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Abstract—Approximate computing is the idea that systems can
gain performance and energy efficiency if they expend less effort
on producing a “perfect” answer. Approximate computing tech-
niques propose various ways of exposing and exploiting accuracy—
efficiency trade-offs. We present a taxonomy that classifies ap-
proximate computing techniques according to their most salient
features: compute vs. data, deterministic vs. nondeterministic
and coarse- vs. fine-grained. These axes allow us to address
questions about the visibility, testability and flexibility of different
techniques. We use this taxonomy to inform future research in
approximate architectures, compilers and applications that will
catalyze mainstream adoption of approximate computing.

I. INTRODUCTION

Approximate computing encompasses a broad spectrum of
techniques that relax accuracy to improve efficiency. Although
the term is new, the principle is not: floating-point numbers,
for example, efficiently but approximately represent the real
numbers in the digital domain. Efficiency—accuracy trade-offs
are also commonplace in digital signal processing, where
techniques such as quantization and decimation are crucial for
tractable designs.

Opportunities abound for exploiting efficiency—accuracy
trade-offs at every layer of the system stack, from compilers,
to architectures, to circuit design. Cross-cutting concerns about
energy efficiency, and the future of CMOS scaling, have
created a boom in approximate computing research in recent
years. While exciting, the multitude of approaches compli-
cates discussions and obscures common patterns. A single
monolithic “approximate computing” label, spanning ideas
as disparate as voltage over-scaling [11], tweaking floating-
point precision [27] and code perforation [35], is too broad to
identify the foundations of the field.

This paper presents a taxonomy of approximate computing
research. We classify techniques along three axes: visibility
of the approximate results, testability of the system, and
flexibility of the efficiency—accuracy trade-off. These axes help
to focus future research efforts.

II. MOTIVATION

Our taxonomy characterizes approximation techniques ac-
cording to three practical questions:
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1) Visibility: How easily can the effects of an approximation
technique be observed?

2) Testability: How well can an approximation technique
be tested and debugged?

3) Flexibility: How aggressively can a technique trade-off
error for efficiency?

In this section, we present examples to highlight the import
of these questions, and demonstrate how they distinguish
techniques that may seem similar at first glance.

A. Visibility

Visibility is the extent to which a technique exposes its
approximation errors. The degree of visibility varies widely
between techniques. For example, consider two apparently-
similar techniques: (1) low supply voltage SRAM [13], which
allows for soft errors when accessing data in SRAM; and
(2) low refresh DRAM [18], which allows for soft errors
in DRAM data cells. Both techniques allow bit-flips in data
values. But seen through the lens of visibility, these techniques
are quite different. To wit, if an erroneous bit-flip occurs,
how can it be detected and managed? For low supply voltage
SRAM, errors are introduced only upon reading and writing
data. A precise check can thus be invoked on each approximate
load and store instruction. On the other hand, for low refresh
DRAM, error can be introduced at any point in the lifetime
of the data. This uncertainty makes error management more
costly and less prompt. The difference in visibility is due to
the fact that low supply voltage SRAM only approximates the
action of accessing data, whereas low refresh DRAM approx-
imates the way data is stored. Our taxonomy distinguishes
these two approaches (Section III-A): the former is a compute
technique; the latter, a data technique.

B. Testability

Testability is the degree to which error can be measured
during development and generalized to production. It can be
difficult to reason about the error introduced by an approxima-
tion technique. We often rely on measurements from test sys-
tems to decide whether or not the error is within an acceptable
range. For example, code perforation [35] is an approximation
technique that omits instructions during execution. In general,



