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Although approximate computing promises better performance for applications allowing marginal errors,

dearth of hardware support and lack of run-time accuracy guarantees makes it difficult to adopt. We present

As-Is, an Anytime Speculative Interruptible System that takes an approximate program and executes it with

time-proportional approximations. That is, an approximate version of the program output is generated early

and is gradually refined over time, thus providing the run-time guarantee of eventually reaching 100% accu-

racy. The novelty of our As-Is architecture is in its ability to conceptually marry approximate computing and

speculative computing. We show how existing innovations in speculative architectures can be repurposed

for anytime, best-effort approximation, facilitating the design efforts and overheads needed for approximate

hardware support. As-Is provides a platform for real-time constraints and interactive users to interrupt pro-

grams early and accept their current approximate results as is. 100% accuracy is always guaranteed if more

time can be spared. Our evaluations demonstrate favorable performance-accuracy tradeoffs for a range of

approximate applications.
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1 INTRODUCTION

Approximate computing is an emerging paradigm shown to be effective for real-time applications

and interactive services [15, 26, 39]. Such applications often employ algorithms in machine learn-

ing and computer vision and process noisy sensor data and multimedia, all of which can tolerate

inaccuracies in output [15, 16, 24, 25, 47]. For such applications, approximate computing can trade

acceptable quality loss for improved performance.

Many datacenter workloads are interactive and approximate in nature [26]. However, different

users and new inputs make each running instance of the same program unique. Under such sce-

narios, meeting the quality-of-service ((QoS), i.e., latency) expectations while ensuring quality-

of-results ((QoR), i.e., accuracy) becomes challenging. Our proposed approach of approximate
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Fig. 1. QoS vs. QoR tradeoff in a datacenter setting. (a) Highest QoS and QoR under light server load.

(b) Low QoS but high QoR under heavy server load. (c) High QoS and high QoR with anytime approximate

computing even in heavily loaded server.

computing presents an opportunity to improve the efficiency of datacenter workloads by enabling

an execution model where QoR scales directly proportional to QoS as shown in Figure 1.

Challenges of Approximate Computing. Despite the potential of this paradigm, it has not been

widely adopted in current systems due to the following conventional wisdom.

— No run-time guarantees on output accuracy. State-of-the-art approximation techniques lack

the ability to dynamically enforce guarantees on accuracy while executing. The convention

is to (1) employ offline or online accuracy models [4, 14] or (2) present experimental results

that demonstrate empirically low error [4, 25, 47]. Unfortunately, these approaches are still

unable to guarantee acceptability of all application outputs on-the-fly. Furthermore, it is

unclear if this problem can ever be solved since the notion of acceptability is subjective and

impossible to safely quantify.

— Too big a departure from commodity systems. To achieve efficiency gains, approximation

techniques often impose significant changes to the underlying hardware, requiring funda-

mentally new designs for compute [13, 14, 48] and storage [20, 37]. The challenge is that

different approximations have varying impacts on different applications, in terms of both

performance and accuracy. Intuitively, there is no one-size-fits-all solution. It is hard to jus-

tify investing significant chip real estate and verification efforts in an approximation mech-

anism that only helps some applications and potentially compromises the correctness of

others.

As-Is Computing. We propose As-Is, an Anytime Speculative Interruptible System that maps ap-

proximate computing to speculative computing, overcoming the key challenges above. Conceptu-

ally, we marry the theoretical properties of anytime automata [39] with the practical benefits of

speculative parallel architectures [21]. The former allows us to take any approximate application

and execute it in a way that produces time-proportional approximations. That is, an approximate

version of the program output is generated early and is gradually refined over time, thus provid-

ing the run-time guarantee of eventually reaching 100% accuracy. The latter allows us to rework

existing innovations in speculative architectures for the purpose of approximation. This lets us

implement approximations that work generally on a wide range of applications without having to

commit to risky hardware changes.

Contributions. In this article, we offer the following:

— We propose As-Is, a novel architecture that takes an approximate program and executes it

with time-proportional approximations. This allows a latency constraint or interactive user
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Table 1. Comparison with Contemporary Approaches

Related Work General Purpose Time-

Proportional

Approximation

Interruptible

KickStarter [27, 52] X � X

Brainiac [10, 16] X � X

Samoyed [35] � X �
Truffle [13], Enerj [14, 48] � X X

Aloe [22] � � X

As-Is � � �

to interrupt the program early and accept the current approximate result as is. 100% accuracy

is always guaranteed if more time can be spared.

— We present the unique challenges of building such a system that marries approximation and

speculation. We show how together they can turn a typical speculative multiprocessor into

a best-effort, approximate multiprocessor, with low additional hardware complexity.

— We evaluate As-Is and demonstrate favorable-accuracy tradeoffs on a range of approximate

programs from machine learning, computer vision, graph analytics, and image processing.

2 BACKGROUND

We discuss the background concepts that are necessary to realize the marriage between approxi-

mate computing and speculative computing: anytime automata and ordered irregular parallelism.

2.1 Approximate Computing

Owing to the performance and energy gains from approximation, various approximation frame-

works have been explored in the literature. The state-of-the-art general-purpose approximation

frameworks are often harder to adopt since they lack execution time proportional gains in

accuracy and the ability to interrupt the execution once the accuracy expectations have been

met [13, 14, 48]. Moreover, these frameworks often rely on accuracy recovery mechanisms in the

event that the output is not adequately accurate [22]. Even though few specialized approaches

enable time-proportional approximation and support interruptibility, they are limited to specific

algorithms which are being accelerated with approximation and cannot be extended to benefit

various different workloads [10, 16, 27, 35, 52]. Table 1 compares the proposed As-Is system

against relevant prior work. Kickstarter leverages iterative computation for graph algorithms and

calculates intermediate values for subset of vertices. However, unlike As-Is they do not explore

other benchmarks or even guarantee interruptibility of the application [52]. Brainiac also supports

time proportional approximation using neural accelerators; however, their implementation does

not claim that approximate outputs can be retrieved at any time. As-Is on the other hand employs

a best-effort approach which allows retrieval of both precise and intermediate outputs [16]. In

contrast, Samoyed is able to support an intermittent system by adopting smaller operations which

can complete, when a larger operation requires more energy than a device can offer. However, it

does not employ any approximation to achieve this, unlike As-Is [35]. Truffle exhibits high energy

savings by supporting a low voltage knob for approximate calculations, but this does not guarantee

that it will be able to give outputs with varying degrees of accuracy based on how long the system

is allowed to run. As-Is is able to take care of the latter scenario along with energy savings [13].

