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Abstract—Maintaining correctness is of paramount importance
in the design of a computer system. Within a multiprocessor
interconnection network, correctness is guaranteed by having
deadlock-free communication at both the protocol and network
levels. Modern network-on-chip (NoC) designs use multiple
virtual networks to maintain protocol-level deadlock freedom, at
the expense of high power and area overheads. Other techniques
involve complex detection and recovery mechanisms, or use
misrouting which incurs additional packet latency. Considering
that the probability of deadlocks occurring is low, the additional
resources needed to avoid/resolve deadlocks should also be low.
To this end, we propose Pitstop, a low-cost technique that
guarantees correctness by resolving both protocol and network-
level deadlocks without the use of virtual networks, complex
hardware, or misrouting. Pitstop transfers blocked packets to
the network interface (NI) creating a bubble (empty buffer slot)
which breaks deadlock. The blocked packet can make forward
progress through NI to NI traversals using low complexity
bypassing mechanisms. This scheme performs better due to
higher utilization of virtual channels and works on arbitrary
irregular topologies without any virtual networks. Compared to
state-of-the-art solutions, Pitstop can improve performance up to
11% and reduce power and area up to 41% and 40%.

I. INTRODUCTION

Networks-on-Chip (NoCs) improve scalability over tradi-
tional bus-based or crossbar interconnects at the expense
of increased complexity in maintaining correctness. A NoC
design guarantees correctness by being free of deadlock–a
cyclic resource dependence that can occur within the network
or in the communication protocols between network nodes.
Maintaining deadlock freedom not only adds considerable
hardware and energy overheads in the form of virtual channels,
but also incurs performance penalties due to turn restrictions
or misrouting. In addition, the difficulty of maintaining cor-
rectness increases with shrinking technology size as smaller
technology nodes accelerate link failures [32].

Deadlocks can be categorized into protocol- and network-
level as seen in Figs. 1(a) and 2(a). In both cases, packets do
not make forward progress, causing the system to stall indefi-
nitely. Network-level deadlocks involve a cyclic dependency of
network resources, whereas protocol-level deadlocks involve
packets of different message types blocking one another.

Solutions to handle network-level deadlocks apply turn
restrictions on all virtual channels (VCs) (e.g., XY and West-
first routing) [15] or use escape VCs (i.e., partially adaptive
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Fig. 1: (a) Protocol-level deadlock; A1 and A3 responses are blocked by A2

and A4 requests and vice versa leading to a cycle, (b) Current protocol-level
deadlock solution: Assign one VN to each message class (i.e., request and
response message classes for this figure).

routing shown in Fig. 2(b)) [18]–[20], [34]. These techniques
cannot support irregular topologies (due to faulty links), and
use costly virtual networks (VNs) and VCs to avoid dead-
lock. Other solutions rely on detection and recovery mecha-
nisms [3], [55], [56]. For example, SPIN [55] detects potential
deadlocks, then spins the packets to recover from deadlock.
Such techniques introduce hardware overheads which limits
scalability (Fig. 2(c)). Instead of detecting, bubble flow control
techniques insert empty buffer slots to prevent deadlocks [11],
[14], [53], [56], [64]. SWAP [48] fundamentally improves on
this by recognizing that deadlocked packets can be exchanged
in-place without needing extra buffers. Instead, SWAP pe-
riodically misroutes one packet to make forward progress
on another (Fig. 2(d)). DRAIN [46] periodically drains all
packets in the network to break potential deadlocks. Since
draining may misroute packets, latency may increase, and
new deadlocks may form and drive up the worst-case latency.
Like SWAP and DRAIN, other prior work uses misrouting
to solve deadlocks [24], [37], [43], [64]; however, they can
incur high packet latencies. An ideal deadlock freedom scheme
should be area and power efficient through low-cost hardware
modifications, and also be performant by avoiding misrouting.

VNs also prevent protocol-level deadlocks [44] by allocating
different message types to different VNs to avoid one type
blocking another (Fig. 1(b)). A VN is typically composed of
multiple VCs to mitigate head-of-line blocking. As a result,
they consume most of the NoC’s power and area [29]. For
example, the MOESI Hammer protocol requires six VNs for
each input buffer just to guarantee protocol-level deadlock
freedom; if it employs two VCs per VN, this leads to 12 VCs
in total for each input buffer–imposing significant power and
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TABLE I: Comparison of different deadlock freedom solutions.
Proposed No Protocol Deadlock Network Deadlock Full Path Min. Buffer Low- Supports No

Solutions Detection Freedom Freedom Diversity Space/Port power Wormhole Misrouting

Turn Restrictions [15] X 7 X 7 #V Ns 7 X X
Escape VCs [18]–[20], [34] X 7 X 7/X∗∗ (#V Ns + 1) 7 X X
Virtual Networks [44] X X 7 7 #V Ns 7 X X
SPIN [55] 7 7 X X #V Ns 7 7/X∗ X
SWAP [48] X 7 X X #V Ns 7 7/X∗ 7
DRAIN [46] X X X X #V Ns∗∗∗ 7∗∗∗ 7/X∗ 7
Our Method: Pitstop X X X X 1 X X X

* Cannot support Wormhole flow control without adding packet truncation support. ** Limited path diversity within escape VC.
*** Although DRAIN can work with no VNs, it needs a large amount of buffer space which is non-minimal (Sec. III-C).
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Fig. 2: Network-level deadlock and its exiting solutions: (a) Network-level
deadlock; all packets (request type in this figure) hold buffers while they are
waiting for each other, (b) Escape VCs: turn restrictions are applied only to
the escape VC. Packets in the non-escape VCs take advantage of full path
diversity, (c) SPIN: after SPIN’s counter triggers a time-out, it sends probe
packets to detect the deadlock path; then, it sends move packets to synchronize
the routers for the spin. After that, all the routers send the packets at the same
time, and (d) SWAP: SWAP breaks the deadlock at the cost of misrouting A3.

area penalties. The number of required VNs is expected to
increase as protocol complexity increases to handle heteroge-
neous devices in SoCs [66]. Since the dependency chain of the
protocol messages is not only limited to the network, but also
involves the directories and caches, detecting protocol-level
deadlock is a challenging task.

None of the aforementioned techniques solve protocol-level
deadlocks without the use of multiple VNs, deadlock detection,
and/or misrouting. However, the probability of protocol-level
deadlock occurring is low, even in the presence of faulty
links. We observe lower utilization of network interface (NI)
resources, specifically the ejection queue, compared to router
input buffers making it a good candidate for temporary packet
storage (Sec. III-D). We leverage these insights to propose
a low-cost, VN-free scheme called Pitstop that guarantees
deadlock freedom. Pitstop selects a blocked packet in a router
and transfers it to the ejection queue. The blocked packet then
makes forward progress through a bypass mechanism which
also frees up router resources to break the deadlock. Pitstop is
the first technique that eliminates both network- and protocol-
level deadlocks without any virtual networks, extra buffers,
detection and recovery mechanisms, nor misrouting. Tab. I
summarizes the key differences between Pitstop and existing
solutions. Compared to the state-of-the-art, Pitstop reduces
energy up to 40% and improves performance up to 11%.

