − 6.



Fig. 4: Model size of VGG-16 of various pruning schemes with different number of user-specific classes (K) and usage weights.

Fig. 5: The top-1 accuracy in VGG-16 of various pruning schemes with different number of user-specific classes (K) and usage weights.

A. Comparison of the CAP’NN Variations

In this experiment, we prune the network for different configura-
tions when varying the number of user-specified classes K = |K|.
Specifically, for each value of K, we randomly selected 200 combi-
nations of classes (i.e., each combination has K randomly-selected
classes). For each combination, we pruned the network using the
three CAP’NN variations and measured the classification accuracy
of the pruned network.Note, all variations of CAP’NN are applied
to an already-trained network and retraining is not required. We then
report the average top-1/top-5 classification accuracies across the 200
combinations per K, along with the average model size.
Model Size. Figure 4 shows the average post-pruning model size
when the network is pruned for |K| = 2, 3, 4, 5 user-specified classes,
normalized to the number of parameters in the original network.
Model size is measured by the number of (unique) parameters in
the network including the number of weights and biases. Recall
that CAP’NN-W and CAP’NN-M take into account the class usage
distribution (i.e., likelihood of encountering each class). We consider
different usage distributions, which are shown on the x-axis for
each plot (i.e., for each value of K). For example for K = 2, we
consider 10%-90% as one usage scenario of the two classes. Overall,
we consider 24 different variations by changing K and the usage
distributions. (Note, the bars corresponding to CAP’NN-B do not
vary within each plot because it is independent of per-class usage.)

As the results show, all variations achieve significantly smaller
model sizes compared to the original model. For example, when
K = 5, CAP’NN-B, CAP’NN-W and CAP’NN-M yield relative
model sizes of on average 66%, 30% and 29%, respectively. Both
CAP’NN-M and CAP’NN-W find more opportunities for pruning
compared to CAP’NN-B since they operate on effective firing rates
defined by the usage distribution of classes. CAP’NN-M is able to
achieve slightly smaller model size compared to CAP’NN-W by also
pruning miseffectual neurons; though as we show next, the main
advantage of CAP’NN-M is its accuracy gain.
Accuracy. Figure 5 shows the comparison of top-1 accuracies. As
expected, post-pruning accuracy degradation is within ε = 3% for
all of the 24 configurations. More importantly, pruning miseffectual
neurons in CAP’NN-M results in accuracy gains of up to 10% for
K = 2 and up to 5.6% for K = 5.

The plots comparing the top-5 accuracies are similar and are not
shown due to lack of space. The top-5 accuracies are also improved

Fig. 6: Model size vs accuracy tradeoff for CAP’NN-M as a function
of the number of user-specific classes K.

on average, by 7.3% for K = 2 and 4.8% for K = 5. Extending the
experiments to even more classes (K = 10), we find that the results
are similar (not shown for brevity). The top-1 and top-5 accuracies are
improved on average, by 2.3% and 3.2%, respectively. The relative
model size is also 0.48 of the original network model size.

Next, we applied CAP’NN-M to prune the network when varying
K up to 100 user-specified classes. The results are shown in Figure 6.
A higher K increases the relative model size because it makes the
pruning more conservative.We prune the network for only up to 100
user-specified classes since with 100 classes, the relative model size
is 90% of the original model; we can no longer achieve significant
reductions beyond K = 100. However, the key takeaway of Figure 6
is that regardless of K, classification accuracy is bounded by ε = 3%
as ensured by all three variations of CAP’NN. We expect that in real
use cases, the expected number of classes K is very small.

B. Energy Savings

We also evaluate the energy savings of pruning VGG-16 with
CAP’NN-M. We employ the analytical energy model proposed in
[14] and adapt it for our architecture, shown in Figure 2. The energy
model is expressed in terms of the number of MAC operations,
SRAM accesses, and DRAM accesses per inference. We use the
energy numbers of various components from [4], [10].

Table I reports the average energy consumption of VGG-16 when
normalized to the energy consumption of the original network for
different values of K. For each K, the relative energy consumption is
averaged over different usage distributions and the 200 combinations



TABLE I: Energy of different components in the network and relative
energy consumption of VGG-16 for different number of classes.

Component Energy (pJ) Number of
classes

Relative
energy

16-bit adder 0.4 2 0.33
16-bit multiplier 1.0 3 0.36

Max Pool / ReLU 1.2 / 0.9 4 0.38
SRAM 5 5 0.42
DRAM 640 10 0.56

of K randomly-selected classes. As can be seen, CAP’NN can
achieve energy savings of up to 44% relative to the original model.

