CRANIA: Unlocking Data and Value Reuse in
Iterative Neural Network Architectures

Maedeh Hemmat, Tejas Shah, Yuhua Chen and Joshua San Miguel
University of Wisconsin - Madison, Madison, WI, USA
{hemmat2, tyshah2, ychen664, jsanmiguel} @wisc.edu

Abstract—A common inefficiency in traditional Convolutional
Neural Network (CNN) architectures is that they do not adapt to
variations in inputs. Not all inputs require the same amount of
computation to be correctly classified, and not all of the weights
in the network contribute equally to generate the output. Recent
work introduces the concept of iterative inference, enabling per-
input approximation. Such an iterative CNN architecture clusters
weights based on their importance and saves significant power by
incrementally fetching weights from off-chip memory until the
classification result is accurate enough. Unfortunately, this comes
at a cost of increased execution time since some inputs need to
go through multiple rounds of inference, negating the savings
in energy. We propose Cache Reuse Approximation for Neural
Iterative Architectures (CRANIA) to overcome this inefficiency.
We recognize that the re-execution and clustering built into these
iterative CNN architectures unlock significant temporal data
reuse and spatial value reuse, respectively. CRANIA introduces
a lightweight cache+compression architecture customized to the
iterative clustering algorithm, enabling up to 9x energy savings
and speeding up inference by 5.8 with only 0.3% area overhead.

I. INTRODUCTION

Machine learning algorithms and deep learning have gained
significant success in many applications including image and
video classification to natural language processing. Convolu-
tional Neural Networks (CNNs) are among the most widely
used family of deep learning methods, providing unprece-
dented accuracy in many applications such as object localiza-
tion and object detection [9]. The accuracy boost though comes
with significant increase in required memory and computation
resources, mandating efficient hardware implementation of
these networks [3].

Challenge: Need for Input-Aware Inference. A key
insight is that not all inputs require the same amount of
computation to be correctly classified. While some inputs need
to perform all computations in the network, the vast majority
are easy to classify. Furthermore, not all of the weights in
the network contribute equally to generate the output. Given
these observations, several works [10], [8], [5] have been
proposed that aim to dynamically control and decrease the
power consumption at run-time while maintaining accuracy. In
[8], a teacher-student scheme is exploited to propose Big/Little
DNNs. Here, a Little network with fewer layers and a Big
network with higher complexity (thus more accuracy) are
trained. During inference, the Little network is executed first
and the Big network is inferred only if the little one can

not provide an acceptable result. In [10], the authors propose
an incremental learning/inference framework in which the
network is trained incrementally at the beginning by increasing
the number of filters in convolutional layers at each iteration.
During inference, a portion of the network can be turned off
whenever the network can provide acceptable accuracy.

Promising Approach: Iterative CNN Inference. In [5], the
authors introduce an iterative architecture for CNN inference
that enables dynamic reconfiguration and approximation of
the network on an input-by-input basis. To achieve per-input
approximation, a clustering algorithm is used to group CNN
weights based on their importance. The network is then
iteratively inferred and at each iteration, only a fraction of the
total weights are fetched from off-chip memory. The fetched
weights are determined based on the input, with the rest of the
weights kept at 0. This iterative inference leads to significant
power savings given that the majority of inputs require only
two or three iterations of inference, needing only about 40%
of the total weights for correct classification. However, the key
drawback to this iterative approach is that execution time is
often increased, as each input may need to go through more
than one round of inference to generate an acceptable result.
This in turn can negate the benefits in energy efficiency.

Our Solution: CRANIA. We propose Cache Reuse Approx-
imation for Neural Iterative Architectures (CRANIA). Our goal
is to overcome the performance drawbacks of iterative CNN
architectures and reap their benefits of per-input approximation
and power savings. We uncover properties of data and value
reuse that are unique to iterative CNN architectures and
leverage them in our CRANIA design:

1) Iterative execution of layers unlocks significant temporal
data reuse. CRANIA integrates a lightweight cache cus-
tomized to the iterative clustering algorithm, saving up to
9x energy and speeding up inference by up to 5.8x.