Software Technique Visibility Testability Flexibility
Approximate CUDA Kernels [29] Compute Det Coarse
Approximate Synthesis [7] Compute Det Coarse
Algorithm Selection [4], [5] Compute Det Coarse
Code Perforation [35] Compute Det Coarse
Parallel Pattern Replacement [28] Compute Det Coarse
Bit-Width Reduction [23], [27] Compute Det Fine
Float-to-Fixed Conversion [1] Compute Det Fine
Approximate Parallelization [6] Compute Nondet Coarse
Statistical Query [2] Compute Nondet Coarse
Synchronization Elision [19], [24], [25] Compute Nondet Coarse
Lossy Compression / Packing [29] Data Det Coarse
Hardware Technique Visibility Testability Flexibility
Digital Neural Acceleration [12], [14], [21]  Compute Det Coarse
Interpolated Memoization [20] Compute Det Coarse
Load Value Approximation [34], [38],[39]  Compute Det Fine
Instruction Memoization [3] Compute Det Fine
Precision Scaling [41], [43] Compute Det Fine
Logical Simplifications [16], [42] Compute Det Fine
Reduced-Precision FPU [40] Compute Det Fine
Analog Neural Acceleration [37] Compute Nondet Coarse
Approx. Processors [8], [15], [17], [44], [45] Compute Nondet Fine
Voltage Overscaling (ALU) [11], [22] Compute Nondet Fine
Approx. PCM Multi-Level Cells [31] Compute Nondet Fine
SRAM Soft Error Exposure [9], [13] Compute Nondet Fine
Approximate Value Deduplication [33] Data Det Coarse
Approx. PCM Failed Cells [31] Data Nondet Fine
Low-Refresh DRAM [18] Data Nondet Fine

TABLE I: Taxonomy of approximate computing techniques.

its impact on error is the same regardless of the underlying sys-
tem on which it is executed, so its testability is straightforward.
On the other hand, synchronization elision [19], [24], [25]
omits calls to synchronization primitives like locks. We can
measure the error of synchronization elision on a test system
and deem it satisfactory, but we may find that error increases
dramatically on a production system with more parallelism.
Our taxonomy distinguishes testability between deterministic
techniques like code perforation and nondeterministic tech-
niques like synchronization elision (Section III-B).

C. Flexibility

Flexibility reflects how easily a technique can trade-off
accuracy for efficiency gains. All approximate computing
techniques enable such a trade-off. However, they fall all
along the accuracy—efficiency curve; some favor efficiency
while others favor accuracy. Consider a program that performs
many floating-point computations. We can approximate this
program either via fuzzy function memoization [20] or via
fuzzy floating-point instructions [40]. Both techniques seem
similar, yet they offer very different error—efficiency trade-
offs. Function memoization is highly flexible; it can elide
code regions that are as small as one or two instructions
or as large as entire functions. But its flexibility also means
that it can induce nearly arbitrary errors. Fuzzy floating-point
instructions, on the other hand, limit efficiency gains but also
confine errors to the execution of individual instructions. To
characterize flexibility, our taxonomy distinguishes between
techniques based on their granularity (Section III-C).

III. TAXONOMY

We guide our taxonomy with the motivation questions de-
tailed in Section I — (1) visibility, (2) testability, (3) flexibility

— and list three orthogonal taxonomy axes that address them:
(1) compute vs. data, (2) deterministic vs. nondeterminis-
tic, (3) coarse-grained vs. fine-grained. For each taxonomy
dimension, we provide a formal definition, examples and
discuss practical implications. Table I lists a set of recent
approximation techniques we surveyed and classified along
these three dimensions. In this table, note that we classify
techniques as software or hardware; we do not elaborate on
this as a taxonomy axis since it does not inform any interesting
new insights or properties.

A. Visibility: Compute vs. Data

Definition 1. Consider a program as a sequence of instruc-
tions that operate on data. An approximation technique is a
data technique if it can introduce error even when the sequence
of instructions is null. Otherwise it is a compute technique.

Compute techniques approximate the instructions executed
by a program, while data techniques approximate the storage
or representation of data values. From a program’s perspective,
an instruction is a momentary event. Thus any error introduced
by a compute technique can always be traced to a single
moment in time. We say that compute techniques yield errors
with high visibility. On the other hand, a piece of data is
not a momentary event. Thus any error introduced by a data
technique can occur at any arbitrary time during the lifetime
of the data. We say that such errors are invisible.

Naturally, visible errors are simple to detect. Revisiting the
examples in Section II-A, low supply voltage SRAM [13] is
a compute technique. It approximates (via bit upsets) only
upon memory operations; thus detecting and managing error
is straightforward. For write upsets, for example, adding a
precise check after a write operation can immediately catch
(and roll back) any erroneous approximations. On the other
hand, low refresh DRAM [18] is a data technique and is less
visible. Since it yields bit flips at arbitrary times, a precise
check after a write operation cannot draw any conclusions
about error. Even if the precise check passes, an erroneous
bit-flip can still occur some time later.