II. BACKGROUND

Protocol-Level Deadlock: Coherence protocols have different
classes of messages, and each type is associated with a set
of coherence actions. Typically these message classes have
priority in the order in which they must be processed otherwise
deadlocks can occur. For example, in a simple request-reply
system, replies should not be able to be blocked by requests,
otherwise unreplied transactions can accumulate without being
processed until the system runs out of resources – causing a
protocol-level deadlock (Fig. 1(a)).
NoC Router: A generic NoC router is comprised of buffers,
switch, arbitration, routing unit, and network interface (NI).
In addition to the buffers in inter-router ports (e.g. South,
North, East, and West), the NI consists of one injection
queue, storing incoming messages from the processor, and
one ejection queue, storing incoming messages from the inter-
router input buffers [8], [21]. To avoid protocol-level deadlock,
each message class (e.g., request, response) must traverse its
own network [61]. Thus, all inter-router input buffers (e.g.
South buffer) and NI buffers (i.e., injection and ejection
queues) must use different VNs per message class [21], [61].
Network-Level Deadlock: A packet from a router’s input
buffer can only be sent if the downstream buffer has space.
Situations may occur where the forward progress of one packet
depends on the downstream packet which then depends on the
next downstream packet and so on, forming a dependency
chain. If this dependency chain forms a cycle, we have a
network-level deadlock (Fig. 2(a)).

III. MOTIVATION

A. Rarity of Protocol-level Deadlocks

We run PARSEC [6] and Splash-2 [65] applications on a
mesh network to determine the frequency of protocol-level
deadlocks. We use MOESI Hammer coherence protocol, and
force all message types to be in the same class (i.e., no VNs).
We use only one VC to increase the likelihood of a protocol-
level deadlock. SPIN [55] is used to resolve only network-
level deadlocks and we test the network with zero and eight
faulty links. All tested applications complete successfully in
the network with no faulty links. Protocol-level deadlocks only
occur when 8 links are randomly removed for FFT. Thus the
probability of protocol-level deadlock occurring is rare, which
is consistent with prior work [60]; this motivates the need for a
deadlock solution that does not impose significant overheads.
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Fig. 3: Number of deadlocks generated by DRAIN [46] due to the drain-
ing/misrouting all packets in the network.

B. Performance Degradation of Misrouting

Many prior methods use misrouting to resolve deadlocks
[24], [37], [43], [46], [64]. For example, SWAP [48] makes
forward progress for one blocked packet at the cost of
misrouting another. These misrouted packets may degrade
performance, driving up the worst-case latency. We test this
by determining how sensitive the performance of SWAP and
SPIN are to increased congestion and deadlocks. To induce
more deadlocks and congestion, we introduce eight faulty
links within the network and use a 3-cycle router. For the
more deadlock-prone configurations, we observe that both
SWAP and SPIN increase 99th percentile tail latency (i.e.,
worst-case latency) by 10× and 11× compared to a network
with zero faults. Similar results for both schemes suggest
that SWAP’s misrouting incurs almost the same overhead
as detection, synchronization and recovery methods seen in
SPIN; SWAP increases tail latency because as congestion
increases, it misroutes more packets–5.8× compared to 1-cycle
router latency and no faulty links. To avoid this penalty, a
solution should handle deadlocks without misrouting packets.

DRAIN [46] is another example which uses misrouting to
resolve deadlocks. It infrequently forces all packets in the
network to move. However unlike SWAP, which misroutes
one packet at a time, all packets in the network may ex-
perience misrouting simultaneously. This type of misrouting
may induce deadlocks in the network. As shown in Fig. 3(a),
DRAIN introduces deadlocks for some benchmarks. Since
draining is infrequent, these deadlocked packets may remain
in the network for a considerable time before being resolved
by a subsequent movement, thereby increasing worst-case
latency. Note that network-level deadlocks do not occur for
the benchmarks shown in Fig. 3 when a routing algorithm
that does not guarantee deadlock freedom is used [46]. In
general, if a deadlocked packet requires N-1 drains to resolve
the deadlock cycle, the worst-case latency of the packet would
be N×DRAIN period (i.e., 64K cycles).

C. Minimum Buffer Space Required

The minimum amount of buffer space required is dependent
upon the number of VNs which is decided by the cache
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Fig. 4: Average utilization of ejection queue; utilization of the ejection queue
is negligible. Note: The ejection queue holds 1-packet.

coherence protocol to maintain correctness. SPIN [55] and
SWAP [48] only resolve network-level deadlocks and so
they need multiple VNs to provide protocol-level deadlock
freedom. DRAIN [46] can provide both network- and protocol-
level deadlock freedom using no VNs; however, for DRAIN,
eliminating VNs does not minimize the amount of buffer
space required. To handle protocol-level deadlocks, DRAIN
relies on an assumption that packets of one message class
cannot be allowed to use up all of the resources (i.e., buffers)
within the NoC. To satisfy this assumption, the number of
miss status handling registers (MSHRs) should be relatively
low compared to the amount of buffer space in the NoC,
restricting the number of packets per message class. The
minimum amount of buffer space while using no VNs must
satisfy the worst-case scenario, i.e., every MSHR entry in the
system is a store miss that needs to invalidate all L1 caches.
Note that the store miss leads to #Cores− 1 invalidation
packets that all need to reside in the network. Therefore,
the amount of buffer space needed to satisfy DRAIN’s as-
sumption is #MSHRsEntries ×#Cores× (#Cores− 1).
DRAIN would either have to use multiple VNs to maintain
protocol-level deadlock freedom or use the large amount of
buffer space required when using no VNs. In the case of
using no VNs, assuming 64 cores and 8 MSHRs in each
core, the amount of required buffer space would be 32K buffer
slots. However, this value would be less than 2K buffer slots
while using multiple VNs. Therefore, even though DRAIN can
guarantee protocol-level deadlock freedom without VNs, the
buffer overhead required to do so is much more than it would
be with VNs.To make a NoC work with no VNs, an efficient
solution would need to handle both protocol- and network-
level deadlocks while minimizing the amount of buffer space.

D. Ejection Queue Underutilization

Prior work has shown that the average utilization of VCs
is low since the NoC is overprovisioned to handle peak
loads [25]–[29], [43], [60]. Underutilization is made worse
by the necessity of having multiple VNs for protocol-level
deadlock avoidance. Recall that NI buffers (ejection and injec-
tion queues) and inter-router input buffers (e.g., South buffer)
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must use separate VNs per message class (Sec. II). Instead of
devoting additional resources to handle deadlock issues which
would exacerbate this underutilization, we aim to repurpose
existing resources to solve deadlocks and save power and area.
The NI ejection queue acts as a good candidate for temporary
packet storage as its utilization is significantly low as shown
in Fig. 4. The reason that ejection queue is significantly
underutilized is that VCs of the ejection queue are only utilized
by packets ejecting at that particular router. Further, ejection
queues are generally drained almost immediately since the
destination nodes are not typically busy. We observe that
for PARSEC and SPLASH, 99.917% of the ejection packets
encounter an empty ejection queue (with an ejection queue
size of 1-packet).

IV. PITSTOP

A. High-level Idea

The goal of this work is to design a low-cost solution to
eliminate deadlocks in the unlikely event that they happen.
We propose an inexpensive scheme, Pitstop, that inserts a
bubble (an empty buffer slot) into a deadlocked router similar
to Bubble Flow Control [11], [14], [53], [56]; however, Pitstop
is not limited to ring topologies. As noted in Sec. III-D,
the ejection queue in the NI is dramatically underutilized;
thus, the ejection queue provides plenty of empty buffer slots
(bubbles) to be placed in the deadlock chain. The bubble is
inserted by swapping the empty slot in the ejection queue
with the blocked packet in the router buffer. Think of it as the
blocked packet taking a Pitstop in the NI which frees a buffer
slot in the router.1 Deadlock is broken after transferring the
blocked packet to the NI. Pitstop adds low-complexity logic
that ensures that the blocked packet makes forward progress
through a bypass mechanism, hopping from NI to NI. Each
router in the network is checked for blocked packets (either
due to deadlock or congestion) in a statically determined order.
If deadlock appears anywhere within the network, a bubble
will eventually be placed within a router in the deadlock chain,
resolving the deadlock.