2) Clustering of weights per iteration unlocks significant
spatial value reuse. By clustering weights based on
their importance, fetched values inherently exhibit value
similarity more so than in non-iterative architectures.
CRANIA exploits this property using a base-delta weight
compression scheme customized to our clustering, reduc-
ing the cache overhead by 2.25x.

Cluster the —— Step 0:
weights Reset the weights, wait for next input
of network |

Step 1:
Load next batch of clusters from memory

Step 2:
Run the DNN with the new weights

Step 3:
Calculate score

YES Step 4: Score NO
above
threshold?
a)

Power- Accuracy trade off for LeNet5S

Need higher
accuracy

Reached sufficient
accuracy

97.11 97.27 97.98 98.04

08 74.95

“Cuuhh

Iteration 1

iteration 2 iteration 3 iteration 4 iteration 5 iteration 6

Power- Accuracy trade off for CIFAR10

79.7 80.1
781
703

1 7
61

08
3 51

06

Tl e = IL J

Iteration 1 iteration 2 iteration 3 iteration 4 iteration 5

= Fraction of weights s Normalized Power Consumption ——Accuracy

b)

Fig. 1: a) Overview of iterative CNN architecture; b) Power -
Accuracy trade off for LeNet5 and CIFAR10 [5].

II. ITERATIVE CNN ARCHITECTURES

The iterative framework proposed in [5] provides a means
to approximate the CNN dynamically per input, thus enabling
early termination when applicable. This input-dependent ap-
proximation is performed via hardware reconfiguration by
using only a fraction of the original (non-zero) weights,
without altering the hardware structure of the core CNN.

Overview. Figure 1a shows the high-level flow of iterative
inference for input-dependent approximation. First, as a pre-
processing step, a clustering algorithm groups the weights
of an already trained CNN into M clusters, where M is
determined via an Elbow method [5]. The objective is to find
clusters of weights such that the sum of squared distances
from the centroid is minimized. Clustering is performed only
once offline, and the clusters are stored as separate groups in
memory.

After this one-time clustering, Step 0 begins upon receiving
a new input for classification. In this step, all weights in the
CNN are reset to 0. Next, an iterative procedure starts to
approximate the CNN and conduct inference for that input. At
Step 1, we load a new batch of weights from memory, which
are fetched from clusters with the highest level of importance.

Off-chip Memory (Data)
Off-chip Memory (Weights)

Clusters
Sand6

mmml Clusters,
land2 | 3and4

Clusters.
M-1and M

]OOOO l

—
Cache Control Unit
Compressed edge
‘weights for 3 iterations
7
Weight K
Control Signal | Decompression unit I_—‘ MAC Units
we) Data 3 L

On-chip Buffers

[]
Activation
/Poolin; =
Fig. 2: Abstract hardware model of CRANIA. (Orange com-
ponents are added to the base architecture by CRANIA.)

All other weights in the network remain 0. Each new batch of
weights consists of two clusters, which contain the maximum
positive and minimum negative average weights among all
clusters. The CNN then executes with these weights in Step 2,
which allows for calculating an accuracy score in Step 3. If the
score is below a given threshold, a new iteration starts (for that
same input) to fetch the next batch of important weights. The
iterative algorithm terminates as soon as the score exceeds the
specified threshold, indicating that an acceptable classification
accuracy has been reached. Upon termination, the procedure
returns to Step 0 and waits to receive the next input.

Advantages. Figure 1b shows the trade-off between accu-
racy, power and fraction of used weights for two networks,
LeNet5 and CIFAR10. As the results show, most inputs only
need two or three iterations to be correctly classified and
achieve similar accuracy compared to the conventional non-
iterative architecture (i.e., less than 2% degradation). More
importantly, to achieve this accuracy, only 40% of weights
are fetched from memory, leading to significant power/enrgy
savings.

Drawbacks. Despite saving power, this iterative process
significantly increases latency and negates energy efficiency.
This is because each inference execution is divided into several
iterations, and some inputs may need more than one iteration
to reach acceptable accuracy.