Aloe is able to effectively demonstrate program reliability, but if the program is partially executed,

as in for a shorter time, the checkers will consider any intermediate outputs as unacceptable [22].
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2.2 The Anytime Automaton

The Anytime automaton [39] leverages anytime algorithms [11, 19, 29] that have been widely used

in decision planning and artificial intelligence, to tackle key challenges in approximate comput-

ing. In the anytime automaton, increasingly accurate approximate versions of the final output are

computed and used to eventually produce the final precise output. A key feature that anytime

automaton provides is program interruptibility. At any point, if the program is interrupted, the au-

tomaton simply produces a best-effort or as-is output based on previously executed computations.

This feature is useful since the application can now be stopped as soon as the output quality meets

user expectations, saving both runtime as well as energy. In cases where the output quality falls

below expectations, the user simply needs to let the application run longer.

The anytime automaton computation model provides a mechanism to extract significant par-

allelism from seemingly sequential applications (details of applications in Section 4.2). It accom-

plishes this by breaking down an application into a pipeline of fine-grained anytime computation

tasks that can execute in parallel.

2.3 Ordered Irregular Parallelism

An ordered irregular parallel application consists of tasks with the following properties [21]. First,

tasks follow a total or partial order. Second, tasks are dynamically created and creation order is

different from execution order. Third, tasks may have data dependencies that are not known a

priori. Ordered irregular parallel algorithms are common in data mining [50], graph analytics [18,

43], and event-driven systems [41].

An anytime automaton can also be considered as an ordered irregular parallel application. This

is because in anytime automaton, each computation stage A is broken down into N tasks (i.e.,

A1, A2, . . . , AN ), where N is input-dependent and may not be known a priori. The parent-child

relationships between tasks are known, but the data dependencies between tasks are unknown in

advance. Each task is also assigned a timestamp and may create and enqueue child tasks with any

timestamp equal to or greater than its own, leading to a total order among tasks.

2.4 Anytime Execution Model

Figure 2(a) shows an example program broken down into two computation stages S and f . We will

use the same example throughout the article. The stage S samples all the pixels of an input image

and builds a histogram of pixel intensities. The stage f takes a histogram as input and computes

the arithmetic average of all the pixels. The stage S is made anytime with bit-reverse sampling

and anytime stage f leverages reduced precision approximation. The stage S is broken down into

three tasks and stage f is broken down into two tasks (Figure 2(b)). An execution schedule of tasks

is shown in Figure 2(c).

3 AS-IS COMPUTING

In this section, we present the As-Is system, that maps anytime approximate computing to spec-

ulative multiprocessing. As-Is is a system-level realization of the anytime automaton theoretical

model [39] and provides a practical implementation of task-level speculation for ordered irregular

parallel applications.

As-Is benefits from the theoretical properties guaranteed by anytime automaton [39]. It is also

inspired by prior works in conventional speculative computing [21]. However, prior works are

not well suited for anytime computing because of the following challenges, which As-Is aims to

address:
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Fig. 2. Overview of anytime execution model. (a) Approximate program with anytime stages S and f .

(b) Dataflow with three tasks for stage S and two tasks for stage f . (c) Dataflow execution of μTasks

(described in Section 3).

(1) No programming model specification. As-Is provides a task-based programming model for

expressing an application as an anytime automaton.

(2) No means to exploit the parallelism exposed. We recognize that we can maximize and extract

the anytime parallelism by framing it as an ordered irregular speculative parallel application.

(3) No mapping to general-purpose hardware. As-Is builds a multiprocessor architecture and

run-time system to efficiently execute anytime applications and handle task creation, sched-

uling, execution, and retirement.

(4) No support for best-effort execution. The As-Is system maps the theoretical iterative and dif-

fusive stages to physical mandatory and best-effort tasks that are recognized and supported

by the underlying architecture.

(5) No data dependence handling and conflict resolution. This work also provides a formal un-

derstanding of all possible true and false data dependencies among various tasks as well as

outlines the conflict detection and resolution mechanisms needed to ensure that the eventual

precise output is guaranteed.

(6) No support for explicit forms of approximation. As-Is augments the conventional speculative

computing substrate with support for approximation techniques such as random sampling,

bit-reverse sampling, and reduced precision arithmetic.

We first present the As-Is programming model that translates an application into an anytime au-

tomaton. The next section outlines the As-Is runtime system and provides details on task manage-

ment for creation, scheduling, execution and retirement of μTasks. We then describe architectural

support for approximation, conflict detection, and resolution. The section concludes with a walk-

through example.

3.1 As-Is Programming Model

As-Is uses a task-based programming model to declare programs in the form of anytime automata.

Programs are composed of computation stages arranged in a feed-forward dataflow, as shown

in Figure 2(a). Explicit buffers are used to pass information between parent and child stages

(Figure 2(b)). The programmer specifies M computation stages: S0...SM−1, in a high-level language

such as C, along with per-stage information regarding the input buffer location, output buffer lo-

cation, and any applicable approximation techniques (e.g., random input sampling and reduced

precision). We discuss supported approximations later in Section 3.2.3. An example annotated pro-

gram for the anytime model in Figure 2 is shown in Listing 1.
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// computation_stage_type(approximation_method , num_of_tasks , child_stage)
#pragma asis diffusive(outsampling , 3, f)
void s(int utask , void **in, void **out) {

...
}
#pragma asis diffusive(precision , 2) {
void f(int utask , void **in, void *out)

END();
}
int main() {

START(s);
}

Listing 1. Example As-Is program snippet for anytime execution model in Figure 2.

Computation Stages. There are three types of computation stages that can be declared.

— Precise: A precise stage applies no approximations and is executed exactly as defined.

— Iterative: An iterative anytime stage performs its computation in multiple iterations, each

iteration with higher accuracy than the previous. Iterations are independent of one another;

each iteration overwrites the previous iteration’s (now stale) result in the output buffer upon

completion.

— Diffusive: A diffusive anytime stage performs its computation in multiple steps, each step

building on the accumulated result to bring accuracy closer to 100%. Steps may be dependent

on one another and successful execution of each step is necessary for 100% accuracy.

As per the nomenclature in numerical methods, diffusive stages in As-Is are mapped to iterative

stages where repeated state updates improve the solution with some convergence rate. However,

we use the above terminology to remain consistent with the prior work this article is based on [39].

