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Editor’s notes:
This article presents improved stochastic computing primitives for division 
and square root operations. Both are nonlinear functions that cannot be 
reduced to additions and multiplications. The authors make use of the 
very correlations that are usually considered undesirable in stochastic 
computing; their controlled injection into computations leads to good 
compromises between convergence time and area requirements.

—Weikang Qian, Shanghai Jiao Tong University

 Gaines initially proposed stochastic comput-
ing (SC) [1] as a low power solution for applications 
requiring massive but often redundant inputs such 
as machine learning and pattern recognition. Due 
to its extremely simple computing logic, like an and 
gate for multiplication, as shown in Figure 1b, SC has 
regained research interest in error-correcting codes 
and computer vision in the past decades [2]. More 
recently, with the evolution of artificial intelligence, 
SC further finds popularity in varying deep learning 
models containing heavy matrix operations [2]. Ber-
noulli sequences, containing uniformly distributed 0’s 
and 1’s, are usually used as SC data, namely bit stream 
(BS). Its value is exclusively determined by the proba-
bility of 1’s in the BS, with precision relying on the BS 
length. There are two fundamental SC data representa-
tions, namely unipolar and bipolar. Unipolar data 
have the unsigned value, VUni of range [0,1], equal to 
the probability of 1’s in the BS, PUni, while bipolar data 
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have the signed value 
VBi = 2 × PBi − 1 of range 
[−1,1], with PBi referring 
to the probability of 1’s. 
Figure 1a shows unipolar 
SC data representation. 
A and B have the same 
value of 0.5 despite differ-
ent element orders, while 
C has a larger value due 

to 4 more 1’s. Thanks to this bit-serial representation, 
SC is a promising computing paradigm for emerging 
deep learning models that are computationally inten-
sive but require extremely low area and power.

Though simple in hardware, SC introduces extra 
computation latency and fluctuation in accuracy. For 
example, with length-N BSs, unipolar SC multiplica-
tion (Figure 1b) requires N cycles, significantly higher 
than that for binary multiplication. Furthermore, with 
varying input BSs, the output varies with the stochas-
tic cross correlation [3] between inputs (i.e., how 
aligned the 1’s and 0’s are). Figure 1c shows how a 
high positive correlation affects the output of the and 
gate, and leads to a MIN operation. To achieve high 
accuracy, most existing works focus on a vital but 
expensive component of SC circuits, BS generation, 
which generates the Bernoulli sequence [1] by pro-
ducing a sequence of random numbers (RNs) and 
comparing them each to an input value. Conventional 
techniques aim to construct zero-correlation BSs using 
high-quality RN generators (RNGs), like bit scrambling 
[4] and low-discrepancy sequences [5]. Only recently 
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have researchers shown that it is possible to leverage 

dedicated correlation [6] to design SC division [7], 

[8], instead of viewing it as a detriment to accuracy. 

Based on the fact that emerging deep learning mod-

els employ more nonlinear operations besides linear 

multiplication and addition [9], our work leverages 
correlation to design in-stream (i.e., do not require 
expensive BS regeneration to achieve high accuracy) 
SC units (SCUs) for both division and square root, 
which target stochastic BSs, instead of deterministic 
BSs in [10], the correlation of which is ignored.

