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ABSTRACT

Stochastic Computing (SC) is designed to minimize hardware area

and power consumption compared to traditional binary-encoded

computation, stemming from the bit-serial data representation and

extremely straightforward logic. Though existing Stochastic Com-

puting Units mostly assume uncorrelated bit streams, recent works

find that correlation can be exploited for higher accuracy. We pro-

pose novel architectures for SC division and square root, which

leverage correlation via low-cost in-stream mechanisms that elim-

inate expensive bit stream regeneration. We also introduce new

metrics to better evaluate SC circuits relying on equilibrium via

feedback loops. Experiments indicate that our division converges

46.3% faster with both 43.3% lower error and 45.6% less area.

1 INTRODUCTION

Stochastic Computing (SC) was first proposed in 1969 [17] as a

bit-serial solution for machine learning and pattern recognition,

which require massive but often redundant inputs. SC data in its

unipolar format generally is a Bernoulli Sequence, which is a Bit

Stream (BS) containing uniformly distributed 0s and 1s. Its value

and precision are determined by the ratio of 1s and the BS length,

respectively, regardless of the element order. Fig. 1a shows an ex-

ample of SC data representation. A represents the value 0.5, which

is equal to the probability that each bit in BSA is 1. Note thatA and

B represent the same value despite unmatched bits of 1s in their se-

quences. Thanks to this bit-serial representation, SC can use simple

logic on the input bits to calculate the output bits. Fig. 1b shows

that SC multiplication can be performed with a single AND gate.

Compared to binary-encoded multiplication, SC can reduce power

consumption by orders of magnitude. Due to this high efficiency,

SC has recently grown in interest in a wide range of domains, in-

cluding Error Correcting Codes [13][4], Computer Vision [9] and

Deep Learning [3]. SC is a promising design paradigm for emerging

devices that require extremely low power and area.

However, SC’s simple hardware comes at a cost of increased

computation latency and non-deterministic accuracy. For example,

SC multiplication (Fig. 1b) requires N cycles to multiply N -bit

inputs, which is considerably more cycles than in binary multipliers.

Moreover, the final result may not be consistent, since the output

of an SC computation is dependent on the amount of correlation
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Figure 1: SC Paradigm

between the input BSs (i.e., how aligned the 1s and 0s are). Fig. 1c

shows how high positive correlation1 affects the output of the AND

gate. Though the output deviates from the correct multiplication

result, the insight is that the AND gate can now serve as a MIN

operation of the inputs. Instead of viewing correlation as a detriment

to SC accuracy, we leverage correlation to design more accurate and

efficient SC circuits for complex operations: division and square root.

To achieve high accuracy in SC, researchers have proposed vary-

ing approaches. Most existing works focus on BS generation, a vital

but expensive component of SC circuits. BS generation involves pro-

ducing a random sequence of numbers and comparing them each

to an input value to generate the Bernoulli Sequence [17]. To maxi-

mize accuracy, traditional techniques strive to develop high-quality

Random Number Generators (RNGs) that exhibit zero correlation.

Example works include low-discrepancy sequences [12] and bit

scrambling [8][5]. Other researchers aim to design high-accuracy

Stochastic Computing Units (SCUs) under the assumption that cor-

relation of the inputs is zero [17][10]. However, this assumption is

often difficult to maintain when computations require long chains

of SCUs [4]. BS regeneration is necessary to retain zero correlation

between intermediate SCUs [14][16], which is costly to perfor-

mance, area and power. Only recently have researchers shown that

it is possible to leverage correlation [15]. In this vein, Synchronizers

have been recently proposed to enable designers to manipulate

the correlation of input BSs [16]. Our work leverages correlation to

design SCUs for division and square root that are in-stream (i.e., do

not require expensive BS regeneration to achieve high accuracy).

New Correlation-Based SCUs. We propose In-Stream

Correlation-Based Division (ISCBDIV) and Bit-Inserting Square Root

(BISQRT), novel in-stream architectures that exploit correlation for

unipolar SC. We identify the fundamental inefficiencies of existing

stochastic designs for division and square root, two important

nonlinear SC operations used in many applications (e.g., machine

1In this example, correlation refers to the Stochastic Cross Correlation (SCC) between
two BSs [1].
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Figure 2: Comparison of Proposed SCUs to Counterparts

learning, graph processing, computer vision). Compared to linear

operations [7][11], state-of-the-art implementations of nonlinear

SC operations mostly follow the classical Gaines designs [17].