Computation Tasks. Each anytime computation stage Si is decomposed into N tasks: TSi,1...
TSi,N . These tasks are either iterations of an iterative stage or steps of a diffusive stage. The output

of an iterative stage is 100% accurate upon completion of taskTSi,N , while the output of a diffusive

stage is 100% accurate upon completion of all N tasks. In the Figure 2(b) example, anytime stages

S and f are executed as three and two tasks, respectively.

The number of tasks per stage can either be programmer-specified or dynamically selected at

run-time. In our implementation, we profiled our applications and manually specified the number

of tasks. Automating this process is left for future work.

Pipeline. The feed-forward composition of tasks can be executed as a pipeline as shown in

Figure 3. There are two types of pipeline interactions listed below. Our As-Is run-time system

can infer the appropriate pipeline depending on the types of parent and child stages.

— Asynchronous: An asynchronous pipeline can be formed between any type of parent and

child stages given that the stages can execute concurrently and independently. Each parent

task spawns a new instance of the child stage, which implies multiple (redundant) instances

of each child task. Parent and child tasks can execute concurrently, independent of one

another.

— Synchronous: A synchronous pipeline can be formed only if (1) the parent stage is diffusive,

and (2) the child’s computation is distributive over the parent’s computation. Parent and

child tasks can execute concurrently but must synchronize to produce the 100% accuracy

and to reduce the redundant work performed in the asynchronous pipeline.

Example. Figure 3 illustrates these concepts in practice, for the example program in Listing 1.

Figure 3(a) shows the baseline sequential execution of the program. The first stage sampling is
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Fig. 3. Varying configurations of anytime stages and pipelines for the example program in Listing 1. The top

shows the computations performed by the two stages over time (vertical axis), while the bottom shows how

the μTasks are scheduled for pipelined execution (time is horizontal axis). Best-effort μTasks are shown with

a light border.

composed of three tasks, while the second stage f is composed of two tasks. With iterative stages

in an asynchronous pipeline (Figure 3(b)), each later task potentially recomputes results that were

previously computed and overwrites the current output with a more accurate version. f(11xx)
represents the output of the first task of stage f after processing the output of its parent task i.e.,

first task of stage S, whereas f(1122) represents the second and final output generated by the

stage f over the same output from the first task of stage S.

With diffusive stages in an asynchronous pipeline, child stage f processes different versions of

outputs produced by parent stage S as opposed to merely updates of them. However, with diffusive

stages in a synchronous pipeline (Figure 3(d)), each later task builds directly on top of previously

computed results, making the cumulative output more accurate.

3.2 As-Is Runtime System and Task Management

3.2.1 Definitions. We first define key terms, which will be described in detail in the following

sections.

— μTask: A unique instance of a task. For example, in Figure 3, the second stage f is composed

of two tasks for each of its parent’s three tasks, yielding 6 μTasks.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 3. Publication date: November 2022.
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— Mandatory μTask: A μTask whose result is necessary to obtain 100% accuracy in the final

program output.

— Best-Effort μTask: A μTask whose result is not needed to obtain 100% accuracy in the final

program output.

— Complete: A μTask completes when it finishes producing its output and schedules its child

μTasks for execution.

— Retire: A μTask retires when it has completed and is the oldest non-retired μTask in the

system.

— Abort: A μTask aborts (and re-executes if mandatory) when its data accesses conflict with

another μTask that takes priority.

As described in previous sections, computation stages in the program are approximated in an

anytime manner. This leads to multiple μTasks, each contributing towards higher accuracy in the

program output. The subsequent subsections detail the lifetime of each μTask.

3.2.2 μTask Creation. Each μTask is uniquely defined by anM-digit μID, whereM is the number

of computation stages. This is shown in Figure 2(c). A μTask’s μID is set such that it satisfies all of

the following:

— μID is greater than its parent’s μID.

— μID is greater than its predecessor’s μID (e.g., S2’s predecessor is S1).

— μID is less than the μIDs of all its ancestors’ successors (e.g., the successors to μTask 12’s

ancestors are 21 and 22).

μIDs are assigned at the time of μTask creation. They specify the total order in which μTasks

appear to execute such that the program output increases in accuracy over time and is guaranteed

to reach 100%. Similar to timestamps in ordered irregular speculation [21], μIDs are used to resolve

all data conflicts among best-effort and mandatory tasks. The details of data dependencies and

conflict resolution are described later in Sections 3.2.6 and 3.3.4, respectively.

To schedule μTasks on available cores, the As-Is run-time system employs a priority queue that

schedules tasks based on their μID.

3.2.3 μTask Execution. μTasks with lower μIDs are scheduled for execution whenever there is

an available core. All μTasks may run concurrently and any data dependencies among them are

resolved dynamically.

3.2.4 μTask Completion and Retirement. Due to the concurrent execution of μTasks, a μTask

with a higher μID may complete before one with a lower μID. Such a μTask resides in the task

queue (Figure 5, discussed is 3.3) until it is the lowest μID in the system, upon which it retires.

3.2.5 Best-effort and Mandatory μTasks. The As-Is architecture leverages speculative execution

to perform its approximations and extract pipeline parallelism inherent to the anytime automaton

execution model. In conventional architectures, speculative tasks are squashed, rolled back, and

re-executed when a mis-speculation is detected. However, in As-Is, not all μTasks are mandatory.

That is, some μTasks are executed only for the purpose of producing an approximate intermediate

result before the final output is generated. Such tasks may be best-effort, implying that they do

not contribute to the 100%-accurate output and thus do not need to be re-executed if aborted.

Formal Definitions. Formally, given a task TSi, j , which is the jth task in stage Si (consisting of

N tasks in total), this task is defined to be best-effort if Si is iterative and j < N . Consequently, a

μTask instance of TSi, j is best-effort if either (1) task TSi, j is best-effort, or (2) its parent μTask is
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Fig. 4. Illustration of which μTasks are best-effort or mandatory (critical) and which data hazards are possible

(and how they are resolved), depending on the stage-pipeline organization: (a) iterative stages in asynchro-

nous pipeline; (b) diffusive stages in asynchronous pipeline; (c) diffusive stages in synchronous pipeline.

best-effort. All other μTasks are mandatory. Figure 4 shows which μTasks are best-effort depending

on different stage-pipeline organizations.