In this work, our proposed designs, in-stream cor-
relation-based division (ISCBDIV) and bit-inserting 
square root (BISQRT) eliminate the fundamental inef-
ficiencies of existing SC division and square root [1] 
via low-cost in-stream mechanisms. Furthermore, this 
work extends previous designs for unipolar SC in [8] 
to bipolar SC. The proposed ISCB-DIV is derived from 
the insight that when the dividend is larger than the 
divisor, the quotient saturates at 1. ISCBDIV applies a 
simple in-stream mechanism, skewed synchronizer 
(SS), to maximally correlate the dividend BS to the 
divisor BS of the existing non-in-stream correlated 
division (CORDIV) [7] for higher in-stream accuracy 
than others. On the other hand, BISQRT leverages the 
insight that the result of any SC square root is always 
no less than its input to insert extra 1’s into the input 
BS to obtain the output. We introduce two low-cost 
mechanisms for insertion, namely stochastic inser-
tion [8] and opportunistic insertion, thus eliminating 
BS regeneration in the classical Gaines design [1]. 
The newly designed opportunistic insertion has even 
higher accuracy than the previous stochastic insertion 
[8], without introducing overhead on top of Gaines’s 
designs. Experiments demonstrate that the proposed 
designs are more suitable than the state-of-the-art 
competitors for emerging deep learning models.

Background
Existing designs on stochastic division and square 

root originate from Gaines’ designs [1]. Though later 
CORDIV [7] improved the accuracy of SC division, 
there is little subsequent work on SC square root, 
and our work steps into this rarely explored field.

Gaines division
Gaines division (GDIV) [1] for unipolar and bipolar 

SC is shown in Figure 2a and b. In GDIV, a feedback 
loop is formed between the quotient and the divisor 
to construct an equilibrium between the increments 
and decrements (Inc and Dec in the diagram) for the 
depth-N (i.e., N-bit) saturating CouNTer (CNT in the 
diagram). Extra logic in bipolar GDIV is to stabilize 
the fluctuation due to varying value signs. Equilibrium 
for unipolar GDIV can be achieved if the increment 

Figure 1 Unipolar SC paradigm. (a) Unipolar 
representation. (b) Unipolar multiplication (zero 
correlation). (c) Unipolar minimum (high positive 
correlation).

Figure 2. Existing SC division and square root. (U 
and B represent unipolar and bipolar, respectively; C 
stands for comparator; D stands for D-flip-flop; gray 
blocks are the BS regeneration logic; dotted blocks 
are CORDIV kernel.) (a) U: GDIV. (b) B: GDIV. 
(c) U: CORDIV. (d) B: CORDIV. (e) U: GSQRT. 
(f) B: GSQRT.
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(PDividend) and decrement (PDivisor × PQuotient) are ena-
bled with equal probabilities. Thereafter, the quotient 
is successfully calculated: PQuotient = PDividend/PDivisor. 
The computation can be accelerated by initializing 
the saturating counter to half of the maximum count. 
However, GDIV has three limitations. First, it requires 
the comparison between the counter value and RN, 
that is, BS regeneration, incurring high area overhead. 
Second, the GDIV precision relies on the counter 
depth, resulting in a high area overhead for high pre-
cision. Third, the output accuracy is determined by 
the multiplication accuracy via the and/xnor gate for 
unipolar/bipolar SC. Thus, the stochastic cross cor-
relation [3] between the BSs for divisor and quotient 
needs to approach zero for acceptable accuracy. Sto-
chastic cross correlation relates to the count of aligned 
1’s between two BSs. When the count of aligned 1’s is 
maximized, the correlation is maximized to +1; when 
minimized, the correlation is also minimized to −1.

Correlated division
CORDIV utilizes maximized stochastic cross cor-

relation between BSs for dividend and divisor [7] 
fed into the CORDIV kernel (Figure 2c and d). The 
output PQuotient = PDividend/PDivisor equals the ratio of 
the one count in the BSs for dividend and divisor:  
N1

Dividend/N1
Divisor. It  hinges on the fact that the uni-

polar quotient saturates at the upper bound of the 
legal range, that is, 1, if the dividend is larger than the 
divisor for unipolar SC.

