Joshua San Miguel

Mario Badr

Natalie Enright Jerger

Not all computations need to be precise.

Many applications can tolerate approximate data.

➤ 40% to nearly 100% of data footprint is approximate [Sampson, MICRO 2013].

Many applications can tolerate approximate data.

➤ 40% to nearly 100% of data footprint is approximate [Sampson, MICRO 2013].

Approximate value locality:

> Many data values are similar to or can be approximated from previously seen values.

Outline

- Load Value Approximation
 - Non-Speculative Operation
- Approximator Design
 - Relaxed Confidence Windows
 - Approximation Degree
- Methodology
- Evaluation

time —

Approximator Design – Other Considerations

- Floating-point precision
- History buffer sizes
- Stale values

More details in paper.

Relaxed Confidence Windows

- How do we avoid making bad approximations?
- Trade-off performance and error.

Approximation Degree

- Do we need to fetch the actual value from memory every time?
- Trade-off energy and error.

Relaxed Confidence Windows

Relaxed Confidence Windows

Relaxed Confidence Windows

tag conf	degree	LHB
----------	--------	-----

When approximating:

if *conf* >= 0: use *A_approx*

else: don't use *A_approx*

When updating:

if *A_approx*, *A_actual* differ by <= *CONF_WINDOW%*: *conf++* else: *conf--*

Relaxed Confidence Windows – Output Error

Varying *CONF_WINDOW*%:

Relaxed Confidence Windows — L1-D MPKI

Varying *CONF_WINDOW*%:

Approximator Design

Relaxed Confidence Windows

- ➤ How do we avoid making bad approximations?
- > Trade-off performance and error.

- > Do we need to fetch the actual value from memory every time?
- > Trade-off energy and error.

tag	conf	degree	LHB

When approximating:

if degree == APPROX_DEGREE: fetch A_actual

else: don't fetch A_actual

When updating:

if degree == **APPROX_DEGREE**: degree = 0

else: degree++

Approximation Degree – Output Error

Varying APPROX_DEGREE:

Approximation Degree – L1-D Fetches

Varying *APPROX_DEGREE*:

Methodology

Multi-threaded approximate applications

- PARSEC benchmark suite [Bienia, Princeton 2011]
- Programmer annotations and ISA extensions [Esmaeilzadeh, ASPLOS 2012]

Approximator design space exploration

Pin dynamic binary instrumentation tool [Luk, PLDI 2005]

Full-system simulation

FeS2 cycle-level x86 simulator [Neelakantam, ASPLOS 2008]

Approximator, cache and memory energy consumption

CACTI modeling tool [Thoziyoor, HP 2008]

Reduces L1-D MPKI by 30% over traditional value predictor and prefetcher.

Conclusion

Load Value Approximation

- Approximate Value Locality
- Non-Speculative
- Relaxed Confidence Windows
- Approximation Degree
 - ↑ performance
 - energy consumption low output error

Conclusion

baseline (precise)

load value approximation