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Abstract—Linear multiply-accumulate (MAC) operations have
been the main focus of prior efforts in improving the energy effi-
ciency of neural network inference due to their dominant contri-
bution to energy consumption in traditional models. On the other
hand, nonlinear operations, such as division, exponentiation, and
logarithm, that are becoming increasingly significant in emerging
neural network models, have been largely underexplored. In
this paper, we propose UNO, a low-area, low-energy processing
element that virtualizes the Taylor approximation of nonlinear
operations on top of off-the-shelf linear MAC units already present
in inference hardware. Such virtualization approximates multiple
nonlinear operations in a unified, MAC-compatible manner to
achieve dynamic run-time accuracy-energy scaling. Compared to
the baseline, our scheme reduces the energy consumption by
up to 38.4% for individual operations and increases the energy
efficiency by up to 274.5% for emerging neural network models
with negligible inference loss.

I. INTRODUCTION

Deep neural networks (DNNs) have overwhelmed many
approaches for various classification and optimization prob-
lems, such as computer vision, natural language processing and
speech recognition, over recent years. To boost the energy effi-
ciency of DNN inference, a large body of work has focused on
linear multiply-accumulate (MAC) operations, which dominate
the total computation in most convolutional neural networks
(CNNs) [1]. On the other hand, other nonlinear operations such
as the max pooling and rectified linear unit (ReLU) [1], [2] op-
erations have received little attention because of their relatively
low contribution to the area and energy overheads. However,
there is a recent trend towards new sophisticated models that
boost accuracy by incorporating more nonlinear operations,
including division (div), exponentiation (exp), logarithm (log),
sigmoid (sigmoid), softmax (softmax), and hyperbolic tangent
(tanh) as in Table I, and they commonly require more than one
type of nonlinear operation.

Though boosting the application accuracy, encapsulating
multiple nonlinear operations together poses several challenges
to the existing inference hardware. First, nonlinear opera-
tions are much less frequent than linear operations, but
they counterintuitively hinder the overall DNN efficiency
on general-purpose hardware, such as CPUs and GPUs.
Sophisticated nonlinear operations in emerging DNNs (Table I)
are often computation-heavy and spread out in the entire model,
unlike those in conventional CNNs that either exist at the
output or are simple enough to implement. We profile the
inference of a Seq2Seq model with attention for neural machine

Table I
NONLINEAR OPERATIONS USED IN EMERGING DNNS.

DNN Model Nonlinear Operations
CapsNet [8] div, exp, log, sigmoid, softmax
GNN [9] div, exp, log, softmax
NMT [10] log, sigmoid, softmax, tanh

Operation count

Linear ops.
95.7%

All non-linear ops.
4.3%

log_softmax
4.0%

sigmoid
15.2%
softmax
4.6%tanh
8.9%

Linear ops.
67.3%

Operation runtime

All non-linear ops.
32.7%

Figure 1. Nonlinear operations normalized to total operations (both linear and
nonlinear) in a NMT model based on CPU profiling.

translation (NMT) on a CPU in Fig. 1, showing the operation
counts and runtimes of linear and nonlinear operations. It is
observed that though nonlinear operations only count for 4.3%
of the total operation count, they require almost one third of
the total execution time. Second, existing DNN accelerators
are not forward-adaptable to new models because they
only support a small subset of nonlinear operators they
needed at the time. Authors in [3], [4] present the ASIC and
FPGA implementations of the basic cell for a NMT model, long
short-term memory (LSTM), which includes two unary (single-
input) nonlinear operations, sigmoid and tanh, approximated
by look-up tables (LUTs) and piece-wise linear approximation.
However, those single-input approximations are not compatible
with non-unary nonlinear operations such as div (two-input) and
softmax (many-input). Third, in general, nonlinear operators
require bulkier hardware than linear operators, making
it expensive to simply slab on a new nonlinear operator,
especially considering it is not likely to be used often across
all emerging DNNs. Among these nonlinear operations in
Table I, for unary sigmoid and tanh in LSTM, bulky LUTs or
extra MAC units are applied [3], [4]; for many-input softmax in
CapsNet, extra LUTs, adder and dividers are introduced [5]. All
those add-ons encumber the savings from the energy-optimized
MAC arrays [1], [6], [7] (SIMD arrays in our work).