The CORDIV architectures for unipolar and bipo-
lar SC are shown in Figure 2c and d, both requiring 
static binary inputs stored in the counter. Bipolar 
CORDIV actually computes on the absolute values 
and converts the result to bipolar format using an xor 
gate. CORDIV is not in-stream, as a counter-RNG-com-
parator organization is mandatory to produce the 
maximally correlated BSs for the CORDIV kernel, that 
is, whenever the dividend bit is 1, the divisor bit has 
to be 1. Thus, the MUX can capture all NDividend bits, 
and output precise quotient bits when divisor bits 
are 1. The D-flip-flop (D-FF) records those precise 
quotient bits, and outputs approximate quotient bits 
upon logic 0’s at the divisor. As such, the quotient is 
maximally correlated with the dividend. CORDIV has 
higher accuracy than GDIV due to leveraging the cor-
relation. Still, there are two limitations for CORDIV. 
First, BS regeneration requires long latency to reach 
a stable and accurate output in the counter, further 
impeding the convergence of quotient BS. Second, 

similar to GDIV, BS regeneration in CORDIV cause 
hardware area and power overheads.

Gaines square root
Gaines square root (GSQRT) is the classic, yet 

the only, SC square root design [1] before this work. 
As shown in Figure 2e and f, GSQRT can be directly 
derived from GDIV. They differ from the decrement 
signal for the depth-N saturating counter: GSQRT dec-
rements the counter based on the square of the output. 
Note that bipolar GSQRT does not need the stabiliza-
tion logic in bipolar GDIV as legal values are always 
positive. At equilibrium, the counter increments (PIn) 
and decrements (POut

2) with an equal probability, 
resulting in square root: POut = √PIn . GSQRT has the 
same limitations as GDIV, except that stochastic auto 
correlation [4], the correlation of the output BS and 
its shifted version, now limits the accuracy.

BS generation and regeneration
Although different techniques are proposed to 

increase accuracy, they give rise to extra costs of 
latency and hardware. As BSs from BS generation [1], 
which are uncorrelated, flow through concatenated 
SCUs, the intermediate BSs might become correlated 
again, leading to lower accuracy and longer latency. 
As salvation, BS regeneration is applied to the inter-
mediate BSs in existing works [6]. BS regeneration 
has a similar process to BS generation: they both com-
pare the buffered binary data values to RNG outputs. 
However, BS regeneration utilized saturating counters 
to dynamically update BS values before comparison, 
while the comparison in BS generation is between 
static prestored values and the RNs. We name the 
SCUs requiring no organization of counter-RNG-com-
parator for BS regeneration as in-stream, SCUs, and 
they are more hardware-friendly in general.

In-stream correlation-based division
Our ISCBDIV is inspired by CORDIV [7], which 

applies an expensive counter-RNG-comparator organiza-
tion to regenerate correlated BSs for the CORDIV kernel 
in Figure 2c and d. To mitigate such incurred overheads, 
an in-stream mechanism (i.e., without BS regeneration) 
for maximal BS correlation is proposed here.

Synchronizer [6] is a recent technique for increas-
ing stochastic cross correlation of two input BSs by 
reordering the bits to favor 1–1 pairs and suppress 1–0 
or 0–1 pairs. Synchronizer considers symmetric bit 
pairing for both input [8], ignoring the fact that only 
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the dividend needs to be synchronized to the divisor 
in CORDIV. Leveraging such fact, we design an SS for 
the maximum correlation requirement of CORDIV 
kernel, with the finite state machine (FSM) given in 
Figure 3c, where {a, b} represents the {dividend, divi-
sor} pair. The SS employs one depth-N (N-bit), N = 2 
in Figure 3c, counter to record the 1’s in the dividend 
when the divisor bit is 0, and then matches the saved 
1’s with later 1’s in the divisor BS [8].