Walk-through Example: Figs. 5 and 6 demonstrate how Pit-
stop resolves network- and protocol-level deadlocks. Starting
with a network-level deadlock example (Fig. 5(a)), assume
Pitstop starts with router R0 and checks its South input buffer.
Due to the deadlock, the packet A1 held in the South input
buffer cannot continue its path. Pitstop transfers this blocked
packet to the ejection queue of R0 (assuming the ejection
queue has enough space) which frees the South input buffer
and breaks the network-level deadlock (Fig. 5(b)). The previ-
ously blocked packet A1 now residing in the NI of R0 is then
transferred to the ejection queue of the downstream router (R1)
provided that the ejection queue is not full (Fig. 5(c)). Packet
A1 now resides in router R1’s NI, and can be re-injected
through the injection queue to continue its path (Fig. 5 (d)).2

1Like a Formula 1 car, the packet is temporarily exiting the ring (track) it
is on, which will enhance the movement in the network.

2Qn 1, Qn 2, Qn 3 discuss when injection/ejection queues are full.

After resolving the deadlock and allowing the blocked packet
to make forward progress, Pitstop moves to the next adjacent
router to resolve any potential deadlocks.

Protocol-level deadlocks are resolved similarly. The injec-
tion and ejection queues contain a separate queue per message
class. In Fig. 6(a), the NI of R1 and R2 cannot receive A1

and A3 responses as they are blocked by A2 and A4 requests.
This is a cyclic dependency and a protocol-level deadlock. At
any given time, Pitstop can transfer one blocked packet for
each message type. Assuming Pitstop starts with R0’s South
input buffer and R1’s West input buffer, blocked packets of
different message types A1 and A2 are transferred to their
respective ejection queues (Fig. 6(b)). A1 and A2 bypass
the current routers and are sent to the ejection queue of R1

and R2 (Fig. 6(c)), making forward progress and breaking
the deadlock since all request and response packets have
reached their destinations. All bypassed packets reside in the
corresponding queue of the NIs (Fig. 6(c)). Compared to prior
work, both types of deadlocks are resolved simultaneously
without misrouting or using VNs by applying Pitstop router
by router. The order that Pitstop is applied to each router is
determined statically, adding minimal hardware complexity.
Note: Blocked packets are not necessarily deadlocked; more
likely they are blocked from congestion in which case Pitstop
helps congested packets make forward progress, reducing
average packet latency.

B. Assumptions and Definitions

Pitstop makes the following assumptions:
1) The topology stays connected even in the presence of

faulty links. There are no isolated routers in the NoC
and they all are connected through bidirectional links. In
the presence of faulty links, all packets can still reach
the desired router at the cost of increased hop count.
Should a fault occur on one of the unidirectional links,
we assume that both unidirectional links are faulty. Due
to the connectivity assumption, constructing a spanning
tree covering all bidirectional links is possible.

2) Faults only occur in the links and not in the routers. This
is a fair assumption as occurrences of link failures are
far more common than routers failures [33], [38].

With the these assumptions, we guarantee a network- and
protocol-level deadlock free NoC with no VNs.

Definitions: We use the following terminology:
• Root Router: A router which examines all its input

buffers sequentially, including its injection queue, to
check if there is a blocked packet. There can be multiple
root routers in the network; however, each root router
is statically associated with one message class (e.g., N
message types correspond to N different root routers).
In Fig. 6, the root routers are R0 for response messages
and R1 for request messages.

• Golden Packet: The packet blocked due to congestion
or deadlock, picked by the root router to make forward
progress. Only one golden packet of each message type is
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Fig. 5: Pitstop solution to handle network-level deadlock, (a) A cyclic dependency between A1, A2, A3, and A4 packets; Pitstop examines south input buffer
of R0, (b) Pitstop transfers A1 (i.e., a blocked packet) to the ejection queue of R0, breaking deadlock cycle, (c) Pitstop bypasses R0 and sends A1 to the
ejection queue of R1, making one hop progress for A1, (d) Pitstop re-injects A1 to the injection queue of R1 to continue its path.
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Fig. 6: Pitstop solution to handle protocol-level deadlock, (a) Network interface of R1 and R2 cannot receive A1 and A3 responses, blocked by A2 and A4

requests; Pitstop examines south input buffer of R0 and west input buffer of R1, (b) Pitstop transfers A1 response and A2 request (blocked packets) to the
ejection queue of R0 (i.e., blue queue) and R1 (i.e., orange queue); now A3 response and A4 request can reach R2 and R0, (c) Pitstop bypasses R0 and R1

by sending A1 response to the ejection queue of R1 (i.e., blue queue) and A2 request to the ejection queue of R3 (i.e., orange queue); now, all the requests
and responses packets have reached their destinations successfully.

allowed in the network at any time. In Fig. 6, the golden
packets are A1 and A2 since they are of different types.

• Pitstop Procedure: The sequence of steps involved in
transferring the golden packet in the root router to its
own ejection queue (first step) and then to the ejection
queue of the downstream router (second step), followed
by re-injecting it to its injection queue (third step). If the
golden packet resides in the injection queue, the first step
is skipped.

• Leaf Router: A router at the end of the Pitstop proce-
dure, which is the destination of the golden packet or
re-injects the packet to its injection queue. In Fig. 6, the
leaf routers are R1 and R3.

• Chain Length: The number of routers that a golden
packet traverses to reach the leaf router. In Fig. 6, the
chain length is one for both pitstop procedures (R0 to
R1 and R1 to R3). The maximum value of the chain
length is equivalent to the maximum number of hops in
a topology.

C. Router Microarchitecture

Fig. 7 illustrates the Pitstop router microarchitecture and
its network interface. Compared to a generic NoC (Sec. II),
Pitstop does not use any VNs for the North, South, East,
and West buffers; however, it still has one queue per message
type in the injection and ejection buffers. Pitstop adds several
multiplexers, demultiplexers, and a management unit to guar-
antee forward progress for a blocked packet. This management
unit is responsible for controlling the pitstop procedure and
coordinating the handshaking signals (i.e., ready, request,
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done, and root), between the routers in the chain and the
control signals for all multiplexers. All handshaking signals
are dlog2(N)e bits, where N is the number of message types.
The management unit also records if this router is currently
the root router.

5



Eject

Inject

Eject

Inject

Eject

Inject

R0 R1 R2

NI0 NI1 NI2

Req.

Ready

Req.

Ready
DoneDone

B
y
p
a
ss

B
y
p
a
ss

Root
Dest.

To
Proc.

Fig. 8: Example of NI-NI traversals. Router R0 is root router and R2 is
the destination of the packet. Injection queue of R1 is full so another NI-NI
traversal is triggered.

D. Detailed Algorithm

1) Selecting Root Routers: As mentioned in Sec. IV-B,
Pitstop allows one root router per message type in the network
at any time; in other words, multiple golden packets are
allowed in the network–one per message type. In a network
with N message types, a single router could be root for all
N types at the same time. Allowing multiple root routers in
the NoC makes Pitstop capable of resolving multiple protocol-
level deadlocks simultaneously. To guarantee correctness, Pit-
stop gives all the routers the chance to be a root router
for each message type, regardless of whether deadlock or
congestion occurs. We define a pre-determined order of the
routers to reduce the hardware complexity of switching roots.
Root routers for each message class are distributed along the
pre-determined path. Root routers are selected contiguously
(i.e., switching a root to the next adjacent router within
the network). The root switch path must visit all routers at
least once to make a complete pass. A root router for one
message type can catch up with and go ahead of another root
router along the root switching path if its pitstop procedure
completes faster. A root router examines each input buffer in
a round-robin fashion (e.g., South, North, East, West, and
injection buffers) for its respective message type. When no
golden packet of that type exists in the router, its done signal
is set. The root switching procedure is coordinated through
each router’s Pitstop management unit; handshaking signal
are sent through the extra sideband wires shown in Fig. 7.
Root status is passed to the next adjacent router in the path
by enabling the root signal after all input buffers have been
checked. This procedure continues indefinitely through every
router. Deadlocked or congested packets of each message
type eventually encounter a pitstop procedure and will make
forward progress.