Though errors are invisible, an advantage of data techniques
is that they are not on the critical path; thus their latency costs
can be made invisible as well. Compute techniques directly
affect program runtime since they approximate the instruction
stream, whereas data approximations can be performed lazily
and off the critical path. For example, the Doppelginger
cache [33] is a data technique; it generates approximate values
silently without stalling memory requests.

This taxonomy axis informs trade-offs in visibility. Compute
techniques benefit from the guarantee of visible errors, which
are easier to detect and manage. On the other hand, data
techniques benefit from the ability to generate approximations
off the critical path of program execution.

B. Testability: Deterministic vs. Nondeterministic

Definition 2. An approximation technique is deterministic if
given the same initial state, for each and every input 1,
it yields constant error E;. An approximation technique is



nondeterministic if given the same initial state, there exists
some input I; for which it yields more than one error value
Ejo, ceny Ejn~

Nondeterministic techniques can pose a challenge for testing
and debugging. When developing techniques, the conventional
approach is to evaluate error and efficiency on a test system
and extrapolate to production systems. This is effective for
deterministic techniques since they produce the same ap-
proximations regardless of the underlying system; errors are
reproducible. Tt is possible for a user to declare any error
threshold ¢ and concretely evaluate whether or not it is always
satisfied for a given input. However, this is not true for
nondeterministic techniques. For a given input, error can only
be probabilistically evaluated; e must be accompanied by some
probability and confidence.

Nondeterministic techniques have limited testability. Such
approximations are possible via exposing analog noise, asyn-
chrony and race conditions to the program. Revisiting the
examples in Section II-B, synchronization elision [19], [24],
[25] is a nondeterministic technique while code perfora-
tion [35] is deterministic. Whereas perforating computations
yields the same output on any system, eliding synchroniza-
tion primitives exposes race conditions. This increases the
number of possible outputs and limits testability. The amount
of error via synchronization elision can vary greatly across
systems depending on the amount of thread-level parallelism.
Nondeterministic techniques can also expose analog noise.
For example, voltage-overscaled ALUs [11], [22] generate
approximations by risking exposure to the analog domain. This
has low testability; error cannot be concretely evaluated and
must be empirically measured. In comparison, precision-scaled
ALUs [41] are deterministic. Scaling precision in the digital
representation of data yields the same output on any system.

As a trade-off, nondeterministic techniques can generally
offer more opportunity for efficiency gains. By exposing the
stochastic nature of the physical world, they avoid the expen-
sive digital abstraction tax. For example, voltage-overscaled
ALUs significantly improve efficiency by relaxing the safety
margins enforced by digital circuitry.

This taxonomy axis informs trade-offs in testability. Deter-
ministic techniques benefit from high reproducibility, simplify-
ing testing and debugging. On the other hand, nondeterministic
techniques benefit from more opportunities for approximation
that only exist outside the digital domain.

C. Flexibility: Coarse-Grained vs. Fine-Grained

Definition 3. An approximation technique is coarse-grained
if it reduces the data footprint (for data techniques) or the
number of dynamic instructions (for compute techniques) in a
program. Otherwise it is a fine-grained technique.

Flexibility depends on the granularity in which an approxi-
mation technique is employed. Fine-grained techniques lower
the cost of executing an instruction or storing a bit. Coarse-
grained techniques replace a set of instructions or bits with a
more efficient or compact representation.

Coarse-grained techniques are highly flexible; they offer
more opportunity for error—efficiency trade-offs. Revisiting the

examples in Section II-C, fuzzy floating-point instructions [40]
are fine-grained while fuzzy function memoization [20] is
coarse-grained. Whereas the former improves the efficiency
of individual instructions, the latter can improve the efficiency
of an entire block or function. The latter offers more flexi-
bility; in the most extreme case, we can memoize the entire
program for the highest efficiency. In terms of data, fine-
grained techniques, such as low refresh DRAM [18], generate
approximations in individual bits. Coarse-grained techniques,
such as approximate deduplication [33], reduce data footprint.
The latter can be more aggressively tuned for efficiency gains,
to the point where the entire data footprint is deduplicated into
a single data block.