Practical Implications. As-Is executes all tasks speculating that there are no data dependencies

between tasks. If a dependence violation for a task is detected, the task is said to have been mis-

speculated. Best-effort μTasks mitigate penalties of mis-speculation for intermediate approximate

outputs. Upon a data conflict, a best-effort μTask is aborted without any re-execution. Other μTasks

that are descendants of the aborting μTask are also terminated; descendants are found by walking

the task queue and identifying any μTasks that have the same most significant digits in their μIDs

as the aborting μTask. Aborted best-effort μTasks may reduce the number of intermediate outputs

produced, but computations for the final precise output remain unaltered. Successful execution of

best-effort μTasks is desirable but not critical to the program execution. In contrast to best-effort

μTasks, a mandatory μTask is considered critical for the application since each mandatory task

contributes to the final precise output. This is demonstrated by the example in Figure 3. Thus

mandatory μTasks are always re-executed upon a conflict. Since mandatory μTasks are critical to

the execution, they are strictly ordered in completion; whereas best-effort μTasks can complete in

any order.

3.2.6 μTask Data Dependencies. We describe in detail how data dependencies arise for the dif-

ferent possible stage-pipeline configurations, shown in Figure 4.
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Iterative Stages, Asynchronous Pipeline. In this case, each μTask reads whatever data is cur-

rently available in its input buffer. As a result, there are no dependencies between concurrently

executing μTasks of the same stage. In the example shown in Figure 4(a), only μTasks S3 → f2 are

needed for the precise (i.e., 100%-accurate) program output. All other μTasks do not fall on this

critical-accuracy path and are thus best-effort. To guarantee that the final precise output is eventu-

ally reached in this case, mandatory μTasks need to win all of their data conflicts. Since the output

buffer is shared by all the μTasks in a computation stage, the highest μID at every computation

stage wins all write-after-write (WAW ) conflicts. The writer μTask among producer-consumer

stages wins a write-after-read (WAR) conflict as the reader task is expected to be operating on

older stale data at the time of update. Since all stages are iterative, μTasks within the same stage

do not depend on each other’s results; thus read-after-write (RAW ) dependencies do not exist.

Diffusive Stages, Asynchronous Pipeline. With diffusive stages, μTasks use the previously com-

puted output and refine them for more accurate outputs. Thus with the diffusive model, the final

μTask of every computation stage needs to complete for the final precise output. In this case, the

critical-accuracy path consists of μTasks S1 → S2 → S3 → f1 → f2 as shown in Figure 4(b), each

of which is treated as a mandatory task. False dependencies (WAW andWAR) are handled as pre-

viously discussed for an asynchronous pipeline. True (RAW ) dependencies may now exist. If S2

depends on S1’s output, and a conflict arises during their concurrent execution, then S2 must be

aborted and re-executed.

Diffusive Stages, Synchronous Pipeline. In a synchronous pipeline, all μTasks compute a por-

tion of the final precise output and are essential for correct execution. Thus all μTasks are manda-

tory as depicted in Figure 4(c). On every conflict, μTasks with a lower μID take priority, and

higher μIDs are re-executed. Even though the synchronous pipeline resembles a conventional task-

speculative architecture, As-Is is able to produce time-proportional approximate outputs and can

be stopped as soon as the intermediate program output is deemed acceptable.

3.3 As-Is Architecture

This section describes the As-Is architectural components and how they operate in detail.

3.3.1 Overview. Figure 5 shows the organization of the As-Is architecture. As-Is is built as

a cache-coherent shared-memory multiprocessor. Any data dependencies between tasks are de-

tected and resolved dynamically, inspired by task-level speculation [21]. Though we implement

a homogeneous multiprocessor, As-Is can support heterogeneous cores, which can allow for flex-

ibility in where and how approximations are applied. All-in-all, this organization enables time-

proportional approximations. For latency-critical or user-interactive applications, the program

may be interrupted early, accepting the current approximate result as is. However, if accuracy

becomes a concern depending on application and system variations, 100% accuracy is still guaran-

teed eventually; i.e., As-Is can always operate as a traditional speculative multiprocessor.

3.3.2 Task Queue. All μTasks dispatched for execution are allocated an entry in the task queue

(Figure 5) to track their progress. The task queue can be small; our implementation uses a task

queue size of 32 entries. A larger task queue can be easily supported for more processor cores.

All μTasks may run concurrently; any data dependencies among them are resolved by the conflict

resolution units (CRs in Figure 5), discussed later. Note that during execution, the task queue en-

tries are not modified; they are only needed during μTask creation and completion. When a μTask

completes, it updates its task queue entry and pushes its output data to memory. This is because

we opt for a lazy versioning scheme, detailed in later sections. Even after completion, a μTask may
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Fig. 5. As-Is architecture.

still be aborted due to a data conflict. Upon retirement, the task queue entry is removed, and any

log due to versioning is cleared.

3.3.3 Approximation. We implement hardware support for three fundamental approximation

primitives that can be applied to an anytime stage:

— Input sampling with a pseudo-random permutation: Instead of fetching and operating on

input data elements sequentially, a linear-feedback shift register (LFSR) is used to

process them in a pseudo-random order. This is useful for many computations that perform

reductions or collect statistics of their input data. The input data elements are viewed as part

of a probability distribution and are processed in an unbiased manner via the LFSR. Each

processor core is equipped with an LFSR counter coupled to the register file, acting in lieu of

the loop iterator register when input sampling is enabled. μTasks of an input-sampled stage

use the same LFSR seed values, and each μTask processes exponentially more elements

than its predecessor.

— Output sampling with a bit-reverse (tree) permutation: For sampling data elements of the out-

put, we implement logic to permute bits of the loop iterator register in a bit-reverse manner.

This effectively produces the output elements such that the output gradually increases in

resolution. An example is shown in Figure 3 for a 4 × 4 dataset. Naturally, each μTask in an

output-sampled stage processes exponentially more elements than its predecessor.

— Bit sampling (i.e., reduced precision): We support low-precision units for long-latency integer

arithmetic operations (e.g., multiplication), drawing from prior work on subword-level

approximation [15]. The most-significant bits are processed first, yielding an early estimate

of the final value.

Though other approximation techniques can be supported, we focus our efforts on these three

primitives since they are the most general and cover a wide range of applications. Furthermore,

they require only minor changes to the microarchitecture. The Approx unit in Figure 5 consists

of three subunits—(1) Reduced precision functional unit (RPFU) to support reduced precision

approximation, (2) LFSR for pseudo random input sampling, and (3) Counter number generator

(CNG) to enable bit-reverse output sampling.