2) Enabling a Pitstop Procedure: Based on the following
conditions, Pitstop management unit begins a Pitstop proce-
dure: (1) the routers which need to start the procedure must
be root routers, (2) a root router must receive its done signal
before starting another procedure. At any given moment in
time, each message type can only have one golden packet in
the network, (3) there are no available slots in the downstream
input buffer for the current golden packet. No available buffer
slots indicate either congestion or deadlock, and (4) the golden
packet’s destination should not be its root router. If all of
these conditions are satisfied, a root router can start a Pitstop
procedure to make forward progress for its golden packet.
If the pitstop procedure is enabled for a root router, the

golden packet is transferred via the switch to the ejection
queue (into its respective queue) of a root router through
the Pit multiplexer.3 Recall that if the golden packet resides
in the injection queue, this step is skipped. In cases where
one physical router is simultaneously the root for multiple
message types, golden packets must be transferred serially.
A root router subsequently sends a request signal to the
downstream router indicating that a golden packet needs to
be sent to the ejection queue of that router. The downstream
router responds to that request by sending a ready signal to
the root router if its ejection queue is not full.4 After receiving
the ready signal, the golden packet bypasses the root router
and is written to the ejection queue of the downstream router
through the bypass (Byp) multiplexer followed by one of
the appropriate multiplexers and demultiplexers in the output
and input stages (e.g., N multiplexer and S demultiplexer,
respectively). From the input demultiplexer, the packet goes
through the Pit multiplexer into the next ejection queue. We
called this traversal an NI-NI traversal. Since there is a root
router for each message type, multiple pitstop procedures
may happen concurrently throughout the network (e.g., Fig. 6
where R0 and R1 are different root routers). Each root
router can pass root status to the next router in sequence
without waiting for other root routers to complete their pitstop
procedures; no global coordination or handshaking is required.

If there is space in the injection queue of the downstream
router after the NI-NI traversal, the golden packet is written to
the respective injection queue through the Inj multiplexer to
continue on its path; this router constitutes the leaf router. The
leaf router then sends a done signal to the requester, which
is the root router in this case. The requester does not have
to be the root router (in cases where chain length is greater
than one), but the done signal always propagates back to the
corresponding root router of the message type.

Qn1: What if the injection queue is full? If the injection
queue of the current router is full, the current router sends
a request signal to the downstream router and sends the
packet to the ejection queue of that router (through the bypass
mechanism) after receiving the ready signal. Fig. 8 shows an
example where R0 is a root router for a message type initiating
a Pitstop and R2 is the destination of the golden packet. The
golden packet goes through an NI-NI traversal from NI0 of R0

to NI1 of R1. If NI1’s injection queue is not full, the golden
packet would be re-injected; however in this case, the injection
queue is full. R1 sends a request to R2 to initiate another NI-
NI traversal of the golden packet, which then is ejected to
the processor. A golden packet reaches a leaf router by either
experiencing multiple NI-NI traversals or by moving into an
injection queue through the Inj multiplexer. For both cases,
a leaf router sends a done signal to its requester. Each router
receiving a done signal propagates it until it is received by the
corresponding root router.

3See Qn 2 for when ejection queue of a root router is full.
4See Qn 3 for when ejection queue of a downstream router is full.
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The inject (Inj) multiplexer is also responsible for allocat-
ing injected packets from the processor to the injection queue.
If the two inputs of the multiplexer are ready at the same
time, priority is given to the golden packet. Note that when a
golden packet resides in the ejection queue of a root router, it
is always sent to the downstream router by the bypass (Byp)
multiplexer as mentioned earlier.

Qn2: What if the ejection queue of a root router is full?
If a golden packet resides in one of the input buffers of a
root router, it needs to wait until either the ejection queue (in
the corresponding queue) has free space (the golden packet
is blocked due to a deadlock) or the downstream buffer has
free space. In either case, Pitstop guarantees correctness as
the congestion gets resolved or the ejection queue eventually
delivers one packet to the processor making space for the
golden packet. Ejection queues will never be full indefinitely
due to deadlock since we assume separate ejection queues
per message class. There will always be at least one sink
message class (e.g., response messages) that corresponds to
the end of a communication transaction so ejection queues for
sink message types can always be drained. Although ejection
queues for request messages may stall and fill up due to the
cache stalling for a response deadlocked elsewhere in the NoC,
eventually the response message that will unstall the node will
arrive and requests in the ejection queue can be consumed,
freeing up request buffer slots. Since Pitstop allows one golden
packet of each message type at any time, ejection queues are
guaranteed to eventually free up.

Qn3: What if a golden packet resides in the ejection
queue of one router waiting to receive ready signal from
the downstream router; however, the ejection queue of
downstream router is full? There are two possible scenarios.
Scenario (1) is that a golden packet must wait until the ejection
queue of the downstream router finds free space. Once there
is free space, the downstream router sends the ready signal,
and Pitstop successfully bypasses the packet. Recall that we
assume each message type is allocated to a single queue within
the NI. Ejection queues of sink message types (e.g., response
messages) eventually have free buffer slots as their messages
can always be consumed. Request type ejection queues may
stall, but not indefinitely, since Pitstop has root routers for
each message type and ensures response messages that will
unstall the node will eventually arrive resulting in consumption
of the request messages. Note that golden packets of each
message type will not collide since they must be allocated to
the injection/ejection queues of their own type. Golden packets
all operate independently. Scenario (2) is that the injection
queue of a non-root router gets free space before receiving the
ready signal from the downstream router. Recall that Pitstop
first looks at the injection queue (for the non-root routers) and
if it is full, sends a request signal. In this scenario, Pitstop
disables the request signal as there is no longer the need
to bypass the golden packet and instead transfers it to the
injection queue where it can continue on its path.

3) Maintaining the Chain: Each router that receives a
golden packet increases the chain length for its message type
by one, where the first node is the root router and the last
node is the leaf router. Routers only need to store the requester
of the received request signal for its message type. The done
signal from the leaf router is propagated back to the root router
by checking each router’s requester. Each router requires
storage to keep track of a requester for each message type. In
a mesh, this information is encoded with two bits (indicating
the direction of the requestor). These two bits determine how
to propagate the done signals backwards towards the root.

Qn4: Does Pitstop guarantee that the chain terminates?
Yes: the chain length is the number of routers that a golden
packet traverses to reach its leaf router. The worst-case sce-
nario occurs when all the injection queues of the routers
located in the chain are full causing the golden packet to
experience multiple NI-NI traversals until it reaches its des-
tination. In this scenario, the maximum value of the chain
length is equivalent to the maximum number of hops in the
topology. Therefore, since Pitstop uses minimal routing and
does not misroute any packets, no livelock can occur and
makes revisiting a router impossible. Hence, Pitstop guarantees
that the chain length is finite. It is possible to always send the
golden packet to the destination through NI-NI traversals but
this would cause longer chain lengths. A longer chain length
increases the time each router stays the root for which then
increases the time for the root status to be passed to the next
adjacent router, and hence takes longer to resolve deadlocks
elsewhere in the network.