The above challenges, together with the fact that minor
numerical errors do not necessarily degrade the DNN accu-
racy [1], motivate two key insights in our work: 1) implement
nonlinear operations by effectively virtualizing them on top of
the handy MAC array in DNN accelerators to achieve high
efficiency; 2) allow to further improve the efficiency by offering
dynamic run-time accuracy-energy scaling in nonlinear oper-978-1-6654-3922-0/21/$31.00 ©2021 IEEE
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Figure 2. (a) Example of MAC-based SIMD array for emerging DNNs. (b)
Example of UNO-based SIMD array for emerging DNNs. UNO array is larger
than MAC array, but it outperforms when counting the nonlinear support. Here,
the circle indicates multi-cycle nonlinear operations.
ations. Fig. 2(a) shows an example architecture using a MAC-
based SIMD array for emerging DNNs. Here, the nonlinear
array is in parallel to the SIMD array, since the nonlinear
operations found in emerging DNNs can be cascaded. DeMUX
and MUX select the operation to be performed according to
mode configuration. Though nonlinear hardware prospers in
recent years [11]–[15], they share little hardware from each
other and the MAC array, limiting the efficiency. As complex
nonlinear operations can be decomposed into a combination
of linear and three primitive nonlinear operations, div, exp and
log, Taylor approximation is able to enforce maximal hardware
sharing between varying nonlinear operations and existing
MAC array and minimize the overhead.

Leveraging Horner’s rule [16], we schedule the Taylor ap-
proximation in a MAC-compatible flow so that it operates as
unified nonlinear operations (UNO). We propose the UNO
architecture to virtualize all identified nonlinear operations
on top of off-the-shelf MAC arrays with low overhead and
encapsulate all arithmetic operations in emerging DNNs. An
example SIMD array based on UNO is shown in Fig. 2(b).
There is no explicit linearity selection on the data path, as the
UNO array itself can be configured to execute either linear
MAC or nonlinear operations. Furthermore, the multi-cycle
behavior of Taylor approximation naturally offers dynamic run-
time accuracy-energy scaling, i.e., more Taylor terms produces
higher accuracy [11], [12], [15]. Unit- and application-level
experiments show that, without losing benefits in accuracy
and efficiency, UNO achieves compatibility for all mentioned
nonlinear operations simultaneously and much lower area com-
pared to existing designs. Contributions are listed as follows:
• We identify and characterize the inefficiencies of prior

implementations of complex nonlinear operations, partic-
ularly in the context of emerging neural network models.

• We propose unified nonlinear operations (UNO), which
virtualizes complex nonlinear operations on top of off-
the-shelf MAC arrays with low overhead and achieves
dynamic run-time accuracy-energy scaling.

• We demonstrate superior area and energy efficiency with
UNO compared to prior designs while maintaining low
accuracy loss at both operation-level (i.e., per individual
nonlinear operation implementation) and application-level
(i.e., analytical case study on three emerging DNNs).

II. APPROXIMATE COMPUTING

Various application domains can leverage approximate com-
puting to trade off accuracy for energy efficiency, such as

computer vision [11], [17], [18] and neuron simulation [12].
And both linear and nonlinear operations are supported, e.g.,
add [17], mul [18], div [11], [14], exp [12], and log [13].
Based on these primitive, non-decomposable nonlinear oper-
ations, complex nonlinear operations can be obtained, i.e.,
sigmoid, softmax and tanh [4], [19]. Besides naively utilizing
LUTs [3], these primitive nonlinear operations can also be
approximated with Taylor approximation [11], [12], piece-wise
linear approximation [4], logarithmic transform [14], and DNN
approximation [13]. Among these, LUTs exhibit exponential
overheads with the bit width [11] and will not be elaborated.

Taylor approximation of degree n, fn(x), is a series expansion
of a function f over input x about an expansion point a:

fn(x) =
n

∑
i=0

f (i)(a)
i!
· (x−a)i =

n

∑
i=0

ci · (x−a)i, (1)

where f (i)(a) is the i-th derivative of f evaluated at x = a,
and ci = f (i)(a)/i! denotes the coefficient of the i-th term. The
approximation accuracy increases as the degree n increases.
Inherently, a Taylor approximation consists of only addition
and multiplication, under a fixed point a. Prior works [11],
[12] further approximate Eq. (1) by recursively derive it as

fn(x)≈ fn−1(x)+
cn

cn−1
·pown−1 · (x−a), (2)

where pown−1 = cn−1 · (x−a)n−1, and f0(x) = c0. The benefit
of this approach is that the calculation can be terminated at
any cycle for dynamic accuracy-energy trade-off at run time,
as the computation is performed from low order to high order.
However, the potential to integrate those standalone hardware
units to MAC arrays is not revealed.