3.3.4 Conflict Detection and Resolution. Data Restructuring. When applying input or output

sampling, data elements are processed in a non-sequential order that breaks spatial locality. To

address this, As-Is supports restructuring the datasets such that the elements are prearranged

in memory in the same order as the corresponding permutation (i.e., LFSR or tree). This is
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Fig. 6. As-Is conflict resolution in the presence of true dependencies.

straightforward since these permutations are deterministic and statically known. Thus, As-Is is

able to retain the inherent spatial locality of the original program.

This section details how true and false data dependencies are handled. While executing, all

μTasks maintain a read set and a write set (implemented via bloom filters in the conflict resolution

units, Figure 5) that track all memory addresses that are accessed via load and store instructions,

respectively. Note that conflict detection operates at a cache block granularity to simplify the hard-

ware implementation and piggyback on cache coherence messages. As-Is employs a lazy version-

ing and conflict resolution scheme, where all store values are buffered in a redo log and pushed

to memory only upon μTask completion. We opt for a lazy scheme since it simplifies how false

dependencies are handled, unique to our asynchronous and synchronous pipeline organizations.

Upon completion, since it is still possible for a best-effort μTask to be aborted prior to retirement,

an undo log is atomically created while pushing the store values to memory. The read and write

sets are also copied from the μTask’s local conflict resolution unit to its task queue entry so that

other μTasks can check it for conflicts.

True Dependencies. We outline how two tasks Y and X, with μIDs of 1,000 and 2,000, respectively,

execute on our architecture in the presence of a RAW dependence between them. There are three

possible scenarios that can occur at run-time:

(1) If X loads the dependent memory location A after Y completes, there would be no hazard as X

would have read the data value written by Y. This is ensured via traditional cache coherence.

(2) If X loads A and completes before Y completes (which is only possible if Y is best-effort) as

shown in Figure 6(a) when Y completes and retires, it walks the task queue and compares its

read and write sets with all completed μTasks with higher μIDs. If such a conflicting μTask

X is found, it is aborted and re-executed.

(3) If X loads A and completes after Y as shown in Figure 6(b), it would receive a coherence

invalidation from Y while executing. We augment coherence messages to include the μIDs

of the requesting μTasks. This is then used by the local conflict resolution unit to catch the

conflict and abort (and re-execute) X.

False Dependencies. We outline how the two tasks from our previous discussion, Y and X, exe-

cute in the presence of false dependencies between them. There are four possible scenarios:

(1) If X completes after Y completes, there would be no hazard as task X would overwrite the

dependent memory location A after Y has accessed it, as shown in Figure 7(a).

(2) If Y is mandatory (i.e., executing speculatively) then no other μTask with higher μID is al-

lowed to complete before Y since all μTasks are strictly ordered with mandatory μTasks.

Thus this scenario shown in Figure 7(b) is impossible.
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Fig. 7. As-Is conflict resolution in the presence of false dependencies.

(3) If X completes before best-effort Y as shown in Figure 7(c) when X pushes its store values,

an invalidation request is sent to the core executing Y. Since Y is best-effort, it would simply

be aborted by the conflict resolution unit without re-execution.

(4) If X completes before best-effort Y has even accessed A, when Y attempts to complete, it

observes the conflict with X (a higher μID) at the task queue and aborts itself. This is shown

in Figure 7(d).

The CR unit in Figure 5 consists of a finite state machine that responds to incoming coherence

messages based on a block’s current state. The CR unit is presented as a look-up table with a

sample entry for the example in Figure 6(b)).

3.4 Walk-through Example

In this section, we present an example of Histogram equalization (histeq) execution on the

As-Is system as depicted in Figure 8. (histeq) is commonly used to enhance the contrast of an

image by scaling its pixel intensities. In this example, there are three computation stages—A, B,

and C. Stage A is a diffusive stage and uses input sampling with pseudo-random permutations.

Stage B is a precise stage without any approximations. Stage C is a diffusive stage that employs

output sampling with bit-reverse permutation. Stage A has two tasks A1 and A2, stage B has

one task and stage C has two tasks C1 and C2. Even though stage B has a single task, it has

two μtasks since there are two parent tasks A1 and A2. Similarly, stage C has four μtasks. As

the μtasks execute, they produce intermediate output O1, O2, and O3 with increasing accuracy

which translates to improved contrast for (histeq). Precise output O4 is produced in the

end.

4 METHODOLOGY

This section describes our experimental configuration and applications.
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Fig. 8. Execution of histogram equalization benchmark on the As-Is architecture.

4.1 Experimental Setup

We simulate the proposed As-Is architecture on a custom cycle-level, event-driven microarchi-

tectural simulator based on Pin [34]. The simulator models simple x86-based in-order cores run-

ning at 2 GHz. We simulate a two-level cache hierarchy where each core has a 32 kB private,

write-through L1 cache, and all cores share a unified 2 MB L2 cache. In addition to traditional

microarchitectural components, the simulator models As-Is overheads such as conflict detection,

mis-speculation penalties of aborted tasks, and re-execution of aborted tasks in detail. For power

analysis, we use McPAT’s [32] in-order core and memory hierarchy models at 32 nm logic.

4.2 Applications

We evaluate As-Is on a range of approximate applications from PERFECT [5], AxBench [53], and

SNAP [28]. PERFECT contains kernels from the embedded computing domain whereas AxBench is

an approximate computing benchmark suite. SNAP is used for analyzing the scope of approxima-

tion in large graphs. We focus on six widely used kernels from diverse application domains which

can benefit from approximate computing. We divide each benchmark into computation stages

and apply appropriate approximation techniques per computation stage. Each anytime computa-

tion stage is further split into μTasks at the time of execution. Table 2 lists all the benchmarks

along with the configuration used in the evaluation. We use normalized root mean square er-

ror (NRMSE) for measuring the error of intermediate approximate outputs. We compute accuracy

(i.e., QoR) as (1- NRMSE) of the approximate output against the precise output.

The following approximate techniques in our evaluation:

— Input data sampling with random permutation.

— Output data sampling with bit-reverse or tree permutation.

— Reduced fixed-point precision.

