Characterizing Memory Side Channels in FHE
Applications

Asmita Pal!, Karthik Swaminathan, Subhankar Pal?, and Joshua San Miguel]

'University of Wisconsin-Madison
2IBM Research

Abstract—Privacy-preserving cloud computations ensure ac-
curate operations on encrypted data without revealing sensitive
information. Fully Homomorphic Encryption (FHE) allows such
computations in the ciphertext space. The result remains in
encrypted form and can only be decrypted by using the secret
key. Due to its high degree of security, FHE has been adopted
widely for applications based on medical or genomic data
processing. Though FHE has been shown to be secure, side
channels emanating from its operations on underlying hardware
have not been thoroughly explored. In this work, we analyze
the memory access patterns emanating from FHE-encrypted
applications. For an example database query-based application,
we show that memory access patterns from different queries can
be distinguished by a well-resourced adversary. With the aid of
ML-based classifiers, we can predict whether or not a query
belongs to an entry in the database, with ~90% accuracy.

I. INTRODUCTION

Recent advances in cloud computing have facilitated a
paradigm shift in data storage on third party servers. Though
cloud storage is convenient and cost-effective, sensitive data,
such as medical or financial records, can be compromised
in such environments. As such, encryption techniques are
employed to maintain confidentiality while still allowing ef-
ficient retrieval of that data by users. For example, while
performing a query involving retrieval of medical records, any
leakage of that information is a serious threat to user privacy.
To allow query processing on such encrypted data, several
techniques have been proposed in searchable symmetric and
structural encryption [27], oblivious RAM (ORAM) [13],
[14], [28] or fully homomorphic encryption (FHE) [11], [29].
These techniques provide different levels of security based
on their threat model of leakage, briefly discussed in [21].
Attacks based on these schemes exploit the data distribution,
encryption protocol or even the communication overhead such
as in ORAM and FHE [17].

Fully Homomorphic Encryption (FHE). FHE has been
proven to be very effective for allowing generic computation
on encrypted data, without need for decryption [10]. Figure 1
demonstrates a scenario of querying a record, where the client
needs to compute a function f on some private data x. In order
to securely do this, the client sends an encrypted version of
X, (E(z)), to the server. The server then computes f(F(x))
over the encrypted data, and sends the result to the client. The
client possesses the secret key used for decrypting the result.

This process ensures that = is never compromised even when
being sent to the server.

[5] + "'_’a\

Client has Secret Key Encrypted
data x query = E(x)

Server
computes some
function f

f(x) needed ¢ h f(E(x)) /
by client + given by

Secret Key server

Fig. 1: FHE for outsourced computation

Early implementations were based on a Somewhat Homo-
morphic Encryption (SHE) scheme, which was capable of
evaluating “low-degree” polynomials involving finite number
of operations. A key aspect of HE schemes involve the addition
of noise to ciphertext generation. However, this noise accu-
mulates when several operations, especially multiplications
and rotations are cascaded one after another, resulting in
the data becoming non-recoverable when the noise crosses a
certain threshold. To tackle this, Gentry’s seminal work on
FHE introduced a bootstrapping scheme which can control
the noise [10]. BGV [4], BFV [9], GSW [12], TFHE [7],
CKKS [5], [6] are some FHE schemes based on lattices
and learning-with-errors (LWE) problem, that also control the
noise added during encryption. Given the security guarantees
provided by the approaches proposed under FHE umbrella,
applications based on database queries and machine learning
have adapted these to secure their computations [3], [19], [24].

Although FHE has been proven to be secure against math-
ematical analysis, prior works have shown that it can be
vulnerable to system-level attacks such as fault injection [§]
and power trace-based side channel attacks [2]. Most database
and machine learnng applications operate on huge datasets,
which in turn incurs a lot of memory accesses. In this work, we
propose analysis of patterns among memory accesses for FHE-
encrypted applications to uncover sensitive information. Our
threat model is based on the spatio-temporal distinguishability
of memory access patterns. More specifically, we focus on
a database-query application, where an adversary analyzes
traces generated from two or more unique queries. For a finite
set of queries, we show that an attacker can accurately guess
whether a query was a valid entry in the database. In addition,
we also show that it is possible, with a reasonable degree

(a) Query = Known (Spain)

(b) Query = Known (Estonia)

(¢) Query = Unknown (Mexico)

Fig. 2: Flamegraph representation of major functions in encrypted search. The percentage denotes that function’s contribution

to total time

of confidence, to distinguish between different queries that
exist in the database. This attack can be implemented across
a range of processor architectures, operating systems and can
also extend to different database queries and applications.