The hardware architecture of the proposed unipo-
lar ISCBDIV is presented in Figure 3a, consisting of the 
SS and the CORDIV kernel as in Figure 2c and d. The 
SS first converts input BSs with arbitrary correlation to 
those with maximal correlation. The resultant divisor 
BS remains identical, but the dividend BS is shuffled. 
Then the CORDIV kernel performs the actual division. 
The D-FF in the CORDIV kernel is replaced by a depth-N 
shift register (SR) to improve accuracy, that is, intro-
ducing higher randomness to better track the quotient 
value. The SR values go to the MUX and are indexed by 
an RN, where usually one bit satisfies, leading to depth-2 
SR. ISCBDIV is significantly more hardware-efficient 
than CORDIV, whose overhead from regenerating BSs 
includes the registers to store the binary numbers, the 
RNG and the two comparators. For bipolar ISCBDIV in 
Figure 3b, we first obtain the sign and absolute value 
of each BS as in Figure 3d. This unit records the BS his-
tory using a saturating counter, initialized to half of the 
maximum, and sets the sign to 1 if the counter value is 
less than half, that is, more 0’s than 1’s. The absolute 
BS is simply obtained by xoring the sign BS with the 
original BS [7]. Then the absolute value of bipolar BS 
is converted to unipolar BS using bipolar-to-unipolar 

conversion (B2U) logic, which is a nonscaled addition 
performing PUni = 2 × PBi − 1. Next, normal unipolar 
ISCBDIV is performed. The resultant unipolar quotient 
is converted back to bipolar with unipolar-to-bipolar 
conversion (U2B), a scaled addition performing  
PBi = (PUni + 1)/2. This quotient is xored with two signs 
to get the final signed quotient. Note that two unipolar/
bipolar interconversions maintain the BS values, but 
change the data polarity. To ensure the accuracy, the 
bipolar nonscaled and unipolar scaled adders in [2] 
are used for B2U in Figure 3e and U2B in Figure 3f. 
The B2U calculates the output based on the difference 
between the expected and actual output one count 
[2], here dictated by the register (Reg). The U2B accu-
mulates the sum of input and 1 among multiple cycles 
in register, and overflows the carry bit as the output [2].

Bit-inserting square root
To alleviate the overhead of BS regeneration in 

GSQRT, we propose SC square root via correlation. 
Our BISQRT is based on the observation that the out-
put of SC square root is always greater than or equal 
to the input. Thus, to produce the expected result, 
it is sufficient to intelligently insert 1’s into the input 
BS. We propose two mechanisms to insert 1’s prop-
erly, including stochastic insertion and opportunis-
tic insertion. Stochastic insertion randomly replaces 
input bits, even input 1’s, with extra 1’s [8] while 
the opportunistic insertion merely replaces input 0’s 
with expected 1’s, leading to the maximum correla-
tion between input and output.

Stochastic insertion mechanism
The stochastic insertion mechanism is derived 

from Figure 4a. The multiplexer (MUX) selectively 
inserts 1’s according to the trace block output prob-
ability, PTrace, which is formulated in (1). The out-
put BS probability POut is represented by PTmce and 
Pjn in the first line. In the second and third lines, the 
probability of 1’s in the input BS, Pjn, is expressed as 
a function of the BS value, VIn = m × Pjn − k, where  
m = 1, k = 0 for unipolar SC and m = 2, k = 1 for bipo-
lar SC, respectively. This VIn is then transformed 
into V’Out in the fourth line. Finally, in the fifth line, 
the equation formulates the relationship between 
PTmce and POut. Solve it and obtain PTrace as in (2)

P P P POut Trace In Trace = × + × −( )1 1

= +

× −( ) +
× −( )P

m P k k

m
PTrace Trace 

In 1

Figure 3. Proposed in-stream SC division. (a) 
U: ISCBDIV. (b) B: ISCBDIV. (c) SS FSM. (d) Abs/Sign. 
(e) B2U. (f) U2B.
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Thus, with an MUX and a divider, we can con-
struct stochastic BISQRT (BISQRT-S) for both unipo-
lar and bipolar SC, and we introduce two possible 
architectures for stochastic BISQRT.