We introduce a fundamentally new correlation-based approach.

Inspired by CORDIV [15], our proposed ISCBDIV leverages

correlation to achieve higher accuracy compared to traditional

uncorrelated SCUs [17]. Our insight is that for the majority of use

cases, the divisor is generally larger than the dividend, so that the

quotient does not exceed the legal SC data range (i.e., values from

0 to 1); otherwise the quotient saturates at 1. With this, ISCBDIV

saves significant area by eliminating much of the logic overhead

in CORDIV for BS regeneration and replacing it with our very

simple in-stream mechanism: Skewed Synchronizer. In a similar

vein, BISQRT leverages the insight that the result of any SC square

root operation is always larger than its input. We introduce a

new low-cost mechanism for inserting 1s into the input BS, thus

eliminating BS regeneration in the standard Gaines design [17].

New Accuracy Metrics for Feedback-Based SCUs. We also

introduce new metrics for evaluating SC accuracy in terms of cor-

relation, bias and convergence time, since existing metrics are not

well suited for SC circuits that rely on equilibrium via feedback

loops.2 In such SCUs, it takes a significant amount of time for the

circuit to reach equilibrium and thus produce a stable output BS;

until then, the output bits are highly fluctuating and are not yet rep-

resentative of the computation’s result. However, existing metrics

consider accuracy with respect to the entire output BS. We argue

that this yields misleading evaluations of SCU accuracy and thus

propose new accuracy metrics for feedback-based designs.

Summary of Results.We evaluate the accuracy, area, latency

and power of our proposed division and square root SCUs against

other state-of-the-art approaches. As shown in Fig. 2, our ISCBDIV

and (two) BISQRT designs (rectangular points in figure) achieve

the best tradeoff in convergence time and area savings.

2 BACKGROUND

Prior work on stochastic division start from Gaines’ early proposals

of SCUs [17] to more recent work on Correlated Division [15]. A

high-accuracy design for division-based normalization has also

been explored [6], though that is beyond the scope of this work.

Unlike divider designs, there is little prior work on SC square root

aside from Gaines’ early proposals [17]. These classical techniques

remain the state-of-the-art; our work sheds new insights on this

little explored research area.

2.1 Gaines Division

Gaines Division (GDIV) [17] is shown in Fig. 3a. In this de-

sign, a feedback loop from the quotient to the divisor is used

2Feedback loops are usually constructed with saturating counters [17].
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Figure 3: SC Division

to reach an equilibrium between the increments and decrements

(Inc and Dec in the figure) for the saturating counter (CNT

in the figure) of depth N (i.e., N-bit). Equilibrium is reached

when the probability of increment (PDividend ) and decrement

(PDivisor × PQuotient ) are equal. The quotient is then computed

as: PQuotient = PDividend/PDivisor . The saturating counter can
be initialized to half of the maximum count to reduce the latency

to reach equilibrium. GDIV’s limitations are threefold. First, its

counter and comparator incur high area cost. Second, the precision

of GDIV is bounded by the width of the counter. To achieve the

same precision as the input, the counter width may have to be

very large. Third, the final accuracy depends on the accuracy of

the multiplication via the AND gate. Thus the Stochastic Cross

Correlation (SCC) [1] between the divisor and quotient BSs needs

to be close to zero to make the multiplication accurate. SCC relates

to the ratio of paired 1s between two BSs. When the ratio of paired

1s is maximized, SCC is +1; otherwise, when minimized, SCC is −1.
2.2 Correlated Division

Correlated Division (CORDIV) leverages high positive Stochastic

Cross Correlation (SCC) between the dividend and divisor [15].

It hinges on two assumptions: 1) the dividend is always smaller

than the divisor, and 2) the correlation between the dividend and

divisor BSs at the CORDIV Kernel (Fig. 3b) is maximized. The

first assumption is practical in SC; larger dividends tend to be

avoided since their quotients are likely to saturate at 1. The output

PQuotient = PDividend/PDivisor is equal to the ratio of the num-

ber of 1s in the dividend and divisor BSs: N 1
Dividend

/N 1
Divisor

.