II. THREAT MODEL

In this section, we outline the framework used for our
preliminary evaluation of memory access patterns as side chan-
nels to FHE-encrypted applications. FHE implementations are
supported by several libraries such as Microsoft SEAL, HElib,
Palisade [1], [16], [26]. In this work, we use the Brakerski-
Gentry-Vaikuntanathan scheme (BGV) [4] supported by HEIib
and a database query application adapting this scheme. The
search algorithm has several operations on encrypted data as
shown in Figure 2, which is a Flamegraph [15] representation
of three different queries to the database, two of which (Spain
and Estonia) exist in the database, while one (Mexico) does
not. We see that majority of execution time is spent in
power, rotate and product operations during the search. One
interesting observation here is that the amount of time spent
in each of the functions does not show much variance across
different queries. This implies that simple visual observations
would be insufficient in distinguishing between the queries.
This motivates us to expand our mode of vulnerability and we
delve into memory access traces for gauging leakage.

Our insight is based on the fact that during execution,
unique spatial and temporal patterns exist in a memory trace
which could render it vulnerable. One such example is timing
side channels used by attackers to reveal secret keys used in
AES encryption [22]. We collect memory traces from different
queries using Pintool [20] and then parse these access traces
to identify spatio-temporal regions of interest. To do this,
we first determine each spatial memory region and cluster
accesses according to their spatial spread. We then determine
the temporal distribution of accesses in each spatial region and
feed the information into a classifier. The classifier is used to
distinguish traces from two sets of queries: 1) those that exist
in the database and 2) those that do not. In our experiments,
we compare 10 different classifiers as shown in Figure 3. We
generate 20 traces for each of 5 unique queries. In this figure,
we show that an adversary, namely the classifier, can predict
the query class with an accuracy of ~80% on average. For
our second experiment, we collect traces across 12 unique
queries, all existing in the database.We report top-k scores,
which indicates how often the correct label occurs in the top k

predictions. Figure 4 shows that on average, an adversary can
distinguish traces from different queries with ~75% accuracy.

I Accuracy I Recall

[Precision
1.04

0.8

0.6

0.4

0.2

0.0+ y
]

Fig. 3: Accuracy for adversary identifying query for items in
the database vs items outside the database

B Accuracy
[Top-3 Scores

MMM

x\c o o &e oo ‘b

I Top-4 Scores
[Top-5 Scores

[Top-6 Scores

s e
oRNWhAUON®

< 0O “\@\

0’(@g 30

Fig. 4: Accuracy for adversary distinguishing different queries
all existing in the database

III. DISCUSSION AND FUTURE WORK

There is much ongoing research in FHE on making it
more adaptable for applications and reducing computational
overheads [18], [23], [25]. Considering how FHE is becoming
more commonplace in real world applications, side channels
to the FHE implementation are crucial to privacy. Memory ac-
cesses are often used to guide and optimize system design and
form an essential part of processor performance verification
and monitoring at various stages of design and deployment.
Using memory traces from key execution kernels of interest
can be used to overcome performance overheads. However,
these memory traces poses a serious threat to privacy given
how an adversary is able to distinguish between them, even
when the data and computations are encrypted using state-
of-the-art FHE schemes. In Section II, we demonstrated how
memory traces can be exploited as a potential side channel
to reveal information. Although we explore a single database

query case study for a single FHE scheme (namely BGV), we
anticipate that such memory trace-based side channels may be
prevalent in other common FHE schemes as well.

Information leakage from memory side channels is a se-
rious problem to which not even post-quantum encryption
schemes like FHE are immune. Given FHE primarily focuses
on computations happening in third-party servers, effective
countermeasures are necessary. As part of future work, we plan
to extend our study to privacy-preserving machine learning and
other applications, and also focus on developing effective, low-
cost mitigative measures.

[1

[2

[R

[3]

[5]

[6]

[7

—

[8

[t}

[10]

(11]

[12]

[13]

[14]

REFERENCES

“Palisade release,” https://gitlab.com/palisade/palisade-release. [Online].
Available: https://gitlab.com/palisade/palisade-release

F. Aydin, E. Karabulut, S. Potluri, E. Alkim, and A. Aysu, ‘“Reveal:
Single-trace side-channel leakage of the seal homomorphic encryption
library,” in Proceedings of the 2022 Conference and Exhibition on
Design, Automation and Test in Europe, ser. DATE °22. Leuven, BEL:
European Design and Automation Association, 2022, p. 1527-1532.
R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning
classification over encrypted data,” in 22nd Annual Network and
Distributed System Security Symposium, NDSS 2015, San Diego,
California, USA, February 8-11, 2015. The Internet Society,
2015. [Online]. Available: https://www.ndss-symposium.org/ndss2015/
machine-learning-classification-over-encrypted- data

Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully
homomorphic encryption without bootstrapping,” in Proceedings of the
3rd Innovations in Theoretical Computer Science Conference, ser. ITCS
’12. New York, NY, USA: Association for Computing Machinery,
2012, p. 309-325. [Online]. Available: https://doi.org/10.1145/2090236.
2090262

J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “Bootstrapping for
approximate homomorphic encryption,” in JACR Cryptol. ePrint Arch.,
2018.

J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Advances in Cryptology —
ASIACRYPT 2017, T. Takagi and T. Peyrin, Eds. = Cham: Springer
International Publishing, 2017, pp. 409-437.