JKDIV-based trace block
JK-flip-flop naturally performs Pq = Pj /(Pj + Pk), 

denoted as JK Division (JK-DIV) [1]. Thus, setting 
port J to m × POut − k and port K to 1 results in correct 
PTrace. Based on this, we build BISQRT-S-JK, shown in 
Figure 4c, and d. The unipolar BISQRT-S-JK in Figure 4c 
directly connects the output to port J as PUni = VUni, 
while the bipolar version requires to send a BS of value 
2 × POut − 1 to port J, essentially the function of B2U.

ISCBDIV-based trace block
The PTrace division can be alternatively imple-

mented with simplified ISCBDIV. This architecture, 
BISQRT-S-IS, is shown in Figure 4e and f. Similar to 
BISQRT-S-JK, bipolar implementation also has a 
B2U logic. BISQRT-S-IS further simplifies the SS to 
one and gate and one or gate. The dividend (MUX 
input port 1 in CORDIV kernel) is (m × POut − k)/2, 
half of the output BS in unipolar SC, or the BS from 
the B2U in bipolar SC, achieved by an and gate 
and a periodic BS of probability 0.5 generated by 
the D-FF and inverter. The divisor ((m × POut − k) + 
1)/2 (MUX select port in CORDIV kernel) is gener-
ated via correlation with the simplified SS using an 
or gate.

Opportunistic insertion mechanism
The opportunistic insertion mechanism is derived 

from Figure 4b, where extra 1’s are only inserted when 
input bit is 0 according to the emit block. The function-
ality is formulated in (3), where the involved symbols 
are identical to those in stochastic insertion mecha-
nism. This formulation is essentially a nonscaled addi-
tion (NS Add) for unipolar SC. The PIn in the first line 
indicates that the input BS is kept unchanged, thus 

(1)

(2)

input BS and output BS are maximally correlated. The 
PEmit represents the BS of extra 1’s to be emitted into 
the input BS. The solution for unipolar and bipolar SC 
is presented as in (4), implying that it can be imple-
mented with an SC multiplication

P POut Emit In= +P

=

× −( ) +
+

m P k k

m
PIn

Emit 

=
+

+
V k

m
PIn

Emit 

=
+

+
V k

m
POut

Emit 

2

=

× −( ) +

+

m P k k

m
POut

Emit 

2

 
(3)

P m P k PEmit Out Out= × −( ) × −( )1 . (4)

Figure 4. Proposed in-stream SC square root. 
(a) Stochastic insertion. (b) Opportunistic insertion. 
(c) U: BISQRT-S-JK. (d) B: BISQRT-S-JK.(e) 
U: BISQRT-S-IS. (f) B: BISQRT-S-IS. (g) U: BISQRT-O. 
(h) B: BISQRT-O.
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Though the formulation in (4) is concise, a naive 

implementation will be problematic due to correla-

tion. For unipolar SC, PEmit = POut × (1 − POut), where 

bits in the BS for 1 − POut are the inversion of bits in 

the BS for POut. Thus, the BSs for POut and 1 − POut 

have a minimal stochastic cross correlation of −1, 

that is, no 1–1 pair exists, leading to incorrect mul-

tiplication. Similar correlation variation will happen 

to bipolar SC, significantly damaging the accuracy.

To mitigate the deviation from optimal zero 

correlation for SC multiplication, we introduce a 

decorrelation approach based on SR. The unipolar 

and bipolar versions of the proposed opportunistic 

BISQRT (BISQRT-O) are depicted in Figure 4g and h, 

where NS Add refers to the nonscaled addition for 

unipolar SC. For both designs, we rerandomize the 

BS for 1 − POut with a depth-N SR, whose output is 

indexed by an evenly distributed RN sequence. This 

method is similar to the decorrelator in [6] to cre-

ate near zero correlation, but only scrambles one BS 

instead of two as in decorrelator. Then, the scram-

bled BS for 1 − POut and the BS for m × POut − k are 

multiplied using an and gate to generate an emit bit 

for nonscaled addition. The unipolar BS for m × POut 

− k is directly the BISQRT-O output, while the bipolar 

BS requires a B2U, similar to the situation in bipolar 

BISQRT-S. Lastly, the nonscaled addition also adopts 

the design in [2] to guarantee accuracy.