The CORDIV architecture is shown in Fig. 3b. CORDIV has a

Counter-RNG-Comparator organization to produce the positively

correlated BSs for the following kernel. Thus whenever the kernel

dividend bit is 1, the kernel divisor bit will likely also be 1. This

allows the kernel MUX to capture all N 1
Dividend

bits. Then when

the divisor bit is 0, the kernel D-flip-flop (D-FF) generates a quotient

bit with a similar probability towhen the divisor bit is 1. After values

in saturating counters for BS regeneration become stable, CORDIV

Kernel has higher accuracy than GDIV.

There are two problems for the primitive CORDIV. The first is

that BS regeneration introduces significant latency overhead to

reach a stable and accurate output. Provided that the initial value of

8-bit dividend saturating counter is 128, representing 0.5, and that

the real dividend value is 0.75, the counter requires average 128
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Figure 4: Gaines Square Root

cycles to reach precise 0.75, calculated as the total value increase by

the average value increasing speed, i.e., 28 ∗ (0.75 − 0.5) ∗ 0.5. Thus
the quotient will be inaccurate for a long time before stabilization.

The second problem is that BS regeneration brings about significant

hardware overhead and limits extensive parallel deployment.

2.3 Gaines Square Root

Gaines Square Root (GSQRT) is the standard SC design for square

root operations [17]. As shown in Fig. 4, GSQRT is derived from

GDIV. The key difference is that the Depth-N saturating counter is

decremented based on the square of the output. Thus at equilibrium,

the probability of increment (PIn ) equals the probability of decre-

ment (POut
2), leading to the square root function: POut =

√
PIn .

GSQRT has similar limitations as GDIV, though now the accuracy

of the multiplication (AND gate) relies on low Stochastic Auto Cor-

relation (SAC) [5] in the output BS, which is the correlation of the

BS and its shifted version.

2.4 BS Generation and Regeneration

Although the accuracy increases with different techniques, prob-

lems related to latency and hardware cost arise. As uncorrelated

BSs from BS generation [17] pass through long chains of SCUs, the

no-correlation assumption may be broken, leading to lower accu-

racy and longer latency [4]. To deal with these problems, existing

works perform BS regeneration for the intermittent BSs [14][16].

BS regeneration is similar to BS generation for the source input:

they both compare the buffered binary data values to RNG out-

puts. BS regeneration uses counters to dynamically calculate values

for intermittent BSs before comparison, while BS generation from

source uses static pre-stored values. We refer to SCUs that require

no combination of Counter-RNG-Comparator for BS regeneration

as In-Stream SCUs. In-Stream SCUs are generally more hardware-

efficient.

3 IN-STREAM CORRELATION-BASED
DIVISION

This section presents our In-Stream Correlation-Based Division (IS-

CBDIV), which is inspired by CORDIV [15]. CORDIV includes an

expensive Counter-RNG-Comparator organization to regenerate

correlated data for the CORDIV Kernel in Fig. 3b. To alleviate such

performance and hardware overheads, we propose an in-stream

mechanism (i.e., without BS regeneration) that constructs maxi-

mally correlated BSs. Synchronizer [16] is a recent technique for

increasing Stochastic Cross Correlation (SCC) of two input BSs by

reordering the bits to favor 1-1 pairs and suppress 1-0 or 0-1 pairs.

When the two-port input is a 1-0 or 0-1 pair, Synchronizer’s finite

state machine uses two Depth-N (i.e., N -bit) counters (one for each

input) to record the bit-1 in one input and try to match it with a

later bit-1 in the other input. An example Synchronizer FSM with

N = 1 is shown in Fig. 5a, in which bits a and b are from two BSs

a and b. Given a less than b, Fig. 5b shows the L1 norm error rate
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with varying depth N across 10000 runs. The figure shows that the

synchronizer has a lower bound on error rate and that increasing

N leads to lower accuracy.

To achieve both high correlation and high accuracy, we design a

Skewed Synchronizer to maximally correlate the BSs to the CORDIV

Kernel in Fig. 3b. The Skewed Synchronizer leverages the assump-

tion that the divisor is always larger than the dividend and thus

only needs to reorder the dividend BS. The Skewed Synchronizer

employs one Depth-N (N -bit) counter to record the 1s in the divi-

dend when the divisor bit is 0, and then matches the saved 1 with

a later 1 in the divisor BS. The FSM for the Skewed Synchronizer

with N = 1 is shown in Fig. 5c. Bits a and b represent the bits from

the smaller and larger BS, respectively. Fig. 5d shows the L1 norm

error rate with varying depth N across 10000 runs. Increasing N
improves the output accuracy in both cases in the figure. Specif-

ically, when the quotient is small (0 < a < 0.25, 0.75 < b < 1),

the accuracy is even higher, close to 100%. This property comes

from the fact that the larger BS has more 1s. Thus a 2-bit counter

is sufficient to record unpaired 1s in the small BS. On the other

hand, the original Synchronizer has to track 1s in both BSs and

potentially trap 1s from the larger BS in the counter when bits in

the smaller BS are logic 1, leading to a higher error rate (Fig. 5b).