III. CRANIA

In this section, we present our proposed solution, CRANIA,
which aims to improve the execution time and energy effi-
ciency of iterative CNN architectures. An abstract hardware
model of our design is shown in Figure 2. Similar to conven-
tional CNN architectures, weights and input data are stored
off-chip. The weights are stored by their clusters. During
inference, the network receives the weights and data from
memory to perform computations and generates an output. A
control unit is used to implement the iterative framework for
inference. It receives the output of the inference and controls
the memory and computational units of the neural network to
either 1) load more clusters of weights and run the network for
more iterations, or 2) generate the final output and terminate
the execution of the network.

In CRANIA, we first leverage the increased temporal data
reuse that is inherent to the iterative CNN architecture. We

Memory access pattern

cyelei [OX]1 [z [[emMT 7 [5 [a [0 13
cyclei+] [o [17]2 [3 [+ [0 j@M2 [3 [4 [o [1

., [0 Jr 203 [[o BN [+ [o |1
cycle i+2

=== Evicted block
=== Current incoming block
s Next incoming block
Fig. 3: LRU policy on cyclic sequential access pattern of

iterative CNN architectures.

propose to integrate a custom cache into the memory hierarchy
of the accelerator. While the weights are fetched to an on-
chip buffer for inference, they are also pushed into a very
small on-chip cache. Our motivations are twofold. First, as
we observe in our experiments, the total number of weights
required for the majority of inputs in the first three iterations
are significantly reduced (to more than half). This opens up
an opportunity to greatly reduce execution time and energy
consumption by caching the weights. Second, in addition
to intra-iteration weight reuse (which is the case for both
non-iterative and iterative CNN architectures), CRANIA also
exhibits inter-iteration weight reuse; the clusters of weights
from earlier iterations are still needed in later ones. By this
nature, the reuse distances of the weights are effectively
reduced, making them more suitable for caching.

Next, we leverage the increased spatial value reuse that
comes naturally from our clustering algorithm. We propose to
take advantage of spatial compression techniques to further
reduce the cache size and improve our design. Our insight is
that by grouping weights together based on their importance
to the classification accuracy, we expose significant value
similarity among neighboring weights. As Figure 2 shows, the
set of weights per cluster exhibits relatively low dynamic range
and can be compressed efficiently. Then, to perform inference,
we need to decompress the weights before fetching them into
the on-chip buffers. A weight decompression unit is integrated
into the architecture alongside the cache. In our experiments,
we find this decompression overhead to be negligible.

A. Caching for Temporal Data Reuse

Weight Cache. As discussed earlier, incorporating weight
caching into the memory hierarchy of our iterative CNN
architecture can be a favorable solution to speed up infer-
ence. Intuitively, cache capacity and associativity are critical
factors in CRANIA’s energy efficiency and performance. To
determine the cache size, the trade-off between miss rate and
latency/energy consumption per access should be carefully in-
vestigated. While larger caches can decrease the miss rate, they
can adversely increase energy consumption and latency per
access. They also incur more area overhead to the accelerators,
which may not be acceptable for many use cases.

Determining Cache Size. To determine the appropriate
cache size and associativity, we start our explorations from
a set-associative cache given that the sequential access pattern
of weights in neural networks can perfectly match the set
indexing. We first generate the memory access trace for each

CNN model in the first several iterations. Then, we simulate
the cache under different capacities and associativities, mea-
suring the miss rate. Generally, increasing the cache capacity
decreases the miss rate but comes at the cost of more area
and latency overhead. Based on our experiments, configuring
the cache size for a miss rate of 1% yields significant energy
savings and speedup while maintaining very low overhead.

Determining Cache Associativity. Next, we analyze the
impact of cache associativity on miss rate. On general-purpose
architectures, increasing associativity is expected to decrease
the miss rate since more cache lines are available for re-
placement. However, our experiments show that in the case
of iterative CNN architectures, increasing associativity offers
little to no boost in cache performance and direct-mapped
caching is sufficient. This is due to the cyclic sequential
access pattern of weights that is inherent to the inference
architecture, which is not suitably matched to LRU-based
replacement policies that are commonly found in conventional
caches. More specifically, LRU policies are counter-productive
in architectures with cyclic sequential accesses since the lines
accessed furthest in the past (which are the top candidates for
eviction) are actually most likely to be accessed next. This
is illustrated in Figure 3 for an example cache with 4 entries
and LRU replacement. Here, addresses 0, 1, 2, 3, and 4 are
accessed iteratively. The evicted lines are highlighted in red,
and the new incoming block is highlighted in green. In order
to cache address 4, an LRU-based policy would evict address
0 given that it has been accessed [urthest in the past. However,
due to the iterative cyclic access pattern of weights, in the next
cycle, address 0 is expected to be accessed, as shown in blue.
As a result, we integrate a direct-mapped weight cache, which
is consequently more power-efficient and simpler in structure.