4) Pitstop Latency and Flow Control: Pitstop procedure
takes a minimum of four cycles assuming the ejection queues
of the root router and downstream router are not full. Pitstop
would transfer the golden packet to the ejection queue and
send a request signal to the downstream router in the first
cycle. The downstream router returns the ready signal in the
second cycle and then the golden packet is transferred to the
downstream router in the third cycle. In the fourth cycle,
the downstream router transfers the golden packet from the
ejection queue to the injection queue and sends the done signal
to the root router. The golden packet is chosen since it was
blocked, either due to deadlock or congestion. Although it
may seem that the pitstop procedure incurs latency, it in fact
decreases packet latency by freeing the blocked packet to make
forward progress.

Qn5: Does Pitstop support wormhole flow control? Yes:
Pitstop supports both wormhole and virtual cut-through (VCT)
flow controls. Unlike the prior work where packet misrouting
requires packet truncation to support wormhole [46], [48],
[55], Pitstop does not misroute packets, and thus does not
impose any overheads to support wormhole flow control. The
only restriction is placed on the queues in the NI. Since
multiple ports now share the injection and ejection queue, the
full packet has to be received before giving access to another
packet (like VCT) to prevent interleaving of flits from different
packets.
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Fig. 9: Hypothetical shared injection/ejection buffer design with VCs reserved
for deadlock avoidance assuming three message classes in protocol.

Qn6: Are ejection buffers common? Pitstop assumes that
NI consists of injection and ejection buffers. This assumption
is standard in most the academic papers [10], [16], [46],
[50], [60], prototypes [4], [17], [58], [63] and commercial
implementations [9], [36]. For example, SCORPIO [17] and
IBM BLUE GENE/Q [9] use separate FIFOs for the injection
and ejection buffers–one per message type. Ejection buffers at
NIs are needed since an endpoint node/IP might be stalled and
cannot receive a packet [21], [61]. In the event that IP blocks
are in a different clock domain than the NoC, ejection buffers
are often implemented as bisynchronous FIFOs to serve as
clock boundary crossing buffers [36], [57], [58]. In this case,
while there will be some added latency in the credit return loop
due to the need for the credit signal to be resynchronized into
the NoC’s clock domain, the same credit-based backpressure
mechanisms will be used as in other input buffers. Thus Pitstop
will still work correctly, although clock crossings might slow
down the Pitstop procedure. Considering that deadlocks are
rare [46], [55], [60] and the fraction of packets marked as
golden is low (Fig. 12), clock crossing should not have a large
performance impact.

Qn7: Does Pitstop work with alternative ejection buffer
designs? Several works investigate the use of shared buffers to
improve buffer utilization [29], [35], [45], [54], [62]. Although
these papers do not share the ejection buffer with other
ports, Pitstop will work correctly should ejection and injection
packets share the same physical buffer consisting of separate
queues per message type. For correctness in such designs, it
should be impossible for the injection packets to occupy all the
shared buffer slots, leaving no space for the ejection packets.
Thus at least one slot of the shared buffer (per message type)
should be dedicated to ejection packets. Fig. 9 shows an
example of such a shared buffer design operating with with
3 message classes (3 VNs). After some slots (i.e., VCs) are
reserved for correctness, there are a number of slots that can be
shared. In a worst-case scenario, a golden packet could reach
its destination by experiencing multiple NI-NI traversals using
the reserved ejection slots; therefore the proof in Sec. IV-E
would still be valid for such scenarios. We provide quantitative
results for this scenario in Sec. VI.

E. Proof of Correctness

Lemma 1. In a deadlocked path of length k, at most k − 1
NI-NI traversals using the Pitstop procedure are needed to
resolve the deadlock.

Proof. Traversing each hop leads to forward progress in
minimal routing. Having k NI-NI traversals would return the
golden packet back to its initial position – contradicting the
definition of minimal routing. In contrast, experiencing at most
k − 1 NI-NI traversals makes a golden packet either exit the
deadlocked path or reach its destination which is located on
the deadlocked path, thus resolving the deadlocks.

Lemma 2. As there will eventually be free space in the
corresponding ejection queue, a root router can successfully
complete the Pitstop procedure.

Proof. The Pitstop procedure relies on access to ejection
queues; if we can guarantee that a deadlock never occurs
in the ejection queues then there will always be at least one
free space at the ejection queue of a root router that can be
used by the Pitstop procedure to make forward progress for a
golden packet. Each message class is assigned to a different
queue in the ejection buffer. The ejection queue for sink type
messages (e.g., response type) can always be consumed; the
ejection queue for sink types will always empty itself. In
contrast, ejection queues for request types may stall and fill up
due to the cache stalling for a response deadlocked elsewhere
in the network. However since Pitstop supports golden packets
for each message type, eventually the deadlocked response
packet will be received and un-stall the node (Lemma 1).
Receipt of the response, will allow the processor to resume
processing requests, which frees up ejection queue space
for that message type. Therefore all ejection queues will
eventually have free space.

Lemma 3. As all network routers have the chance to become
root routers to enable the Pitstop procedure, freedom from
network- and protocol-level deadlocks is guaranteed.

Proof. Since applying the Pitstop procedure resolves a dead-
lock (Lemma 1) and the ejection queues are guaranteed to
be available eventually (Lemma 2) then if each router gets
a chance to start a Pitstop procedure, forward progress is
guaranteed for any deadlocked packet. Pitstop gives each
router a chance to start a Pitstop procedure for each input
buffer and each message type by passing the root signals to
all routers repeatedly. As a result, both network- and protocol-
level deadlocks are guaranteed to be resolved.

Qn8: What if packets of one message class use up all
of the buffers in the network preventing packets of other
message classes to be injected to the NoC? Unlike prior
work [46] which assumes it is impossible for packets of one
message class to use up all of the resources (Sec. III-C),
Pitstop is capable of handling this situation thanks to its NI-
NI traversals. Suppose all the NoC resources are occupied
by request packets, so response packets cannot be injected
into the NoC. Since there is always one root router of each
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TABLE II: Key Simulation Parameters.
Core 16 and 64 cores, x86 ISA, 1GHz, OoO, 8-Wide, ROB size:192
L1 Cache private, 32KB Ins. + 64KB Data, 2-way set assoc.
LLC shared, distributed, 2MB, 8-way set assoc.
Cache Block Size 64B
Cache Coherence MOESI Hammer

Topology 4×4 and 8×8
Evaluated Schemes Escape VC [18], SWAP [48] (swap duty: 1 cycle)

SPIN [55] (detection threshold: 128 cycles)
DRAIN [46] (DRAIN period: 64K cycles)

Routing Algorithm SWAP, SPIN, DRAIN, Pitstop (Fully adaptive routing)
Escape VC: XY (Up*/Down*) within escape VC and fully
adaptive within other VCs for regular (irregular) topology

Router Latency 1-cycle and 3-cycle
Number of VNETs 0-VN (Pitstop) and 6-VN (escape VC, SPIN, SWAP, DRAIN)
Number of VCs Pitstop (2, 3, 4, 5) per input buffer

Escape VC, SPIN, SWAP, DRAIN (2 VCs per VN)
Buffer Size 5-flit
Link Bandwidth 128 bits/cycle
Flow Control VCT – Single packet per VC
Number of Faults 0, 8 (PARSEC, SPLASH-2) and 0, 12 (Synthetic traffic)
Synthetic traffic Uniform, Transpose, and Shuffle – Mix of 1-flit and 5-flit

message type at any time and a root router examines all its
input buffers, response packets can reach their destinations
by experiencing multiple NI-NI traversals; the root router for
a response packet (i.e., golden packet) enables the Pitstop
procedure and sends the packet to the ejection queue of the
downstream router (into its respective queue). Since all the
buffers in the network are full with the request packets, the
response packet experiences multiple NI-NI traversals until
it reaches its destination. Receipt of the response results in
consumption of the request packets, which frees up the ejection
queue space for the request type.