C. Memory Overhead
As discussed earlier, CAP’NN-W incurs larger memory overhead

compared to CAP’NN-B, as it requires storing per-class firing rates.
The incurred memory overhead in CAP’NN-W depends on two
factors: 1) number of bits to represent the firing rates, and 2) the
size of the firing rate matrix per layer, which depends on the total
number of classes and the number of output neurons/channels in the
layers selected for pruning.

Note that we need to store the firing rates of the last 5 layers
of VGG-16 but do not need to store the firing rates of the output
layer. This is because we do not prune the output neurons of
the last layer, as each neuron corresponds to one output class in
the network. Therefore, CAP’NN requires storage for 5 firing rate
matrices. These last 5 layers consist of 3 convolutional layers, each
with 512 output channels, and 2 fully connected layers, each with
4096 output neurons. Each matrix has 1000 rows (one row per class)
and 512 (4096) columns for convolutional (fully connected) layers.
We then linearly quantize the class-specific firing rates into 3-bit
values. With this, the total memory overhead incurred by CAP’NN-W
is 3.6MB, a mere 1.3% of the original, unpruned network (with 16-bit
weights), which requires 276MB of storage.
D. Comparison with Prior Works

As mentioned before, our proposed class-aware pruning techniques
can be combined with existing class-unaware approaches to further
reduce the model size given a set of user-specified classes. To show
this, we first prune VGG-16 using two recently proposed works
[5] and [9]. This is done by directly using their already-pruned,
retrained models. We then apply CAP’NN-M to prune the already-
pruned networks for up to K = 5 user-specified classes. The results
are summarized in Table II. As can be seen, CAP’NN-M is able
to further reduce the relative model size of a class-unaware pruned
model by up to 60% as the network is pruned for up to 5 classes
(e.g., relative model size is reduced from 0.9 to 0.3 for K = 5
after applying CAP’NN-M on top of [5]). In addition, top-1/top-5
accuracies are improved.

Next, we compare CAP’NN-M against a recent work that prunes
based on classes [11]. In this work, the authors trained VGG-16 on
the CIFAR-10 dataset with 10 output classes. Then, they pruned the
network for up to 10 user-specified classes and reported post-pruning
energy consumption.

To compare with [11], we follow the same procedure to train
the network. Then, we apply CAP’NN-M to prune the network
for varying number of classes and reported the normalized energy
consumption in Table III. Energy consumption is normalized to the
original energy of the network. As the table shows, for a small
percentage of user-specified classes, CAP’NN-M yields lower post-
pruning energy compared to [11]. As the percentage of classes
increases, the energy consumption of CAP’NN-M approaches the
energy reported in [11]. As expected, the advantage of CAP’NN-M
is most pronounced with a relatively small number of classes.

TABLE II: Results of applying CAP’NN-M to variants of VGG-16.
(The variants are pruned with class-unaware pruning techniques.)

#Classes Thinet - Conv [9] Channel pruning [5]
Relative model size

Without
CAP’NN

With
CAP’NN

Without
CAP’NN

With
CAP’NN

2 0.94 0.21 0.90 0.24
3 0.94 0.22 0.90 0.26
4 0.94 0.24 0.90 0.28
5 0.94 0.26 0.90 0.30

Top-1 / Top-5 Accuracy (%)

Without
CAP’NN

With
CAP’NN

Without
CAP’NN

With
CAP’NN

2 68.0 / 88.5 71.4 / 90.8 69.0 / 88.6 69.8 / 89.5
3 69.3 / 89.1 70.8 / 91.3 69.0 / 88.9 69.1 / 89.7
4 70.1 / 89.3 70.5 / 91.6 67.0 / 89.1 68.8 / 90.1
5 69.8 / 88.6 70.1 / 90.9 67.8 / 88.8 68.5 / 89.5

TABLE III: Comparison of normalized energy consumption with [11]

#Classes 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

CAP’NN 0.36 0.48 0.56 0.68 0.76 0.81 0.87 0.91 0.92 0.96
[11] 0.72 0.63 0.69 0.72 0.78 0.81 0.82 0.89 0.94 1.0

VI. CONCLUSIONS

In this work, we propose CAP’NN as a framework that enables
personalized inference by pruning the network for a specific subset
of classes based on the user’s preferences, thus reducing the net-
work model size. Uncovering the concept of miseffectual neurons,
CAP’NN is also able to improve post-pruning classification accuracy.
As our experiments show, CAP’NN yields a relative model size of
50% of the original network and 2.3% improvement in top-1 accuracy
as we prune VGG-16 for 10 classes.
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