Data Cache. In addition to caching the weights, we
investigate the merit of integrating a data cache for the inputs
of each layer in the network. Configuring such a cache is
different from the weight cache for two reasons. First, in
contrast to the weight reuse over iterations, the feature maps
calculated per layer are not reused. This is because once a
new iteration starts, the feature maps are recalculated using
newly fetched weights. Second, we do not need to write back
feature maps to the memory upon eviction because the feature
maps are only used as an input to the next layer. When layer
i’s feature maps are calculated, they only need to be cached
until layer i+/ is processed completely, after which they are
no longer used and can be discarded.

With this, we determine the input data size analytically.
The data cache needs to be large enough to accommodate the
largest feature maps across the layers (i.e., the largest input
to all but the first layer) as well as the original input to the
network (i.e., the input to the very first layer of the network).
We note that, unlike per-layer feature maps, the network input
is reused over iterations to start the inference. Hence, we can
save energy from caching the input once when read from
memory the first time.

B. Compression for Spatial Value Reuse

In CRANIA, we recognize that there is inherent spatial
value reuse in our clustering; thus we propose to use spatial
compression techniques to decrease the required cache storage
for weights. In particular, we integrate mechanisms for base-
delta compression, a scheme that has been shown to be simple
and effective in general-purpose caches [2]. This technique
exploits the value similarity and low dynamic range of the
values within a cache line. Values are stored as a base value
along with an array of deltas; i.e., the differences between each
original value and the base. With high spatial value locality,
these deltas are near zero and thus can be stored in much less
bits than the original values.

Our motivation is that base-delta compression is naturally
effective in compressing the weights of iterative CNN archi-
tectures due to clustering. Since the weights are grouped by
their importance and are accessed and stored together, the
fetched values inherently exhibit more value similarity and
lower dynamic range. In contrast, base-delta compression is
not very applicable to conventional non-iterative architectures
where weights are stored and fetched from off-chip memory
layer-by-layer, without any systematic value similarity.

Basc and delta values need to be computed for each line as
they are inserted into the cache. In CRANIA, each line stores
up to K weights, to be determined by the configurable cache
line size and precision of each individual weight. The base
value can be chosen in two different ways. It can either be the
first value or the average of all values in the cache line. The
former case requires storing K-I1 deltas while the latter one
requires K deltas. In this work, we opt for the first weight in
the cache line as the base, calculated as follows:

K x Wbits
Wbits + (K - 1) X Abz'ts

where Wy, is the precision of each weight and Ay, is the
required number of bits for storing deltas.

Determining K, and equivalently the cache line size, is an
important step in CRANIA. On one hand, having more weights
(i,e., increasing K) in each cache line can be beneficial to
improve the compression ratio, because more weights can
share one base value. Also, a larger cache line can significantly
decrease the cache tag overhead. On the other hand, increasing
the number of weights to be compressed in each cache line can
reduce the similarity between the weights, hence increasing the
number of bits per delta and degrading the compression ratio.
Our experiments explore this trade-off in determining K.

Compression Ratio =

IV. EVALUATION AND DISCUSSION

A. Simulation Framework

In our experiments, we used two well-known CNNs namely,
LeNet5 and CIFAR10. The architecture of these network and
their input and weight matrix sizes are summarized in Table
I. The networks are first implemented and trained with Neupy
[4]. Then, we quantized the trained floating point weights to
16-bit fixed point ones and imported each network in Matlab
to verify post-quantization accuracy. To build iterative CNN

TABLE I: Information on experimented neural networks

LeNet5 CIFAR1OQ
Weight | Input Weight | Input
CS1 SX5%x1x20 28%x28x1 SX5%x3x%x32 32x32x3
CS2 | 5x5x20x50 | 12x12x20 | 5x5x32x32 | 14x14x32
CS3 - - SXx5x32x64 9IX9x 64
FC1 800500 4x4x50 1024 % 10 4x4x64
FC2 500x 10 500x 1 - -

TABLE 1II: Energy cost and latency of various arithmetic
operations and memory accesses in 45nm technology.