Qn9: Is it possible for a golden packet to be transferred
indefinitely between the ejection and injection queues of
one router due to a deadlock? No: A root router always
sends a golden packet to the NI of the downstream router. In
other words, a root router never uses the inject (Inj) multi-
plexer (Fig. 7) to transfer a golden packet. This multiplexer
is used when a router receives a golden packet and wants to
transfer it to its injection queue and send the done signal.
In this case, it might be possible that the packet needs to
experience another Pitstop procedure if there is a deadlock in
the router that it arrived at. The Pitstop procedure would then
be executed when that router becomes a root router.

Qn10: Is livelock possible due to a router receiving
unlimited request signals from other routers? No: A router
cannot receive unlimited request signals from its neighbors
since root status round-robins through all routers, giving each
router one chance to be a root router per message type. Thus,
while a router is the root for a message type, it is impossible
to receive any request signal of that message type – allowing
the ejection packet of that message type (currently residing in
North, South, East, or West) to reach the ejection queue.

V. METHODOLOGY

We evaluate Pitstop using full-system gem5 [7] with the
Garnet2.0 [1] network model and the Ruby memory model
and run PARSEC [6] and Splash-2 [65] applications. Tab. II
lists the configuration used.

Topology: Pitstop is evaluated using both regular (mesh) and
irregular topologies. Irregular topologies are derived by ran-

domly eliminating links from a mesh network, which emerge
in different scenarios such as a faulty networks [41], [52]
or power-gated techniques [10], [38], [52]. Since Escape VC
[18]–[20] applies turn restrictions on the escape VC, it cannot
be used with an irregular topology. Hence, we augment
Escape VC with a spanning tree based up*/down* routing [59].
Note that we assume information of faulty links and the
routing path is based on offline computation [41], [51].

VI. EVALUATION

A. Performance

Synthetic Traffic: Fig. 10(a-c) shows performance of the
existing techniques and Pitstop for various synthetic traffic
with two VCs and no faulty links. All techniques saturate
at a higher point compared to Escape VC due to the ability
to support fully adaptive routing which lowers congestion
within the network. Pitstop has the same saturation throughput
as SPIN and SWAP. The throughput loss of DRAIN for
Uniform and shuffle traffics comes from deadlocks occurring
at higher injection rates as the deadlocked packets remain in
the network till the next DRAIN period(s). No deadlocks occur
for the Transpose traffic. Fig. 10(d) examines the sensitivity
of saturation throughput to irregular topologies and number of
router pipeline stages. The irregular topology is simulated by
injecting 12 random faulty links within a single mesh network.
Each router is configured to have three pipeline stages. The
saturation throughput is lower for the faulty network for all
techniques due to higher congestion compared to the fault-free
topology. Escape VC has the lowest throughput due to the use
of up*/down* routing within the escape VC. Pitstop matches
SWAP and DRAIN while SPIN’s suffers from the additional
latency in deadlock detection and global synchronization.
The additional faulty links within the network increase the
occurrence of congestion, exacerbating the added latency in
SPIN’s deadlock mechanism.

PARSEC and SPLASH-2 Benchmarks: We compare Pit-
stop’s execution time to prior techniques for zero and eight
faults (Fig. 11). We test Pitstop using two to five VCs. For
zero faults in the network, Pitstop with three to five VCs
improves execution time by 4.8%, 6.2%, and 7%, respectively
over Escape VC. Pitstop using two VCs degrades performance
by a negligible 0.7% over Escape VC while using 6× fewer
VCs compared to all the existing schemes. Application traf-
fic does not fully use NoC resources due to typically low
injection rates. This study brings up the rarity of deadlocks
again while demanding a network free of both kinds of
deadlocks. Pitstop guarantees both kinds of deadlock freedom
while eliminating all the costly VNs and getting better VC
utilization. To increase the probability of deadlocks, we inject
eight faulty links to the NoC. Pitstop has greater performance
improvements over the prior work for an irregular topology.
Compared to Escape VC, Pitstop using three to five VCs
improve execution time by 6.5%, 9.4%, and 10.9%, while
Pitstop using two VCs degrades performance by only 1.1%.
The faulty network increases congestion and the likelihood of
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Uniform-1

EscapeVC SPIN SWAP Pitstop DRAIN

0.01 17.599717 15.557259 15.557149 15.557149 15.557887

0.03 18.616528 15.608126 15.608995 15.608948 15.609917

0.05 21.169154 15.661 15.664075 15.6638 15.664341

0.07 38.583068 15.745902 15.751163 15.750736 15.751407

0.09 2633.259117 15.865161 15.871757 15.873137 15.873589

0.11 16.010066 16.022859 16.023815 16.025269

0.13 16.18898 16.209101 16.206977 16.209756

0.15 16.390675 16.417473 16.413655 16.416250

0.17 16.649109 16.67755 16.675806 16.685388

0.19 16.973243 17.008265 17.002691 17.016034

0.21 17.393303 17.429376 17.420531 17.452280

0.23 17.935718 17.98326 17.971497 18.008533

0.25 18.696596 18.736681 18.731671 18.797870

0.27 19.821229 19.898793 19.861127 19.997524

0.29 21.822405 21.992766 21.900338 338.740110

0.31 18807.504484 1730.508648 2883.381726

0.33

�1

(a) Uniform with no faults

Table 2

EscapeVC SPIN SWAP Pitstop DRAIN

0.01 17.492571 15.50062 15.50084 15.50084 15.50169

0.03 18.542612 15.550986 15.552121 15.55235 15.55297

0.05 21.377559 15.644324 15.64758 15.647298 15.648167

0.07 33.367235 15.748526 15.751823 15.750799 15.752487

0.09 870.132607 15.859131 15.859492 15.85747 15.85921

0.11 16.004209 16.000575 16.000305 16.002152

0.13 16.185649 16.178266 16.176705 16.180684

0.15 16.4103 16.404367 16.401674 16.405537

0.17 16.668839 16.652991 16.656332 16.657913

0.19 17.031942 17.023445 17.015524 17.024955

0.21 17.48741 17.47315 17.466578 17.479543

0.23 18.149551 18.153414 18.149487 18.168835

0.25 19.155835 19.239306 19.206666 19.262831

0.27 21.178357 21.565644 21.486074 21.704646

0.29 131.496475 58.645487 57.123306 89.414147

0.31 456.80676 862.693545 835.876304 557.239682
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(b) Transpose with no faults

Table 2

EscapeVC SPIN SWAP Pitstop DRAIN

0.01 15.055395 13.026982 13.027014 13.027014 13.027579

0.03 15.973434 13.052038 13.05234 13.052262 13.053064

0.05 17.543065 13.097527 13.097424 13.097581 13.098521

0.07 23.873749 13.164966 13.165042 13.165165 13.165338

0.09 208.787759 13.254552 13.254586 13.254791 13.256171

0.11 13.334198 13.333925 13.334058 13.333688

0.13 13.451463 13.449553 13.448603 13.452659

0.15 13.59655 13.594028 13.594877 13.596494

0.17 13.784436 13.775904 13.772786 13.777070

0.19 14.005896 13.995727 13.991214 13.997442

0.21 14.293672 14.267921 14.264319 14.270625

0.23 14.683101 14.646393 14.637705 14.662523

0.25 15.198408 15.136532 15.128571 15.163298

0.27 16.073743 15.918178 15.91086 15.96710

0.29 18.504379 17.227096 17.148744 17.322550

0.31 69.448395 29.195984 26.917782 364.331542

0.33 3742.688365 354.992164 441.06515
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(c) Shuffle with no faults

Table 2

EscapeVC SPIN SWAP Pitstop DRAIN

0.01 32.945053 29.064339 29.065407 29.064496 29.065690

0.03 38.188348 29.228687 29.229041 29.229266 29.229723

0.05 2115.922146 29.432874 29.430188 29.428522 29.434292

0.07 29.769506 29.765722 29.758416 29.767607

0.09 30.305419 30.292438 30.270791 30.298122

0.11 31.078049 31.036921 31.006339 31.050021

0.13 356.54970 32.320672 32.242167 32.352574
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(d) Uniform with 12 faults

Fig. 10: Performance of the existing techniques and Pitstop for synthetic traffic with a mix of one and four flits in an 8×8 regular mesh topology (a-c) using
1-cycle router latency and an irregular topology (d) using 3-cycle router latency.
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(a) Fault 0 execution time
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(b) Fault 8 execution time

Fig. 11: Execution time (normalized to Escape VC) for zero faults and eight faults.
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Fig. 12: Fraction of golden packets with zero faults (F=0) and a network with
eight faulty links (F=8) using Pitstop with two and five VCs.

deadlock highlighting the effectiveness of the Pitstop design. A
larger fraction of packets become golden packets in the faulty
network as shown in Fig. 12. More congested packets are
making forward progress through the NI-NI traversals which
improves performance.