Sampling techniques are amenable to anytime computing as data elements can be sampled with

progressively decreasing granularity. For unordered data, to avoid bias in the memory ordering,

data is sampled in a random manner. In our experiments, we use a simple LFSR implementation

for random number generation. When the position of data is significant such as in images and

videos, sampling data in bit-reverse or tree permutation can improve the accuracy of intermediate

outputs. Reduced fixed point precision techniques can also be made anytime by computing data

bits in the order of significant (most significant bit to least significant bit).
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Table 2. As-Is Configuration Parameters for Different Applications

Computation Stage Parameters

Application Stage Is Anytime ? # μTasks Computation Approximation

Mode Technique

Histogram Equalization (histeq) Stage 1 Yes 2, 4, 8 Diffusive Random Input Sampling

Stage 2 No 1 Precise -

Stage 3 Yes 2 Diffusive Tree Output Sampling

2D Convolution (2dconv) Stage 1 Yes 8, 16, 32 Diffusive Reduced Precision,

Tree Output Sampling

Discrete Wavelet Transform (dwt) Stage 1 Yes 8, 16, 32 Diffusive Tree Output Sampling

3* K-Means Clustering(kmeans) Stage 1 Yes 2, 4, 8 Diffusive Random Input Sampling

Stage 2 No 1 Precise -

Stage 3 Yes 2 Diffusive Tree Output Sampling

Debayering (debayer) Stage 1 Yes 8,16,32 Diffusive Tree Output Sampling

Betweenness Centrality (centrality) Stage 1 Yes 8,16,32 Diffusive Random Input Sampling

PageRank (pagerank) Stage 1 Yes 8,16,32 Diffusive Random Input Sampling

Stage 2 No 1 Precise -

2dconv. 2d convolution is used in computer vision, signal processing, and machine learning. Each

output pixel is computed by the average of dot product sum of input pixels and the filter. We retain

all the computations of 2dconv in a single stage anytime automaton. 2dconv benefits from both

tree sampling as well as reduced fixed point precision.

histeq. Histogram equalization improves image contrast by calculating the cumulative distribu-

tion of pixel intensities and is commonly used for thermal, satellite, and x-ray images. The anytime

automaton of this benchmark consists of three three computation stages—Stage 1 processes all the

input pixels, Stage 2 calculates the scaling factor of each pixel for better contrast, and Stage 3 builds

the final image.

dwt. Discrete wavelet transform is employed in data compression. We construct an automaton

with a single stage that performs a discretely-sampled wavelet transform on an image. We evaluate

the accuracy of this kernel by executing inverse transform precisely and comparing it to the precise

output.

kmeans. K-means clustering partitions pixels of an image to different clusters based on its distance

from the nearest mean and used in data mining applications. In this three stage automaton, the

first stage computes the cluster centroids and assigns pixels to clusters based on their Euclidean

distances, the second stage computes the average centroid values and the last stage samples the

pixels and re-assigns them to a clusters.

debayer. Debayering algorithm takes an undersampled image from an image sensor and overlays

a color filter array, to create a complete color image. A single-stage automaton suffices the com-

putational complexity involved in the interpolation needed to re-create the complete image. To

accommodate the scope of multiple μTasks, we apply a tree-based sampling.

centrality. Betweenness centrality is a metric based on shortest paths between nodes, and used

extensively to analyze social networks. It takes an unweighted graph and uses the Brandes al-

gorithm for calculating betweenness centrality which is the fraction of shortest paths that pass

through n [28].

pagerank. Pagerank is used by search engines to evaluate the importance of a web page for decid-

ing the order of search results. The pages act as nodes and the hyperlinks as the edges of a graph.

In our experiments, each benchmark is run with variable number of μTasks per anytime com-

putation stage. The runtime numbers for these experiments are normalized with respect to the

baseline system that executes each computation stage as a single μTask.
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Fig. 9. Runtime-accuracy profiles for all benchmarks for μtasks = (8, 16, 32) on 4 processors.

5 EVALUATION

We evaluate the As-Is system for program output accuracy, runtime benefits, and power consump-

tion. We present our results, analysis, and design considerations in this section.

5.1 Runtime-Accuracy Tradeoffs

In this section, we present the performance-accuracy tradeoffs enabled by our As-Is system.

Figure 9, shows runtime-accuracy profiles for all the benchmarks on three configurations of μtasks

each: 8, 16, and 32 on a 4 processor system. The y-axis represents accuracy in terms of (1- NRMSE)

and the x-axis is run time normalized to the sequential execution of the same program. For a

fair comparison, we also indicate the execution time of the parallel implementation of the same

program using pthreads with 32 threads and 4 processors.

For all the applications, the As-Is system produces several outputs of high accuracy much earlier

than the parallel baseline. In debayer, dwt, and 2dconv outputs with over 90% accuracy are pro-

duced as early as 1% of the sequential execution time as seen in the runtime-accuracy profiles in

Figure 9(a), (b), and (c). These applications are embarrassingly parallel and thus, the precise output

is reached faster with increasing number of μtasks with many tasks executing concurrently and

probability of hazards with random sampling being low.

It is worth noting that 2dconv takes longer to reach the precise output. This is because 2dconv

employs reduced precision approximation which helps in saving only the latency of multiplies and
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Fig. 10. Time taken to achieve 100% accuracy for different numbers of μtasks = (8, 16, 32) and processors =

(2, 4, 8).

in our experiments, multiplies take only a small fraction of the run time. Even though reduced pre-

cision is one of the heavily studied approximation techniques, we find its utility is not as effective

for the applications we studied for the following two reasons: (1) Reduced precision only seems to

work for applications where the latency of arithmetic instructions dominates the execution time.

(2) Reducing the precision creates RAW hazards among the tasks which prolong the time to reach

the precise output.

K-means and histeq consist of three computation stages and perform many redundant com-

putations to generate intermediate approximate outputs. For very large unweighted graphs, the

centrality or pagerank computed after processing a small subset of nodes is highly representative

and thus, both metrics start from a fairly high accuracy. However, all tasks end up updating each

node’s centrality leading to more conflicts thus, resulting in almost sequential run time. In contrast,

pagerank is embarrassingly parallel and takes 60% time to reach the precise output. Conflicts in

pagerank primarily occur between μtasks from two stages, unlike centrality.

5.2 Sensitivity Study: μTasks and Processors

We now look at the trends observed in the runtime-accuracy profiles further by showing how long

it takes to achieve 100% accuracy as we vary the number of μTasks and processors in Figure 10.

More processors present more opportunities to exploit parallelism. As a result, increasing the num-

ber of processors reduces the execution time for almost all the applications. Similarly, increasing

number of μTasks allows many tasks to execute concurrently. Thus, increasing the μTasks from

8 to 32 in embarrassingly parallel applications like debayer, dwt, and 2dconv reduce the run time

as seen in Figure 10(a), (b), (c), and (f).