Piece-wise linear approximation divides the function curve
into multiple pieces, and then approximates each piece with a
line segment, which requires LUTs to store the coefficients and
MAC units to calculate the result. Existing accelerators utilize
this technology to approximate sigmoid and tanh [4], [20] but
introduce large hardware overhead, as they do not leverage the
existing MAC arrays for matrix operations. Furthermore, unlike
the Taylor approximation increases the accuracy over time, the
accuracy increase of this method requires more pieces, i.e.,
more LUTs to store the coefficients.

Logarithmic transform [14] performs simpler computation
in logarithmic domain instead of binary domain. For example,
division can be performed in logarithmic computation as sub-
traction. However, this method is not optimal when applied
to emerging DNN models. First, it requires extra hardware
logic, like leading zero detection and barrel shifter, which are
absent in normal MAC arrays. Second, existing literature does
not provide hints to apply this technique to more sophisticated
nonlinear operations like exp.

DNN approximation [13] can approximate more complicated
transcendental functions. Though the method is beneficial than
CPU/GPU software libraries for energy efficiency, it is not
appropriate for accelerators due to unacceptable hardware cost.

Among those methods, only Taylor approximation is able to
explore the accuracy-energy trade-off dynamically at run time1

1Stochastic computing [21] also allows dynamic run-time accuracy-energy
scaling, but works on serial unary bitstreams, instead of parallel binary bits.



by adjusting the number of execution cycles/Taylor terms, while
others only permit the static trade-off at design time. In this
work, UNO applies Taylor approximation to unify nonlinear
operations based on Horner’s rule [16], so as to support dy-
namic run-time accuracy-energy scaling with minimal hardware
overhead by fully utilizing the MAC units. Note that other
polynomial approximations [22], [23] also fit UNO well.

III. UNIFIED NONLINEAR OPERATIONS

Taylor approximations in Eq. (2) is not MAC-compatible,
since it requires two successive multiplications but as a MAC
unit supports only one multiplication per cycle (unless cn =
cn−1 as in [11]). To ensure single-cycle updates in Eq. (2),
extra hardware overhead and/or accuracy loss may occur [12].
To make our Taylor approximation MAC-compatible, based on
Horner’s rule [16] where polynomials are evaluated from high
to low order, UNO expresses Eq. (1) as

fn(x) = offset+macn · scale, (3)

where macn is the cascaded MAC result for Taylor approxima-
tion of degree n, and scale and offset are used to tune the macn
towards the final result. Then macn is calculated as

maci =

{
|cn−i|+maci−1 · var if 1 < i≤ n,
|cn−1|+ |cn| · var if i = 1,

(4)

where var is an affine transformation of input x and the index
i starts from 1. At each round of cascaded MAC operations,
the coefficients are simply converted to the absolute values to
take effect. Note that the intermediate result maci is not a valid
approximation. Therefore, UNO takes n + 1 cycles to finish
computation in Eq. (3, 4), the same as that in prior works that
compute from low order to high order [11], [12].

An example of UNO is shown in Eq. (5). When x∈ [0.5,1.0],
log(x) with a degree of n = 2 at expansion point a = 1 results
in scale =−1, offset = 0 and var = 1−x. The three underlines
indicate that three MAC operations are required for the Taylor
approximation of degree 2, and the MAC computation is
performed as marked by underlines from short to long, i.e.,
from high- to low-order terms. The two shorter underlines are
for macn in Eq. (4) and the longest is for final fn(x) in Eq. (3).

log(x) = lna+
1
a
(x−a)− 1

2a2 (x−a)2

= 0+(x−1)− 1
2
(x−1)2

= 0+

(
0+
(

1+
1
2
(1− x)

)
(1− x)

)
(−1)

(5)

We generalize UNO for div, exp and log by deriving their
scale, offset and var in Table II, where x and y are the inputs
with arbitrary value ranges, and adiv, aexp and alog are the Taylor
expansion points for div, exp and log, respectively. To ensure
high accuracy in Eq. (4), an integer ex normalizes x as xnorm ∈
[0.5,1.0] such that x = ex · xnorm [11]. We also use x−bxc in
var of exp to reduce the input range to [0.0,1.0].