Increasing the number of VCs in Pitstop improves perfor-
mance for two primary reasons: (1) Pitstop has higher utiliza-
tion of its VCs to reduce head-of-line blocking. Each message
type in the prior schemes only has access to two VCs in each
VN, whereas in Pitstop, all message types have access to all
VCs. Note that there are no message types in Fig. 10 (no VNs)
since cache coherency is not considered in synthetic traffic;
that is why Pitstop does not improve performance in Fig. 10.
(2) The pitstop procedure bypasses congested packets to make
forward progress–decreasing packet latency. Note that even for
the lowest average execution time (Pitstop (VN=0, VC=5)),
Pitstop uses only five VCs per input buffer compared to 12 in
the existing techniques.

To further stress the NoC, we also compare Pitstop (with
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Fig. 13: Execution time (normalized to Escape VC) for eight faults and 3-cycle
router latency.

five VCs) to the existing techniques in a faulty network using
3-cycle routers shown in Fig. 13. Pitstop improves execution
time by 11.6%, 13.6%, 6%, and 12% compared to Escape VC,
SPIN, SWAP, and DRAIN. The reason Pitstop beats SWAP is
that SWAP increases the percentage of misrouted packets 5.8×
compared to 1-cycle router latency and no faulty links.

Shared Buffer Design: In Sec. IV-D, we discuss the correct-
ness of Pitstop under shared injection/ejection buffer design
presented earlier in Fig.9. Fig. 14 presents synthetic traffic
results for this design. Since traffic is synthetic, there are
no protocol message classes, so the minimum number of
VCs required for correct operation is two - one reserved for
injection and one for ejection. The lines in the figure show
latency as a function of increasing number of VCs in the
NIC (i.e., increasing the available shared VCs). The NoC
itself has only one VC under all conditions. Under uniform
random traffic, we find that throughput is limited by the link
bandwidth to/from the NIC; increasing the NIC injection and
ejection buffers through sharing does not have an impact on
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Uniform:  inj-vnet=-1

VC = 2 (SharedVC 
= 0)

VC = 4 (SharedVC 
= 2)

VC = 6 (SharedVC 
= 4)

VC = 8 (SharedVC 
= 6)

0.01 15.68 15.66 15.66 15.66

0.02 15.8 15.77 15.77 15.77

0.03 16.00 15.96 15.95 15.95

0.04 16.17 16.1 16.1 16.1

0.05 16.39 16.30 16.3 16.3
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Hotspot: inj-vnet=-1
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VC = 4 (SharedVC 
= 2)

VC = 6 (SharedVC 
= 4)

VC = 8 (SharedVC 
= 6)

0.001 19.2 19.16 19.16 19.16

0.002 19.4 19.3 19.29 19.29
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0.004 20.17 19.88 19.88 19.88

0.005 20.7 20.21 20.21 20.21

0.006 21.33 20.57 20.57 20.57
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0.01 30.93 23.58 23.61 23.58

0.011 49.34 25.25 25.19 25.20
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(b) Hotspot

Fig. 14: Shared buffer design under (a) uniform and (b) hotspot traffic.
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Fig. 15: Post Place-and-Route router area and power (28nm TSMC, 1GHz).

throughput. For HotSpot traffic where all nodes send to the
same destination, we find increasing the amount of shared VCs
in the NIC does improve throughput due to credit turnaround
time. Application-level results are omitted as we found no
measurable performance impact from increasing the amount
of shared VCs beyond the minimum number of slots for
correctness (1 per VN for both injection and ejection). This
is consistent with our observation of low VC utilization at the
NIC for application traffic (Fig. 4) under nominal operation.

B. Area, Power and Energy

The number of required VNs is determined by the coherence
protocol; since we use the MOESI Hammer protocol, the
minimum number of required VNs to guarantee protocol-level
deadlock freedom is 6. SWAP and SPIN only handle network-
level deadlocks so they must use 6 VNs to avoid protocol-level
deadlocks. DRAIN can handle protocol-level deadlocks but it
needs to use multiple VNs to avoid the large amount of buffer
space required when using no VNs (Sec. III-C). In contrast,
Pitstop guarantees both network- and protocol-level deadlock
freedom with no VNs while minimizing the amount of buffer
space. Fig. 15 shows the static power and area breakdown
of Pitstop (VN=0, VC=2) compared to Escape VC (VN=6,
VC=2), SPIN (VN=6, VC=2), SWAP (VN=6, VC=2), and
DRAIN (VN=6, VC=2). We implement them using open-
source RTL [40] and synthesized and placed-and-routed using
TSMC 28nm, targeting 1GHz with 1-cycle pipelines. Our
calculations factor in hardware modifications in both the router
and the NI. The additional hardware needed in SPIN, SWAP,
and DRAIN imposes approximately 6%, 1.6%, and 0.8%
overhead compared to Escape VC (VN=6, VC=2). Although
Pitstop implements some additional hardware, we see power
and area savings of 41% and 40% due to the decrease in
total number of buffers by eliminating VNs. The Pitstop
management unit and the added multiplexers/demultiplexers
consume only ∼0.4% and ∼3.7% of Pitstop area.
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Fig. 16: Normalized energy consumption.
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Fig. 17: 99th-percentile latency (Logarithmic scale).

Energy: Area of Pitstop is minimal; with abundant transistors,
a more important metric is energy. Fig. 16 shows the energy
of the different deadlock freedom methods normalized to
Escape VC. By eliminating VNs (saving power) and getting
better VC utilization (improving performance), Pitstop (VN=0,
VC=2) reduces static energy consumption by 40%.

C. Sensitivity Study

Tail Latency: Fig. 17 shows the 99th percentile tail latency
(i.e., worst-case latency) of network packets for Pitstop using
two to three VCs compared to prior work. Since Pitstop allows
one root router for each message type in the network at any
given time, we see improvements in tail latency using three
VCs due to better utilization and greater reduction in head-
of-line blocking. On average, Pitstop reduces tail latency by
18.5% and 15.2% as compared to SPIN and SWAP. Pitstop
with two VCs sees higher tail latencies (46% increase over
SPIN) due to all message types using two VCs. DRAIN
introduces deadlocks for some benchmarks (e.g., FFT) which
causes a significant increase in tail latency (Sec. III-B).
However, it matches SPIN and SWAP for the rest (e.g.,
Blackscholes) in which deadlocks do not happen. On
average, Pitstop with even two VCs sees significant reduction
in tail latency compared to DRAIN.