I. Chillotti, N. Gama, M. Georgieva, and M. Izabachéne, “TFHE:
Fast fully homomorphic encryption library,” August 2016,
https://tfhe.github.io/tfhe/.

1. Chillotti, N. Gama, and L. Goubin, “Attacking the-based applications
by software fault injections,” Cryptology ePrint Archive, Paper
2016/1164, 2016, https://eprint.iacr.org/2016/1164. [Online]. Available:
https://eprint.iacr.org/2016/1164

J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” JACR Cryptol. ePrint Arch., vol. 2012, p. 144, 2012.

C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the Forty-First Annual ACM Symposium on Theory
of Computing, ser. STOC *09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 169-178. [Online]. Available:
https://doi.org/10.1145/1536414.1536440

C. Gentry, “Computing arbitrary functions of encrypted data,”
Commun. ACM, vol. 53, no. 3, p. 97-105, mar 2010. [Online].
Available: https://doi.org/10.1145/1666420.1666444

C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based,” in Advances in Cryptology — CRYPTO 2013, R. Canetti
and J. A. Garay, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 75-92.

0. Goldreich, “Towards a theory of software protection and simulation
by oblivious rams,” in Proceedings of the Nineteenth Annual ACM
Symposium on Theory of Computing, ser. STOC ’87. New York,
NY, USA: Association for Computing Machinery, 1987, p. 182-194.
[Online]. Available: https://doi.org/10.1145/28395.28416

O. Goldreich and R. Ostrovsky, “Software protection and simulation
on oblivious rams,” J. ACM, vol. 43, no. 3, p. 431-473, may 1996.
[Online]. Available: https://doi.org/10.1145/233551.233553

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

B. Gregg, “The flame graph: This visualization of software execution
is a new necessity for performance profiling and debugging.”
Queue, vol. 14, no. 2, p. 91-110, mar 2016. [Online]. Available:
https://doi.org/10.1145/2927299.2927301

S. Halevi and V. Shoup, “Design and implementation of helib: a
homomorphic encryption library,” Cryptology ePrint Archive, Paper
2020/1481, 2020, https://eprint.iacr.org/2020/1481. [Online]. Available:
https://eprint.iacr.org/2020/1481

G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill, “Generic
attacks on secure outsourced databases,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 1329-1340. [Online]. Available:
https://doi.org/10.1145/2976749.2978386

S. Kim, J. Kim, M. J. Kim, W. Jung, J. Kim, M. Rhu, and J. H.
Ahn, “Bts: An accelerator for bootstrappable fully homomorphic
encryption,” ser. ISCA °22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 711-725. [Online]. Available:
https://doi.org/10.1145/3470496.3527415

T. Li, Z. Huang, P. Li, Z. Liu, and C. Jia, “Outsourced privacy-
preserving classification service over encrypted data,” Journal of
Network and Computer Applications, vol. 106, pp. 100-110, 2018.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S$1084804517304356

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building
customized program analysis tools with dynamic instrumentation,” in
Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI *05. New York,
NY, USA: ACM, 2005, pp. 190-200. [Online]. Available: http:
/ldoi.acm.org/10.1145/1065010.1065034

M. Naveed, “The fallacy of composition of oblivious ram and
searchable encryption,” IJACR Cryptology ePrint Archive, vol. 2015, p.
668, 2015. [Online]. Available: https://eprint.iacr.org/2015/668

D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: the case of aes,” in Cryptographers’ track at the RSA conference.
Springer, 2006, pp. 1-20.

B. Reagen, W.-S. Choi, Y. Ko, V. T. Lee, H.-H. S. Lee, G.-Y. Wei,
and D. Brooks, “Cheetah: Optimizing and accelerating homomorphic
encryption for private inference,” in 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), 2021, pp. 26-39.
T. K. Saha, M. Rathee, and T. Koshiba, “Efficient private database
queries using ring-lwe somewhat homomorphic encryption,” Journal
of Information Security and Applications, vol. 49, p. 102406, 2019.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
$2214212619303345

N. Samardzic, A. Feldmann, A. Krastev, S. Devadas, R. Dreslinski,
C. Peikert, and D. Sanchez, “F1: A fast and programmable accelerator
for fully homomorphic encryption,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
21. New York, NY, USA: Association for Computing Machinery,
2021, p. 238-252. [Online]. Available: https://doi.org/10.1145/3466752.
3480070

“Microsoft SEAL (release 4.0),” https://github.com/Microsoft/SEAL,
Mar. 2022, microsoft Research, Redmond, WA.

D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proceeding 2000 IEEE Symposium on Security
and Privacy. S P 2000, 2000, pp. 44-55.

E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and
S. Devadas, “Path ORAM: An extremely simple oblivious ram protocol,”
in Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, ser. CCS 13, 2013, p. 299-310.

V. Vaikuntanathan, “Computing blindfolded: New developments in fully
homomorphic encryption,” in 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, 2011, pp. 5-16.