Table II
PARAMETER CONFIGURATION FOR div, exp AND log

Parameter y/x exp(x) log(x)
scale y ·2−ex exp(bxc+aexp) −1
offset 0 0 log(2ex )
var adiv− xnorm x−bxc−aexp alog− xnorm
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Figure 3. UNO PE architecture that virtualizes nonlinear operations on top of
a standard MAC unit. The gray blocks are the base MAC unit, while the black
blocks are added for UNO.

IV. HARDWARE AND IMPLEMENTATION

In this section, we present the hardware architecture of UNO.
We describe the fixed-point processing element (PE) design and
articulate how UNO integrates into a system. We then evaluate
the implementation and highlight UNO’s advantages.

A. Architecture

Since the UNO algorithm is fully MAC-compatible, its PE
architecture is designed by extending a standard MAC unit
with additional logic as highlighted in Fig. 3. The control
unit determines the operating mode of the UNO PE. When
performing nonlinear operations, for each cycle, the UNO PE
selects the inputs to the normal MAC logic according to Eq. (3,
4) and Table II. For example, at the first cycle, |cn−1|, |cn| and
var are fed to the MAC unit, and maci−1 instead of |cn| is
selected according to Eq. (4) before the last cycle, at which
offset, macn and scale are used as in Eq. (3). The absolute
values of coefficients are pre-stored and indexed at run-time.
Then scale, offset and var are calculated with addition, shift
or tiny LUTs. In this implementation, addition is used for the
calculation of var. Though extra additions are used in scale and
var for exp compared to div and log, they are not mandatory
since aexp is fixed to 0, as discussed in Section V. Shift is
used in scale for div [11] and xnorm for div and log. Finally,
LUTs are used for scale of exp and offset of log. UNO LUTs
require much fewer entries compared to 2,048 in [3], as they
feed on the much fewer integer bits in exp and the shift offset
in log. Furthermore, as scale and offset are merely used in the
last cycle, the same LUT can be queried in series by multiple
operations, further reducing the overhead.

With the proposed architecture, integrating UNO in a sys-
tem can be done with minimal architecting and programming
efforts. First, as UNO is an enhancement to a MAC unit,
each MAC unit in the conventional MAC array can be simply
extended with the black blocks as in Fig. 3 to support parallel
nonlinear operations. The parallelism of nonlinear operations,
i.e., the throughput of nonlinear operations, is directly de-
termined by the ratio of UNO-enhanced MAC units to the
array size and the correspondent cycle count for each nonlin-
ear operation. Second, UNO provides programming flexibility
due to the indigenous dynamic accuracy-energy trade-off. As



Table III
COMPARISON OF UNO HARDWARE WITH BASELINE.

Design Accu. Delay Area Power Energy
(%) (ns) (µm2) (mW) (pJ/op)

Baseline
(MAC+SAADI
div+SECO
exp+NN log)

div 99.93 15.73 3,068 1.09 17.22
exp 99.70 17.50 1,118 0.22 3.73
log 98.79 50.66 3,578 0.48 24.81
Total — — 9,323 2.35 —

UNO

div 99.92 14.04 — — 13.10
exp 99.91 11.70 — — 10.92
log 99.15 16.38 — — 15.29
Total — — 4,221 0.93 —

indicated by the Horner’s rule, UNO algorithm starts from the
high order Taylor terms to low till completion, implying the
total cycle count is pre-defined. And such pre-definition can be
programmed in a layer-wise manner for simplicity.

The UNO PE illustrated in Fig. 3 is synthesized using TSMC
45 nm technology at 400 MHz, and the hardware implemen-
tation result is shown in Table III. Due to the rarity of a prior
design targeting multiple nonlinear operations, we intentionally
set up a baseline PE to 1) exhibit identical functionality and 2)
maximally support dynamic run-time accuracy-energy scaling
as in the proposed UNO PE. As such, the baseline PE consists
of a MAC unit (not shown in the table), a SAADI div [11]
unit, a SECO exp [12] unit, and a neural network (NN)-based
log [13] unit. Among these nonlinear units, both SAADI div and
SECO exp support dynamic run-time accuracy-energy scaling
using Taylor approximation, while NN log does not.