Qn11: What if deadlocks are more frequent? Fig. 18
compares the performance of state-of-the-art schemes to West-
first routing as deadlock rate increases. To increase the prob-
ability of a deadlock occurring, all techniques use 1 VC. We
force the routing algorithms of the state-of-the-art schemes to
make a clockwise cycle for turn packets causing deadlocks for
all injection rates shown. Throughputs in SPIN and DRAIN
are very low with high rates of deadlock since SPIN needs
global synchronization and deadlock detection while DRAIN
forces deadlocked packets to persist in the network until
the next DRAIN period(s). SWAP and Pitstop achieve the
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Table 2

XY West-first EscapeVC (up*/
down*)

DRAIN SPIN SWAP Pitstop 

0.02 15.43768 18.77782 13.49871 13.497672 13.499607 13.492905

0.03 16.05347 13.83910 13.840815 13.839413 13.824102

0.04 16.801419 25.894795 14.606141 806.560520 14.164689 14.132275

0.05 18.277672 304.566151 14.662150 14.660229

0.06 20.742534 887.040326 15.242771 15.146892

0.07 34.824902 16.050774 15.900000

0.08 944 1927.000000 30742.00000
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Fig. 18: Performance of the state-of-the-art schemes and Pitstop compared to
West-first as the deadlock rate increases for bit-complement synthetic traffic;
all techniques use 1VC.

same performance as West-first but West-first cannot support
irregular topologies or faulty networks.
Qn12: Does Pitstop affect the critical path? Typically
the critical path is dictated by the switch crossbar and the
allocators [23], [40]. Pitstop does not make any modifications
to these units as shown in Fig. 7; however some modifications
(e.g., the mux denoted Pit in the figure) may increase the criti-
cal path. To calculate the critical path, we use the same placed-
and-routed RTL implementation as in Sec. VI-B. Compared to
Escape VC (VN=6, VC=2), our Post synthesis report shows
that Pitstop (VN=0, VC=1) shortens the critical path by 31%.
Although the Byp and Pit multiplexers increase the switch
delay, eliminating VNs shortens the critical path. Recall that a
router has to use six VNs for each input port just to guarantee
protocol-level deadlock freedom for the MOESI Hammer
protocol. The more VCs, the longer the critical path [8],
[21]; thus, VC based approaches to avoiding deadlocks have
a negative impact on the critical path. Since Pitstop is capable
of handling both deadlocks with no VNs, the critical path
is shortened. Thus, the increase of the critical path caused
by the added multiplexers/demultiplexers is compensated for
completely by getting rid of the required VNs.

Pitstop is a general-purpose scheme since (1) we stress test
Pitstop by increasing injection rates and the number of pipeline
stages, and introducing faulty links for increased congestion
to induce more deadlocks, and yet Pitstop’s saturation point
still matches state-of-the-art schemes, (2) it outperforms state-
of-the-art schemes for PARSEC and SPLASH-2 while using
no VNs, and (3) Pitstop’s configuration for determining root
routers can be tuned at boot time to better handle applications
that are deadlock prone, while still guaranteeing both types of
deadlock freedom. For example, if it is known that deadlocks
are frequent at certain points in the network (e.g., the central
routers of a mesh), then the root switching path can pass
through the deadlock prone areas more often to increase the
probability of relieving the deadlocks.

VII. RELATED WORK

Deadlocks solutions can be classified into avoidance, detec-
tion and recovery, and periodic recovery approaches.
Deadlock Avoidance: Applying turn restrictions to the routing
algorithm is the simplest way to avoid cyclic dependen-
cies [15], [37]. Although simple, this technique reduces path

diversity and can degrade performance and fault tolerance.
Escape VCs [18]–[20] can mitigate this limitation. Turn re-
strictions are only placed on the Escape VC which guarantees
deadlock freedom provided all packets have equal opportunity
to access the Escape VC. Non-escape VCs use adaptive routing
to restore path diversity. Escape VCs are a costly solution
as VCs add extra area and power overhead and are often
underutilized even for extreme cases [2], [13]. Ebda [22] uses
fully adaptive routing across all VCs, however, turn restrictions
are applied to each of them. Applying restrictions to packet
injection also avoids deadlock [11], [14]. These techniques
are limited to ring-based topologies such as tori; hence, they
cannot support irregular topologies or faulty networks. Other
approaches rely on misrouting packets [37], [48]. Misrouting
can increase congestion and link utilization which translates
to higher energy consumption. Some solutions use re-injection
and reusing concepts like Pitstop [30], [31], [42]. In-transit
buffers temporarily eject packets and then inject them using
temporary host workstations to avoid network deadlock at the
cost of non-minimal routing [30], [31]. Elastic buffers [42] use
the existing storage in pipelined channels instead of VCs.

To avoid protocol-level deadlock, messages of different
types must be placed into different networks (virtual or physi-
cal) to prevent blocking. Physical networks offer higher band-
width while VNs [44] save on physical links but still impose
significant overheads due to the additional VCs [12], [13],
[39]. Bubble Coloring (BC) [64] handles both deadlocks by
reserving a packet-sized bubble per message type in a virtual
ring plus one bubble per router. This scheme suffers from fre-
quent misroutes, degrading the worst-case latency (Sec. III-B)
and performance [5]. In terms of performance, BC is compara-
ble to SWAP [48] since they both misroute packets; however,
SWAP has fewer misrouted packets.

Deadlock Detection and Recovery: SPIN [55] probes the
network to detect possible deadlock. Once the deadlock path is
confirmed, SPIN synchronizes the routers within the deadlock
chain to release the frozen packets at the same time and
then resumes normal execution. SPIN increases the router
complexity to manage false negatives and positives, limiting
its scalability. Static Bubble [56] leverages ideas from Bubble
Flow Control [14], [53] to reserve one free buffer in any
ring/torus topology to avoid a deadlock. These works suffer
from complex control hardware due to the sending probe
packets [55] and timeout counters [3], [55], [56], [60] which
are needed to detect deadlock. Recovery mechanisms come
at the cost of either additional buffers [3], [56], [60] or
synchronizing routers to make forward progress [55]. As an
example, mDisha [60] dedicates two extra buffers within the
NI (in addition to injection and ejection queues) and one extra
buffer within each router to handle both type of deadlocks.
While mDisha can work without separate queues in the NI,
it uses them for performance [60]; as a result, mDisha has
more buffer resources than Pitstop. While Pitstop can resolve
multiple protocol-level deadlocks, mDisha only resolves one
at a time. This is because Pitstop allows one golden packet of
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each message type in the network at any time while in mDisha
only one deadlocked packet can be resolved. Like SPIN,
mDisha also suffers from the incurred overhead caused by
deadlock detection mechanisms, killing the throughput when
deadlock rate increases as seen in Fig. 18 for SPIN.

Periodic Deadlock Recovery: This class of solution does
not explicitly use deadlock detection [46]–[49]. For example,
SWAP [48] periodically swaps one blocked packet at the cost
of misrouting another. DRAIN [46] periodically drains all
packets in the network to recover from potential deadlocks.
Hence, DRAIN may significantly increase worst-case latency
and it also needs to use multiple VNs to avoid a large amount
of buffer space required for providing protocol-level deadlock
freedom. Both DRAIN and SWAP need to support U-Turns
increasing the complexity of the crossbar. They also need
packet truncation support for wormhole flow control.

VIII. CONCLUSION

Most prior techniques to handle protocol and network-
level deadlocks are overprovisioned especially considering
how rarely deadlocks occur. The use of virtual networks,
complex deadlock hardware, and misrouting leaves power, area
and latency savings on the table. We propose Pitstop, a low-
cost technique that reuses existing NoC resources to handle
both protocol- and network-level deadlocks, without the use
of virtual networks. Compared to the state-of-the-art solutions,
Pitstop can improve performance up to 11% and reduce power
and area up to 41% and 40%.
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