The overall hardware architecture of the proposed ISCBDIV is

presented in Fig. 6, consisting of the Skewed Synchronizer and

the CORDIV Kernel. This design first converts arbitrary input BSs

(with arbitrary SCC) to positively correlated BSs via the Skewed

Synchronizer. During the conversion, the divisor BS is unchanged,

but the dividend bits are reordered. Then an in-stream division is

performed by the CORDIV Kernel. The D-FF in Fig. 3b is substi-

tuted with a 2-bit Shift Register (SR) to improve performance. This
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architecture only requires extra logic for the Skewed Synchronizer

and to generate a single random bit. ISCBDIV is significantly more

hardware-efficient than CORDIV (Fig. 3b), whose overhead from

regenerating BSs includes the registers to store the binary numbers,

the RNG and the two comparators.

4 BIT-INSERTING SQUARE ROOT

GSQRT calculates the square root at equilibrium via the simple

equation PIn = POut
2, but it requires a saturating counter and a

comparator to regenerate the BS (Fig. 4). To alleviate this overhead,

we propose SC square root via correlation. Our Bit-Inserting Square

Root (BISQRT) is based on the observation that the output of SC

square root is always larger than the input. Thus intelligently in-

serting 1s into the input BS is sufficient for producing the correct

output. Our design is shown in Fig. 7a. The Bit-Inserting MUX and

the Trace Block constitute a feedback loop. Provided that the Trace

Block has an output probability PT race of 1/(1 + POut ), the cor-
rectness of BISQRT can be verified with Equation 1. In this work,

we introduce two design options to obtain the required PT race .

POut = 1 × (1 − PT race ) + PIn × PT race

= 1 × (1 − PT race ) + POut 2 × PT race

= 1 − (1 − POut ) × (1 + POut ) × PT race

= 1 − (1 − POut ) × (1 + POut )/(1 + POut )

(1)

4.1 JKDIV-Based Trace Block

JK Flip Flop (JKFF) implements the JKFF Division (JKDIV), given

by PQ = P J /(P J + PK ) [17]. Thus setting port J to 1 results in an

output probability of PQ = 1/(1 + PK ), which satisfies our desired

format for PT race . From this, we build JKDIV BISQRT, shown in

Fig. 7b, with port K of JKDIV connected to the output.

4.2 ISCBDIV-Based Trace Block

Alternatively, we can implement PT race = 1/(1 + POut ) using a

simplified ISCBDIV. This ISCBDIV BISQRT architecture is shown in

Fig. 7c. In this design, the Skewed Synchronizer is further simpli-

fied to one AND gate and one OR gate. The dividend (MUX input

port 1 in CORDIV Kernel) is a periodic BS with a probability of

1/2, generated by the D-FF and inverter. The divisor (1 + POut )/2

(MUX selection port in CORDIV Kernel) is generated via correlation

with the Simplified Skewed Synchronizer. An important difference

between original ISCBDIV and this simplified version is that the

latter’s output comes from the SR instead of the kernel MUX, which

helps to reduce the absolute value of the correlation between input

and output of Bit-Inserting MUX for the sake of output accuracy.

5 HARDWARE IMPLEMENTATION

Designs are synthesized with the Synopsys Design Compiler at

400MHz with TSMC 45nm technology. The Area, Power, Latency,

and Throughput Per Area (TPA) results are summarized in Table 1.

The latency here refers to 5% Convergence Time in Sec. 6.1. The TPA

is defined as f requency/(latency × area) to estimate the computa-

tional efficiency of SCUs [12]. Note that the logic for stochastic-to-

binary conversion at the output of SC systems is not considered

here, as output nodes occupy less in real applications than the inter-

nal computational SCUs. The best performing divider and square

root designs are bolded per column. We find that our designs si-

multaneously achieve less area, less power and higher throughput,

making them strong candidates for low-power SC devices.