Implementation and analysis

Hardware implementation
As prior research [12] indicates that SC energy effi-

ciency often falls short of the binary counterpart when 
data are beyond 8 bits, we focus on designs with 8-bit 
inputs and synthesize them using Synopsys Design 
Compiler at 400 MHz with TSMC 45-nm technology. 
The result is presented in Table 1. GDIV and GSQRT are 
both depth-5 [1]. ISCBDIV has depth-2 SS and depth-2 
CORDIV kernel SR. BISQRT-O has depth-4 SR.

Accuracy simulation
All accuracy simulations are performed with our 

open-source UnarySim [2]. For both division and 
square root, the 8-bit binary input data traverse the 
entire legal range. For division, the dividend ranges 
within [0,1] for unipolar and [−1,1] for bipolar, while 
the divisor excludes 0. For square root, both unipo-
lar and bipolar inputs range within [0,1]. Further-
more, to generate different input BSs, we apply 100 
high-quality Sobol RNGs [5] and 100 conventional 
LFSR RNGs, with results on the right side of Table 1.

Overall evaluation
According to Table 1, our designs simultaneously 

achieve less area, less power and higher accuracy in 
most cases. It is important to note that all of our designs, 
except bipolar ISCBDIV, are effectively “plug-and-play” 
on most stochastic systems, since the choice of RNG has 

 
Table 1. Implementation results with 8-bit binary inputs and RNGs, that is, 256 cycles for SC BS; thus iso-
latency comparison: all designs have the same throughput of 1.5625M operations per second. The best 
number of each column is highlighted. Notation: SS refers to the skewed synchronizer; Abs refers to the unit 
to retrieve the absolute value of a bipolar BS; B2U and U2B refer to the BS converters between bipolar and 
unipolar SC; RMSE is the root mean square error; MAE is the mean absolute error; Bias is the sum of error. 
All data in this table, as well as walkthrough examples, are available in UnarySim [11].
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minimal impact on the accuracy. Bipolar ISCBDIV is less 
“plug-and-play” due to the preceding absolute and B2U 
units, without which the unipolar ISCBDIV first maxi-
mizes input correlation and incurs limited accuracy loss 
when concatenating unipolar ISCBDIV with other SCUs.

In terms of division, CORDIV always has the larg-
est area and power due to regenerating both divi-
dend and divisor BSs, while GDIV costs less with BS 
regeneration for the only quotient. ISCBDIV totally 
substitutes such bottleneck components with lost-
cost in-stream SS and achieves the highest accuracy 
for both unipolar and bipolar SC. However, bipolar 
ISCBDIV consumes medium area and power due to 
the extra absolute unit and polarity conversion units.

For square root, BISQRT-S-JK consistently has the 
smallest area and power due to its ultrasimple archi-
tecture. BISQRT-S-IS increases the hardware cost due 
to simplified ISCB-DIV. BISQRT-S has medium accu-
racy compared with others. Though consuming more 
area and power than BISQRT-S, BISQRT-O has less 
area and power compared to GSQRT. Moreover, it 
has the best accuracy of all, mitigating the correlation 
problem by rerandomizing the BS.

in this article, we identify the overheads in existing 
hardware of two nonlinear SC operations—division 
and square root, required by emerging deep learning 
models—and propose more efficient designs—ISCB-
DIV and BISQRT—that leverage correlation. We evalu-
ate the proposed designs and observe that our ISCBDIV 
and BISQRT achieve higher accuracy with less area and 
power, compared against existing work, making them bet-
ter candidates for future deep learning applications. 
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