The comparison between baseline and UNO PEs are twofold.
First, for individual nonlinear operations, UNO achieves com-
parable or even better final accuracy for each operation, and
so for area. The accuracy here is the root mean square error
among all possible, uniformly distributed inputs, as described
in Section V. In the baseline PE, SAADI div, SECO exp
and NN log take inputs with bit width of 8, 8 and 7, while
our UNO implementation uses 8 bits for all operations. The
minor variance in bit width does not incur game-changing
difference in accuracy, area and power between the baseline
and UNO PEs. The resultant energy consumption of div and
log using UNO is reduced by 23.9% and 38.4% compared to the
baseline, respectively. One exception is that SECO exp [12] has
better area and power numbers due to employing approximate
multiplier additionally, which can also boost the area and power
efficiency of UNO up to a similar level once deployed. Second,
for the entire PE, the total area and power of the baseline are
the sum of those in all involved units for MAC, div, exp and
log. We observe that the UNO PE shows around 54.7% area and
60.4% power reduction over the baseline PE. Thus, adopting
UNO arrays in a system instead of normal MAC arrays has
significant area, power and energy advantages over past works,
which do not leverage the existing MAC units.

V. DYNAMIC RUN-TIME ACCURACY-ENERGY SCALING

Before evaluating the accuracy-energy scaling of our fixed-
point UNO PE, we first identify the best Taylor expansion
points. Assuming varying input distributions as in [12], we con-
struct four different inputs between 0 and 1: one uniform dis-
tribution, U(0.0,1.0), and three normal distributions with dif-
ferent centers, N (0.25,0.1), N (0.50,0.1), and N (0.75,0.1).
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Figure 4. (a) Relative RMSE of 4-, 8-, 12-, and 16-bit fixed point (FXP) UNO
for varying cycle. (b) Energy-accuracy trade-off comparison to SAADI-div,
SECO-exp, and NN-log.

We use relative root mean square error (RMSE ranging within
[0,1]) as the error metric. The best expansion points for div,
exp and log based on UNO with 8-bit fraction are identified
as 0.75, 0.00 and 0.75, respectively. These points minimize the
overall RMSE and are used even when the bit width varies.

We then examine the relationship between cycle count and
accuracy, as well as between energy and accuracy, for each
nonlinear operation. Fig. 4(a) presents the trend of RMSE when
increasing the cycle count of a UNO operation with input
U(0.0,1.0). Each dot on the curve represents the simulated
RMSE at that cycle. Given 8 as maximum cycle count, the
best RMSE dot is highlighted in orange for each bit width. Both
monotonic accuracy-latency scaling at run time and accuracy-
bitwidth trade-off at design time are achieved in UNO, while
the former is unavailable in [12] due to approximated coeffi-
cients. Fig. 4(b) further presents the accuracy-energy scaling.
Similarly, energy consumption is monotonically increasing as
accuracy increases. Additionally, the accuracy-energy points for
prior works in Table III are also stared. We observe that UNO,
based on algorithm-level scheduling, can provide comparable
or even better accuracy-energy scaling than others, except for
SECO exp, which applies more aggressive approximation.

VI. EMERGING DNN MODELS USING UNO

Currently, there rarely exists architecture exploration into
emerging nonlinearity-intensive DNNs, especially considering
both the compatibility of multiple nonlinear operations and
dynamic run-time accuracy-energy scaling enabled in UNO.
Therefore, the hardware efficiency evaluation on SIMD arrays
will be analytically performed using the baseline and UNO PEs
in Table III, using their original models and datasets.

A. Emerging DNN Models

Capsule Neural Network (CapsNet) [8] contains four types
of layers, namely normal convolutional layer, primary capsule
layer, convolutional capsule layer and class capsule layer. The
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Figure 5. Accuracy measurement for varying degree of Taylor approximation.
The correspondent cycle count equals the degree plus 1 as in Section III.

normal convolutional layer performs MAC operations. The
primary capsule layer contains sigmoid, while both convo-
lutional and class capsule layers involves the Expectation-
Maximization (EM) algorithm, which covers div, log, sigmoid
and softmax. The floating-point model, based on the original
implementation in [8], is evaluated on the MNIST dataset. The
16-bit fixed-point UNO model is obtained by directly replacing
the operations in the floating-point model with no extra training
involved. Note that all UNO models in this work are achieved
by operation replacement with no training.