Component | Energy (pJ) | Latency (clock cycle)
16-bit adder 0.4 1
16-bit multiplier 1.0 1
Max Pool 1.2 2
ReLU 0.9 1
18 KB cache 13.5 3
1 KB cache 1.8 1
0.5 KB cache 1.3 1

DRAM 1950 120

architectures, we have used K-means clustering algorithm and
divided the edge weights to twelve and ten clusters for LeNetS
and CIFARI10, respectively, as proposed in [5]. We note that
12 and 10 clusters lead to at most six and five iterations
of inference per input, because at each iteration two clusters
of edge weights are fetched and used for inference. This is
while majority of inputs require three iterations of inference,
as discussed in Section II. Hence, an accuracy almost similar
to the non-iterative network can be achieved after at most 3
iterations and using less 50% of the weights.

To measure the latency and energy consumption of the
network for inference, we first adapted the energy consumption
and latency of each individual computation unit from [9], [7].
We have also used CACTI 6.0 [6] to measure energy con-
sumption and latency of DRAM memory and various caches
of different size. The results are summarized in Table II. Then,
we constructed an analytical model based on the CNN network
architecture that computes the number of required operations
for inference, including the number of memory accesses and
the number of MAC operations. It finally calculates total
network energy and latency. Note that latency is measured
as the number of clock cycles required to finish one or several
iterations of inference.

B. Determining Cache Size

Weight Cache. Here, we determine the weight cache size
for LeNet5 and CIFARI10 using the procedure explained in
Section III-A. Figure 4a shows the miss rate versus cache size
for these two iterative networks in the first three iterations.
As the figure shows, the required cache size for a reasonably
small miss rate (i.e., 1% in this work) is 1KB and 0.5KB for
LeNet5 and CIFARI1O0, respectively.

Figure 4a also shows the miss rate for different configura-
tions of the cache. As the results show, direct - mapped caches
show better performance compared to set-associative ones, as
we discussed in Section III-A.

Data Cache. To determine the size of data cache, we have
used the analysis discussed in Section III-A. The cache needs
to accommodate the input to very first layer and the largest

1.6 LeNet 5

— Direct mapped

Miss Rate (%)

o X
0.6

T 02505 1 2 4 8 16 32 o4
Cache Size (Kbyte)

0.9 CIFAR 10

128 256 512 1024

Miss Rate (%)

0.3
0.2

05 1 2 4 8 16 32 64 128 256 512 1024
Cache Size (Kbyte)
1.8
1.6 LeNet 5
@ 0.8
=06
04
02
025 05 1 2 4 8 16 32 64 128 256 512 1024

Cache Size (KB)

e CIFAR 10

N

0.5 1 2 4 8 16 32 64
Cache Size (KB)

b)

Fig. 4: Miss rate under different configurations of cache asso-
ciativity and size for a)iterative and b)non-iterative networks.

& 12

128 256 512 1024

input across all remaining layers. As Table I shows, for both
networks, the second layer, CS2, has the largest input size, thus
should be cached along with the original input to the network
(i.e., CSI1 input). With 16-bit precision for input and feature
maps, the data cache size is 8KB and 18KB for LeNet5 and
CIFARI10, respectively.

C. Compression Results

To further reduce the weight cache size for iterative CNN
architectures, we have applied Base-delta compression tech-
nique to store the edge weights.