Table 1: Hardware Implementation

Design
Area Power Latency TPA

(μm2) (μW ) (cycles ) (1/(μm2 · s))
GDIV(Depth-5) 74.3 21.0 158 34,073

CORDIV 211.2 60.9 226 8,384

Proposed ISCBDIV 40.4 12.5 86 115,128

GSQRT(Depth-5) 78.3 23.5 192 26,607

Proposed JKDIV BISQRT 11.3 6.3 195 181,529

Proposed ISCBDIV BISQRT 25.4 12.6 187 84,214

6 PERFORMANCE ANALYSIS

Before evaluating the performance of our proposed SCUs, we first

introduce new evaluation metrics to more systematically compare

SC performance when considering SC circuits that need to reach

equilibrium (due to feedback loops).

6.1 Evaluation Metrics For SC Performance

Table 2 lists our new evaluation metrics as well as existing metrics

for correlation. We propose the Window Bias (WBS), Average Win-

dow Bias (AWBS) andp% Convergence Time (p% CTime) to accurately

evaluate SCUs with feedback.

TheWindow Bias is the accumulated error of a window in the SC

BS. In existing literature, the error rate is calculated with respect

to the entire BS, which is practical for simple operations like mul-

tiplication with an AND gate. However, for SCUs with feedback

loops—usually constructed with saturating counters, as in GDIV

and GSQRT—an equilibrium is required to produce a stable output

Table 2: Evaluation Metrics

Metric Definition

SCC Stochastic Cross Correlation for 2 BSs [1].

SAC Stochastic Auto Correlation for 1 BS [5].

WBS N -Window Bias: accumulative error for the most recent N
bits; ranging from -1 to 1; expecting 0 for no error.

AWBS Average N -Window Bias: statistical root-mean-square of
multiple N -WBS values.

p% CTime p% Convergence Time: cycle count required for SCU to
achieve a stable N -WBS of less than p%; smaller is better.
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BS. Before equilibrium, the SCU’s accuracy is still fluctuating and

unstable; thus computing error rate across the entire BS unfairly

quantifies the accuracy of the SCU. We propose the WBS metric

to better evaluate error rates when considering equilibrium. Fig. 8

shows how to calculate the 4-WBS for a 16-bit BS with a value

of 0.5 and compares the 4-WBS with the conventional error rate

metric, labelled as ”Bias". At each point in the BS, WBS is equal to

the observed probability within the last 4-bit window minus the

true value of the entire BS (0.5 in this example). Beyond the fourth

bit of the BS, 4-WBS and Bias diverge. Extending this, the Average

Window Bias is the root-mean-square of the WBS for a SCU across

all input BSs and can help evaluate the average statistical accuracy.

Based on the WBS, we propose the p% Convergence Time (CTime)

to evaluate how fast a computation can obtain a result within a

boundedWBS pair, for enabling early termination [4]. It is related in

part to the Progressive Precision [2], which defines an upper bound

of the incremental error rate for a SC BS. As SC generally requires

significantly more cycles to compute results than binary-encoded

computing, it is worth defining a CTime metric to evaluate SC

latency, particularly for SCUs with feedback loops. The p% CTime

is illustrated in Fig. 9 with p = 10. The two horizontal dash lines

indicate the upper and lower bounds for the error rate (±10%). The
round and the rectangular dots are the watershed points at which

the WBS and Bias, respectively, start to fluctuate stably between

+10% and −10%. Thus the 10% CTime is the cycle count from the

starting point to the watershed. In Fig. 9, WBS has 10% CTime of

39 cycles, with 54 for Bias, indicating that WBS uncovers more

opportunity for earlier termination than Bias. CTime is a more

effective metric particularly on counter-based designs.
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6.2 Experimental Setup

The SC performance (AWBS and CTime) varies due to three factors.

First, the type of RNG matters. We choose Sobol RNGs, which are

superior to LFSR RNGs [12]. Second, BS correlation also impacts

the result as shown in Fig. 1. In the following sections, we eval-

uate the performance with 256-bit BSs at different output ranges

(i.e., range of values of result), as the input correlation may not

change drastically with the BS length but rather with the output

value range. Finally, the level of tolerable error is important. We

choose the window size N always to be half of the period for Sobol

RNGs, and p = 5 for CTime. Note that the window size is selected

to ensure that GDIV and GSQRT with stable inputs can always

converge after N cycles.