Graph Neural Network (GNN) [9], more specifically, the
graph attention network [24] is evaluated in this work. Each
layer in the network consumes nonlinear operations, including
softmax, exponential linear unit, and log softmax for the atten-
tion mechanism and output activation. Following the implemen-
tation suggested by Velivckovic et al. [24], the model has 8 head
attention layers, each with 8 hidden units. The model is trained
on the Cora dataset [25], which contains 2708 nodes, 5429
edges, 7 classes, and 1433 features, for document classification.
The sample count for training, validation, and testing are 140,
300, and 1000, respectively. For inference, UNO accepts 16-bit
fixed-point data.

Neural Machine Translation (NMT) [10], using Seq2Seq
learning with attention, involves nonlinear operations in its
three major components: encoder, decoder, and attention layers.
First, both the encoder and decoder layers are constructed on
recurrent neural network (RNN) cells such as LSTM, involving
nonlinear operations like sigmoid and tanh. Then attention
weights are regulated by softmax. Finally, log softmax, per-
forming softmax on the data after the log, is used at the output.
We build a NMT model as in [26], where the 2-layer encoder
has total 46 LSTM cells, and the 2-layer decoder has 48.
We train a floating-point model with 110,000 English-French
sentence pairs and test with 2,000 unseen pairs. The fixed-point
UNO model also applies 16-bit data.

B. Accuracy and Efficiency Evaluation

a) Accuracy: We evaluate the inference accuracy of three
UNO models by comparing it with the floating-point baseline
individually using PyTorch. Top-1 accuracy is used for two
classification tasks, i.e., CapsNet and GNN. For NMT, we
measure the bilingual evaluation understudy (BLEU) score,
ranging from 0 to 100. A higher BLEU score indicates more
similar translation to a human translator. Fig. 5 shows the
results for three models, respectively. As plotted in Fig. 5 (a)
and (b), for CapsNet/GNN, UNO achieves minimal accuracy
loss (0.35%/1.42%) even only with a Taylor degree of two,
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Figure 6. Operation statistics of emerging DNN models.

compared to floating-point accuracy (98.78%/84.60%). While
with an increasing degree, UNO saturates at the degree of four,
at which UNO’s accuracy is 98.70%/84.60% for CapsNet/GNN.
Fig. 5 (c) shows that the fixed-point BLEU score increases
with the Taylor degree and saturates at 77.5 at the degree of
four. Due to the different types of task and accuracy metric,
the accuracy gap between UNO and floating-point baseline is
relatively more noticeable when using fewer Taylor degrees for
NMT compared to classification by CapsNet/GNN.

To sum up, UNO can achieve minor accuracy loss for diverse
emerging models. When measured by classification accuracy,
UNO maintains a good accuracy with heavy approximation by
a Taylor degree of two; while evaluated on the NMT task,
UNO attains good translation adequacy after the degree of
two. The inference accuracy using UNO can be further boosted
by fine-tuning the integer and fraction bit widths of nonlinear
operations in each layer and UNO-aware training.

b) Efficiency: We perform an analytical evaluation on
hardware area, power, throughput and energy efficiency of
SIMD arrays using the baseline and UNO PE in Table III,
corresponding to designs in Fig. 2(a) and (b). As in Fig. 2(a),
the baseline SIMD array is split into linear MAC and nonlinear
arrays, and the nonlinear array contains SIMD arrays of div,
exp and log units, each having identical SIMD size as the
MAC array. Following are specific hedges. 1 The computing
kernel, excluding the data SRAM in Fig. 2, with SIMD size
of 64, data width of 16 (8 bits for fraction) is synthesized
with TSMC 45 nm technology at 400 MHz. 2 The count of
each operation is proportional to its runtime, as the utilization
of the baseline and UNO SIMD array for linear operations
is set to be 50%, which resides reasonably in [20%,95%]
as reported by other actual accelerators [1], [6], [7], while
the nonlinear utilization is set to 80% due to their nearly
elementwise behavior. We categorize operations as in Fig. 6,
where MAC operations have two sources. MAC-L denotes
MAC operations in linear matrix multiplication/convolution,
while other operations, namely MAC-NL, div, exp and log,
are obtained by decomposing nonlinear operations in Table I
accordingly.