Evaluating Compression Ratio. To compress the edge
weights, we first need to determine the cache block size (i.e.,
equivalent to K) and then evaluate the number of bits required
to represent the deltas and base in each cache line. Recall that
required number of bits for representing deltas is changing
as K varies. To investigate the trade off between compression
ratio and cache block size, we changed K from 4 to 64 (i.e.,
cquivalent to changing the number of weights in a cache line
from 4 to 64). Then, using the first weight in each block as the
base, we have calculated the delta array. Our experiments show
that for 16-bit weight precision, the required number of bits

per delta is increased from 6 bits to 7 bits as K is increased.
Given that larger K will reduce the tag overhead of the cache
and can be also beneficial for improving the compression ratio,
we have chosen K= 64.With 7 bits per delta and using the first
weight as the base, the compression ratio for the network will
be 2.25 using the equation in III-B. With this compression
ratio, the cache size is decreased to 0.5KB and 0.25KB for
LeNet5 and CIFARI10, respectively.

Decompression Overhead. Once the weights are read from
the cache, they should be decompressed before being fetched
to the computational units to do the inference. In the case
of Base-Delta compression, weights can be decompressed by
adding deltas to the base value in cach cache line. Hence,
the required decompression logic is 16-bit fixed-point adders
which is relatively cheap compared to the other components
of the network. In addition, the energy saving achieved from
reducing the cache size outperforms the energy consumption
incurred by decompressing. As a result, the decompression
overhead will not degrade the energy efficiency of iterative
CNN architectures.

D. CRANIA for Non-Iterative CNN Architectures

CRANIA exploits the inherent features of iterative CNN
architectures to improve its performance by unlocking signifi-
cant temporal data reuse and spatial value reuse. To show this,
we have evaluated the efficiency of CRANIA on conventional
non-iterative architectures.

Determining Cache Size. To show how iterative CNN
architectures can benefit more from integrating the cache,
we have measured the required cache size for non-iterative
architectures. Similar to the iterative case, we first gencrated
the memory trace for non-iterative architectures and measured
the miss rate of the network under different cache sizes. We
note that the memory trace for non-iterative CNN architectures
has two main differences compared to iterative ones: First,
it has significantly larger number of weights given that all
weights in the network are used for inference. Second, for
non-iterative architectures, we only have intra-iteration weight
reuse which leads to larger distance reuse, particularly in fully
connected layers.

Figure 4b shows the cache miss rate for non-iterative
networks, LeNet5 and CIFARI10, under different cache sizes
and configuration. Similar to iterative networks, increasing the
cache size has reduced the miss rate. However, in order to
achieve the same miss rate with iterative CNN architectures
(i.e., 1% miss rate), the cache size should be 32KB and 8KB
for LeNet5 and CIFARI10, respectively, which is increased
32x and 16x in comparison to its iterative counterpart.

Evaluating Compression Efficiency. Unlike iterative CNN
architectures in which clustering has significantly increased
the value similarity, in conventional architectures, the weights
are stored and fetched layer by layer from/to memory. Hence,
we do not expect any significant value similarity between
neighboring weights. To show this, we have applied base-delta
compression to non-iterative CNN architectures and measured
the deltas for each cache line. The results show higher dynamic

range of deltas for non-iterative network architecture in com-
parison to the iterative ones. Hence, base-delta compression
can not be as effective in reducing the cache size for non-
iterative networks.

E. Area Overhead

‘We have measured the area overhead incurred by integrating
a cache into CNN accelerator. For this, we have used the area
numbers from DaDianNao [1], obtained in 28nm technology.
For a fair comparison, we then have scaled the area numbers
to 45nm technology.

The area for each processing unit (PU) consisting of mul-
tipliers, adders, and ReLU is 0.78mm? in 28nm technology
[1], which is scaled up to 1.29 mm? for 45nm technology.
Sixteen PEs are used in each accelerator. Hence, the total area
of processing units is 20.76 mm?. On the other hand, the area
consumption of the largest cache required in our design (which
is 18KB data cache for CIFAR10) is 0.065 mm?, measured
by CACTI 6.0 [6]. Hence, the area overhead incurred by the
cache is around than 0.3%, thus negligible.

FE. Network Evaluation

Here, we will evaluate the efficiency CRANIA on latency
and energy consumption of iterative CNN architectures over
the first three iterations. To achieve this, we have measured
the energy saving and speedup achieved by CRANIA for each
iteration in comparison to the base iterative network (i.e., the
network without caching and compression). Note that energy
savings and speedup are normalized to iterative CNNs instead
of non-iterative ones; the former has been shown to be more
energy-efficient [5]. Figure 5 shows the results for LeNetS
and CIFAR10, respectively. As can be seen, CRANIA is able
to improve energy cfficiency and performance of iterative
network architectures.