6.3 Performance of ISCBDIV

Using the metrics from Table 2, Fig. 10 shows the performance

comparison of SC divisors with 10000 different Sobol RNGs. The

evaluated candidates include GDIV, CORDIV, CORDIV Kernel with

Synchronizer (labelled as "CORDIV Kernel Sync"), and the proposed

ISCBDIV. The horizontal axis contains 5 non-overlapped output

value ranges across all RNGs (e.g., the "0-0.2" category is the av-

erage for all output values within 0 and 0.2 for all RNGs), as well

as their average. In terms of both AWBS and CTime, the proposed

ISCBDIV outperforms all others. Compared to GDIV, the average

improvements in AWBS and CTime of ISCBDIV across the output

ranges are 43.3% and 46.3%, respectively. Furthermore, our design

is 84.4% and 61.9% better than CORDIV in AWBS and CTime, as we

are designing for in-stream, while CORDIV needs BS regeneration

whose latency overhead leads to performance degradation. Note

that the comparison to CORDIV Kernel with Synchronizer demon-

strates the high effectiveness of the proposed Skewed Synchronizer.
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Figure 10: ISCBDIV Performance

6.4 Performance of BISQRT

The proposed BISQRT implementation (Fig. 7a) utilizes a Bit-

Inserting MUX and a Trace Block. The MUX fixes port 0 to 1 for

inserting 1s into the input BS, and the Trace Block produces an

output probability of 1/(1 + POut ). Fig. 11 shows the overall per-
formance of GSQRT and our two versions of BISQRT. Compared

to GSQRT, JKDIV BISQRT and ISCBDIV BISQRT converge within

a similar average time but are 16.8% and 29.0% lower in AWBS.

Compared to JKDIV BISQRT, ISCBDIV BISQRT is 14.6% and 4%

better in AWBS and CTime.
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Figure 11: BISQRT Performance
We further analyze how the SAC and SCC contributes to perfor-

mance. According to Table 2, we first evaluate how the SCC between

port 1 and the selection port impacts the AWBS and CTime of a

single MUX and how the SAC of the output BS influences the indi-

vidual Trace Block, shown in Fig. 12 and 13, respectively. Based on
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Figure 12: MUX Performance
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(c) Simplified ISCBDIV 128-AWBS
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Figure 13: Trace Block Performance

Fig. 12a and 12b, the ideal configuration of MUX is to achieve SCC

of zero; a negative SCC is the worst case on average. For JKDIV

(in Fig. 13a and 13b) and simplified ISCBDIV (in Fig. 13c and 13d)

based Trace Blocks, a negative SAC is favorable on average for both

AWBS and CTime. In actual design, the MUX in JKDIV BISQRT has

a consistent SCC of −1 across the entire output range (the worst
case for MUX as claimed above), while that in ISCBDIV BISQRT

has an average SCC of 0.03. For the Trace Block, SAC values are

0.11 and 0.07 in JKDIV and ISCBDIV based versions. Thus, MUX

and Trace Block in ISCBDIV BISQRT achieve better SCC and SAC,

leading to superior performance compared to JKDIV BISQRT in

Fig. 11.

6.5 Case Study: SC Unit Vector

We implement a SC design for computing the in-stream unit vector

of 1024-bit inputs. As shown in Fig. 14, this case study further

evaluates the joint performance of our proposed SC division and

square root. The AWBS and CTime of the SC unit vector are the

average of the AWBS and CTime for each output. Among different

combinations, the design with our proposed ISCBDIV and BISQRT

has the best performance. For a 16-input unit vector, our design

achieves 84.2% lower AWBS and 63.4% lower CTime than that with

the Gaines designs. We find that CORDIV performs worst, as it

takes hundreds of cycles to convert a BS to binary format before

reaching equilibrium. Note that since the output of ISCBDIV is far

more stable with lower error (Fig. 10), adding more inputs reduces

the frequency of large errors, thus improving AWBS and CTime.
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Figure 14: Unit Vector Performance

7 CONCLUSION

In this paper, we highlight the existing hardware overheads of two

nonlinear SC operations—division and square root—and present

more efficient designs—ISCBDIV and BISQRT—that leverage cor-

relation. We also introduce new SC evaluation metrics to better

analyze the performance of SC designs that need equilibrium via

feedback loops. We evaluate our proposed designs and compare

them against existing work. We observe that our ISCBDIV and

BISQRT converge faster with lower error rates and less area. An

additional case study with a SC unit vector further demonstrates

the benefit of our designs, enhancing power-efficiency while main-

taining high accuracy.
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