Though the first stage of pagerank is embarrassingly parallel, pagerank has a second stage that is

non-anytime. Thus, higher number of μTasks in the first stage lead to more redundant executions

of the non-anytime second stage. This is the general trend for all benchmarks that have a non-

anytime stage, i.e., pagerank, histeq, and kmeans. With many tasks trying to access similar data, the

conflict rate of tasks increases. Thus, for these benchmarks, the runtime to achieve 100% accuracy

increases with the number of μTasks due to increased conflicts and redundant execution. As all

the μTasks in centrality update the same data, the runtime is less affected by increase in number

of available processors. Centrality is more prone to hazards with increase in μTasks as all the tasks

modify the same centrality table.
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Fig. 11. Speedup achieved by As-Is over software implementation for 95% accuracy.

5.3 As-Is and Software Only Implementation

We compare As-Is with a software only implementation, shown in Figure 11 for 8 μTasks and

4-processor configuration. As-Is reaches 95% accuracy 1.22× –11.89× faster than the software im-

plementation, due to significant software overheads. As expected, the applications that take longer

to achieve 95% accuracy see significant benefits from As-Is over the benchmarks that achieve high

accuracy within the first few μTasks.

5.4 As-Is and Conventional Speculative Architectures

Figure 12 presents a comparison of As-Is hardware and software components with the closest rel-

evant speculative architecture [21] for 32 μTasks and 4 processor configurations. We analyze the

speedup from As-Is system by comparing the runtime-accuracy profiles for three different config-

urations: (1) As-Is hardware and software (2) As-Is software with baseline speculative hardware

and (3) baseline application with baseline speculative hardware.

The As-Is software component breaks down the application in μTasks that generate increasingly

accurate outputs whereas the baseline software application would generate only one final output.

In As-Is, the potential conflicts among tasks are statically predetermined due to the nature of our

synchronous and asynchronous pipelines. As-Is leverages the knowledge of potential conflicts to

utilize the system better by letting tasks abort without re-executing them while trying to produce

best-effort approximate outputs. However, a baseline speculative system would instead treat all

the tasks as mandatory and force them to finish by re-executing them on every conflict. Moreover,

in As-Is, producer-consumer relationships between stages are known a priori. This allows As-Is

to deal with the false dependencies introduced because of the shared buffer between the stages

by opting for lazy versioning and conflict detection, in contrast to the eager versioning and eager

conflict detection of the baseline speculative system.

For all the benchmarks except centrality, As-Is achieves highly accurate outputs earlier than

the other configurations. Centrality has lots of hazards and faster conflict resolution from eager

conflict detection and versioning speeds it up on the baseline architecture.

5.5 Benefits from Approximation vs. Speculation

Figure 13 presents the distribution of benefits from approximation alone and approximation along

with speculation. For most benchmarks, unlocking the available parallelism with speculation gives

significant benefits than just employing approximation techniques. However, there are two excep-

tions to these trends: centrality and histeq. Because of the partitioning of the histogram buckets

there are lots of read and write conflicts in building the histogram and the earlier tasks get aborted

very frequently upon parallelization. Similarly, centrality is also hurt by speculation because of

lots of collisions between tasks.
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Fig. 12. Comparison between software and hardware components of As-Is and conventional speculative

architecture.

5.6 Sensitivity to Cache Block Size

Figure 14 presents the impact of cache block size on As-Is system performance. We study the

performance of debayer application with cache block sizes of 4 B, 16 B, and 64 B. Large cache

blocks reduce the number of cold misses. However, they also introduce false sharing of data. Our

results indicate that the locality benefits of a larger cache block outweigh the resulting false sharing

and increased conflicts among tasks.

5.7 Mean and Variance Across Different Inputs

The results reported so far correspond to a single input image or graph. However, to account for

variability across different inputs, we run all the benchmarks across four different inputs and mean

and standard deviation between runtimes to reach 90% accuracy scaled to the sequential baseline

on a 32 μTasks and 4 processor system is reported in Figure 15.

5.8 Area Overheads

As-Is adds three additional hardware overheads: (1) 32 entry task queue (0.34 mm2) (2) 16 kB dual

port SRAM bloom filters (0.05 mm2) and (3) 7 registers for sampling approximation (0.0007 mm2).

We use CACTI [33] to compute these areas at 32 nm ITRS-HP technology node. Overall these

structures consume 4.4% additional area over the baseline speculative system [21].
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Fig. 13. Comparison between benefits from approximation only and speculation along with approximation

for μTasks = 32 on 4 processors.

Fig. 14. Sensitivity to Cache Block sizes for

debayer.

Fig. 15. Mean and standard deviation of runtime to

reach 90% accuracy for different inputs across all the

benchmarks.
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Table 3. Average Power Consumption for 32 μtasks on 4 Processors with Breakdown for

Additional Overheads

Benchmark Runtime Power Bloom Filter Task Queue Approximation Logic Overhead Total Power

2dconv 1.641534808 0.018709115 4.24045E-08 0 0.0069083 1.667152266

debayer 1.887845233 0.001436962 4.45023E-08 0 0 1.88928224

dwt 1.235862257 0.00118626 4.97517E-08 0 0 1.237048567

histeq 1.048868066 0.001406349 2.6365E-08 3.33101E-08 0 1.050274474

kmeans 2.284551799 0.008963389 3.67173E-08 4.63893E-08 0 2.293515271

centrality 1.050264271 0.062085359 5.3236E-08 6.72593E-08 0 1.112349751

pagerank 1.119802284 4.89692E-05 4.77938E-08 6.03836E-08 0 1.119851361

Fig. 16. Energy Consumption on As-Is to achieve 90%, 85%,

and 80% accuracy normalized to parallel baseline.

Fig. 17. Energy consumption on As-Is

and EnerJ for 2dconv.

5.9 Power Overheads

The power overheads of the As-Is system are presented in Table 3. The y-axis is the average power

to reach 100% accuracy on As-Is normalized to the average power of the pthreads implementa-

tion. In As-Is, the benchmarks have 32 μTasks in total and the pthreads implementation employs

32 threads. Both configurations are run on a 4 processor system.

Kmeans, debayer and 2dconv incur high power overheads. In fact, kmeans takes 2.2× power

to reach 100% accuracy due to increased runtime and conflicts with a larger number of μtasks as

observed in Figures 9 and 10. However, power consumption of histeq, dwt, centrality, and pagerank

is at par with the baseline.

5.10 Energy Savings

As-Is does enable significant energy savings for earlier approximate outputs. The fraction of energy

spent on As-Is to achieve 80%, 85%, and 90% accuracy normalized to the energy consumed by

parallel baseline is reported in Figure 16, given 32 μTasks and a 4-processor configuration. Even

though the kmeans power is 2.3× that of parallel baseline as shown in Table 3 and the runtime

to reach 100% accuracy is also 2× that of parallel baseline as shown in Figure 9, As-Is is able to

produce 80% accurate output with only 0.84× energy of parallel baseline.