More specifically, for LeNetS (CIFAR10), integrating the
cache into CNN design can speed up the network by at least
3.5x (2x) and save energy up to 8x(1.5x). Compression
is able to further improve speedup and energy saving up to
5.8%(2.5x) and 9x (2x) compared to the base case. Note that
further energy saving/speedup is possible after compression,
because compression has reduced the cache size which in turn
decreases energy and latency per cache access.

V. CONCLUSION

In this work, we have proposed CRANIA, a lightweight
cache and compression architecture customized for iterative
execution, enabling fast and energy-efficient inference. CRA-
NIA exploits significant temporal data reuse and spatial value
reuse inherent to iterative CNN architectures, which originate
from clustering weights based on importance and dynamically
approximating and re-executing the network during inference.
Our results on two popular networks show up to 9x energy
savings and 5.8 x speedup in iterative inference with CRANIA.

ACKNOWLEDGMENTS

We thank reviewers for their valuable feedback. This work
is supported by the Wisconsin Alumni Research Foundation
and the University of Wisconsin-Madison.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

LeNet5

®]KB cache - without compression 0.5KB cache - With compression

7
£ 6
5E
Ly
5= —
4258 3
é &
3} 2
1
0
First iteration Second iteration Third iteration
LeNet5
10 ¥ 1KB cache - without compression 0.5KB cache - With compression
o 9
=
£ 8
@z 7
-1
£ 6
-
88 >
=
4
P
; 2 3
:
$) 1
0
First iteration Second iteration Third iteration
CIFAR10
10.5KB cache - without compression 0.25KB cache - with compression
3
&
=25
N
v o
2L 2 p—
> i
4215
3 g1
© 05
0 —— (R o
First iteration Second iteration Third iteration
CIFAR10
w 2 m(.5KB cache - without compression 0.25KB cache - with compression
]
|5 2
¢ g
8
£] —
5
$E 1
H
3 05
O

First iteration Second iteration Third iteration

Fig. 5: CRANIA energy savings and speedup.
REFERENCES

Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam. DaDianNao: A machine-learning
supercomputer. In MICRO, pages 609 —622, 2014.

G.Pekhimenko, V. Seshadri, O. Multu, M. Kozuch, P. Gibbons, and
T. Mowry. Base-delta-immediate compression: practical data compres-
sion for on-chip caches. In PACT, pages 377 — 388, 2012.

S. Hashemi, N. Anthony, H. Tann, R. I. Bahar, and S. Reda. Understand-
ing the impact of precision quantization on the accuracy and energy of
neural networks. In DATE, pages 1474-1479, 2017.
http://neupy.com/pages/home.html.

M.Hemmat and A. Davoodi. Dynamic reconfiguration of CNNs for
input-dependent approximation. In ISQED, pages 176 — 182, 2019.

N. Muralimanohar, R. Balasubramonian, and N.Jouppi. Optimizing
NUCA organizations and wiring alternatives for large caches with
CACTI 6.0. In MICRO, pages 3 — 14, 2007.

M. Nazemi, G. Pasandi, and M. Pedram. Energy-eicient, low-latency
realization of neural networks through boolean logic minimization. In
ASPDAC, pages 274 — 279, 2019.

E. Park, D. Kim, S. Kim, Y. Kim, G. Kim, S. Yoon, and S. Yoo. Big/little
deep neural network for ultra low power inference. In CODES +ISSS,
pages 1624-132, 2015.

A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. Strachan,
M. Hu, R. Williams, and V. Srikumar. ISAAC: A convolutional neural
network accelerator with in-situ analog arithmetic in crossbars. In ISCA,
pages 14-26, 2016.

H. Tann, S. Hashemi, R. I. Bahar, and S. Reda. Runtime configurable
deep neural networks for energy-accuracy trade-off. In CODES + ISSS,
pages 34:1-34:10, 2016.