Based on above categorization, the per-model operation
statistics in percentage are stacked in Fig. 6. For each model,
the actual operation count and the cycle count executed on
one individual baseline and UNO PE (100% MAC utilization),
normalized to the actual total operation count, are presented.



In terms of the actual operation count, we observe that 1)
each nonlinear operation occupies varying ratios in different
models, and 2) each model requires varying ratio of different
nonlinear operations. CapsNet contains 7.6% div, GNN has
3.4% exp, while NMT requires 3.8% exp and 3.7% log. Note
that unmentioned nonlinear operations in each model count for
less than 1.0%. Then the cycle count on baseline and UNO
are compared to the actual operation count directly, reflecting
the model execution efficiency. The cycle count for individual
div/exp/log is 11/6/17 according to [11]–[13] on baseline and
6/6/6 on UNO as in Fig. 5, with 1 cycle for both MAC-L
and MAC-NL. A similar gap between operation count and
runtime as in Fig. 1 can be seen for all models. Compared with
baseline, UNO saves total runtime by 22.23%/0.01%/22.89%
for CapsNet/GNN/NMT. The marginal runtime reduction for
GNN is due to the fact that GNN involves mostly exp, which
takes the same cycle count in the baseline and UNO.

Table IV
HARDWARE EFFICIENCY OF DNN MODELS.

Model Baseline UNO Increase (%)
Area (mm2) — 0.659 0.283 -57.0
Power (mW) — 205.5 66.5 -67.6

Throughput
(samples/s)

CapsNet 470.3 567.1 +20.6
GNN 6.0 6.0 +0.0
NMT 132.5 160.6 +21.2

Energy
Efficiency
(samples/J)

CapsNet 2288/4648 8527/10953 +272.7/+135.6
GNN 29/68 91/116 +209.1/+70.3
NMT 645/1534 2415/3036 +274.5/+97.9

With the cycle count analysis, we compare the hardware
performance in Table IV, where power represents the maximum
power without power gating and energy efficiency includes
the numbers for without/with power gating on the left/right,
respectively. Compared to the baseline, UNO reduces both the
area and power by over half. 2.0%, 16.4%, 6.2% and 75.4%
of total baseline-based area are occupied by adder tree, MAC
array, DeMUX/MUX and nonlinear array, while 4.7% and
95.3% of total UNO-based area is consumed by adder tree
and UNO array, indicating a higher computing kernel density.
Without power gating, the throughput of both CapsNet and
NMT increases by 20% with UNO, while that of GNN remains
the same, as exp dominates the GNN nonlinear operation, as
elaborated previously. UNO nearly triples the energy efficiency
for all evaluated models, as a joint effect of both shorter runtime
and lower power consumption.

c) Influence of manufacturing techniques: The analyti-
cal evaluation above implies the upper bound of our proposal.
However, physical design techniques, e.g., power gating, can
be applied to mitigate the gap between baseline and UNO.
With power gating enabled, only the relevant hardware for the
operation consumes energy. For the baseline array, individual
computing units are always disabled when not used while it’s
the scale, offset and var logic in UNO-based design to be pow-
ered off selectively. Note that the adder tree and DeMUX/MUX
logic is constantly running. Assuming no overheads for power
gating, the area benefit of UNO remains, and the energy benefit
of the UNO-based design slightly decreases according to the
right-hand numbers from energy efficiency in Table IV, but
still almost doubles that of baseline. Such decreases come from
the large ratio of nonlinear hardware in baseline. Furthermore,

with power gating, even for simpler CNNs, UNO will not fall
short significantly in energy efficiency, implying the potential
of UNO for broader use cases.

VII. CONCLUSION

We present UNO, a unified architecture that virtualizes
nonlinear operations on top of conventional DNN hardware to
minimize additional hardware costs. UNO is designed to be
compatible with MAC operations to fully utilize off-the-shelf
MAC units and flexibly provide dynamic run-time accuracy-
energy scaling, thus reducing the area and energy overheads
for nonlinear operations. Simulation results on both individual
operations and emerging neural network models indicate that
UNO is suitable for sophisticated neural network models with-
out a significant loss of accuracy. To conclude, UNO can be
integrated onto existing systems seamlessly for future machine
learning applications with promising area and energy benefits.
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