5.11 Comparison with State-of-the-art

In Figure 17 we compare As-Is with other state-of-the-art approximate computing approaches like

EnerJ [48]. For 2dconv benchmark with 4 bit reduced precision, EnerJ is able to achieve 97.04%

accuracy and to reach the same level of accuracy, As-Is consumes 0.65× energy when compared

to Enerj.
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Fig. 18. Diffusive vs. iterative computation stage

for pagerank.

Fig. 19. Dynamic Accuracy using regression

models.

5.12 Iterative vs. Diffusive Stages

Since diffusive tasks build on top of the previous output whereas iterative tasks overwrite the

output buffer, all the diffusive computation stages can be expressed as iterative stages. Thus, from

the efficiency perspective, we opted to implement stages as diffusive instead of iterative whenever

possible to minimize the redundant computations. However, we perform a case study to compare

diffusive and iterative implementations of the single-stage pagerank automaton in Figure 18 for

32 μTasks and 4-processor configuration. With iterative stages even though it takes much longer

for the precise output to be generated, outputs with high accuracy are still generated within 5% of

the baseline runtime.

5.13 Dynamic Accuracy Evaluation

As-Is being an interruptible system, it would be hard to provide a dynamic accuracy mechanism

that automatically infers when it is appropriate to terminate the program, given a desired user

accuracy threshold. We train several regression-based models in order to gauge the runtime for a

programmer-specified accuracy.

5.13.1 Implementation. For this case study, we look into 2dconv and dwt operating on

32 μtasks and 4 processors. The training data is gathered by collecting runtime-accuracy num-

bers across 10 different images and the test dataset comprises of one image. Each image generates

16 data points on the runtime-accuracy curve for 2dconv and 6–8 for dwt. We train the following

models in order to gauge the runtime required to achieve a desired user-specified accuracy: (1)

Linear Regression, (2) Support Vector Regression (SVR), (3) SGD Regressor, (4) Bayesian Ridge,

and (5) TheilSen Regressor.

5.13.2 Evaluation. To evaluate our models, we use a custom score metric for interruptible exe-

cution. The score reflects a difference in the expected value over the predictor value by a certain

model.

When the predicted runtime is greater than the expected runtime (as defined by the user-

specified accuracy), the difference between the two is the model score. In this case, there is no

accuracy deficit, so the score reflects how close the execution is to the ideal latency. On the other

hand, if the predicted runtime is shorter, there is a chance of accuracy loss. The score reflects

this loss since the model terminates execution earlier than ideal. The scoring is summarized by

Equation (1). The score is computed by accumulating all root mean squared values of individual
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runtimes. A lower score indicates better prediction by the model.

ExpectedRuntime = Actual Runtime(User-Specified Accuracy)

Score =
⎧⎪⎨
⎪
⎩

ΔRuntime, if PredictedRuntime > ExpectedRuntime

ΔAccuracy, else

(1)

The scores of all test points are accumulated (via root mean square) and shown in Figure 19 Out

of all the regression models, TheilSen Regressor seems to have the best fit for 2dconv ; however,

SGDRegressor performs best for dwt . Across these two applications, SGD regressor has the best

fit, given the scores. Though given the low discrepancy in scores, any of our evaluated predictor

models would be effective.

5.14 Limitations Discussion

Currently, As-Is imposes programmer effort in porting over any application, breaking it into any-

time computing stages and annotating it with the relevant information. With follow-on work on

compilers, much of this effort can be avoided or reduced. However, this effort is currently outside

the scope of this article. Our evaluation is based on simulations and even though this is common

for research works in the architecture community, we understand that the benefits of the As-Is

platform may look different on a real system. We believe that the current evaluation is highly re-

flective of the performance and energy savings on a realized As-Is system. We have not done a

comprehensive search of the application space, particularly bigger and end-to-end applications,

but we expect them to only strengthen our evaluation.

6 RELATED WORK

Approximate Computing. Approximate computing allows trading off accuracy and reliabil-

ity for better performance and energy efficiency and has been widely explored in the prior

work [3, 4, 13, 14, 16, 25, 38, 40, 46–48]. Reduced precision [23], loop perforation [49], load

value approximation [38], memoization [1, 44, 45] are some hardware-based approximation tech-

niques explored. These approaches provide several different mechanisms for programmers to

specify approximation opportunities at a fine granularity like instructions, variables, functions

and patterns. Several techniques also employ neural networks to estimate approximable code re-

gions [2, 12, 14, 16, 17, 25, 31, 42, 51, 54]. In contrast, As-Is attempts to uncover benefits of approx-

imation at a coarse task level granularity and exploits accuracy guarantees and interruptibility of

anytime execution.

Best Effort Computing. Best-effort computing has been studied in the context of parallel com-

puting [6], data mining [8, 36], and hardware transactional memory [7, 9, 30]. However, As-Is

focuses on marrying best-effort computing with approximation. Moreover, in approaches like [6],

best-effort and mandatory task execution is required to be isolated in both hardware and software,

whereas the As-Is system can support both of these computations on the same substrate and re-

lies on the underlying architecture to resolve data dependencies. Earlier techniques also rely on

programmers to annotate best-effort computations; however, the As-Is runtime system can auto-

matically classify μTasks based on the computation stage-pipeline configuration.

Intermittent Computing. As-Is like task-level programming model is also leveraged by research

in intermittent computing for recoverability [15, 35]. However, their focus has been on developing

software-based techniques to ensure forward progress within tight energy constraints without

much emphasis on the performance of the underlying system. However, As-Is is built with the

goal of extracting performance at an acceptable accuracy loss aided by speculation to uncover the
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parallelism present in anytime computing. Even though software approaches may enable anytime-

like computing models, optimizations at the hardware level are integral for system performance.

7 CONCLUSION

We propose As-Is, an Anytime Speculative Interruptible System that supports architectural realiza-

tion of anytime approximate computing with speculative computing. The As-Is task-based pro-

gramming model expresses an application as an anytime automaton. The theoretical anytime

stages are formalized into physical mandatory and best-effort μTasks which are created, scheduled,

executed, resolved and retired by the underlying architecture and runtime system. Our results in-

dicate favourable runtime-vs.-accuracy tradeoffs over a wide range of benchmarks.
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