Naturally, the coarser the granularity of a technique, the
higher the risk of error. Fine-grained techniques do not remove
any data nor instructions. Conversely, coarse-grained tech-
niques risk information loss as more data and more instructions
are omitted. In the previous examples, though memoizing an
entire program yields highest efficiency, it also yields highest
error. Holistically approximating regions of code can disregard
rarely-used control-flow paths when not exercised. Similarly,
deduplicating the entire data footprint yields much higher error
than deduplicating a single data block.

This taxonomy axis informs trade-offs in flexibility. Coarse-
grained techniques benefit from greater opportunities for ag-
gressive efficiency gains. On the other hand, fine-grained
techniques can limit error and are generally better suited for
programs where quality constraints are tighter.

IV. DISCUSSION

We highlight the applicability of our proposed taxonomy by
suggesting how it can inform future research in the field of
approximate computing. We formulate a three-pronged answer
that address the questions across layers of the compute stack:
(1) architecture, (2) compilers and runtimes and (3) applica-
tions.

A. How Can It Inform Architecture Research?

Research on new approximation techniques motivates the
need for approximation-aware ISAs (A-ISA). Since the days
of the IBM System/360, architects have distinguished between
architecture and implementation to guarantee the forward-
compatibility of their hardware. An A-ISA can express
instruction-level error bounds that need to be respected when
deployed on current or future hardware. Such an abstraction
layer would allow hardware designers to modify the imple-
mentation of approximations down the road in a way that
remains invisible to the software. We make the distinction
between two types of A-ISAs: strict A-ISAs and statistical
A-ISAs. Strict A-ISAs are applicable to deterministic fine-
grained techniques and provide strict error bounds on the
execution of an instruction. Examples of A-ISAs include
the Quality-Programmable ISA [41] which provides strict
error bounds relative to the maximum output value of the
instruction. Statistical A-ISAs on the other hand are applica-
ble to nondeterministic fine-grained techniques and provide
statistical failure guarantees. Such an ISA would have to



include probability bounds (possibly in a log scale) as well
as confidence bounds (unless implicitly assumed). It is worth
mentioning that coarse-grained techniques are built above the
ISA layer in the system stack, thus they don’t require A-ISAs
support.

B. How Can It Inform Compilers/Runtimes Research?

Research on new approximation techniques motivates the
development of frameworks to make approximations safe to
use. Such frameworks include new languages, compilers and
runtimes. We discuss how each taxonomy can inform the
applicability of framework proposals.

Visibility is relevant to frameworks that focus on detecting
and recovering from hardware faults. Relax [10] for instance
can only work on top of compute techniques since errors
have to be locally correctable [36]. Online monitoring pro-
posals [26] that rely on precise replay are also only applicable
to compute techniques.

Testability and flexibility are relevant to formulating
statically-derived or empirically-observed application-level er-
ror bounds. Nondeterministic techniques require statistical
methods like probabilistic assertions [32], while deterministic
techniques can rely on hard assertions. Fine-grained techniques
can inherit from the wealth of tools developed in numerical
analysis research [27]. More specifically, deterministic fine-
grained techniques have the advantage of providing strict error
bounds at an instruction granularity. Thus, they can provide
hard worst-case error bounds for many algorithmic patterns,
as opposed to empirically derived average-case error bounds.
Coarse-grained techniques have seen a wealth of frameworks
[4]-[6], [28], [30] that generally rely on empirical error
measurements to provide varying levels of error guarantees
via quality autotuning.

C. How Can It Inform Applications Research?

Research on new approximation techniques motivates better
understanding on the applicability of such techniques. Appli-
cation designers care about (1) whether a technique can be
applied to their algorithms, and (2) whether a technique can
meet the quality guarantees they wish to enforce.

Flexibility determines how general a technique is to algo-
rithmic patterns. Fine-grained techniques are broadly gener-
alizable: any approximate floating-point algorithm can make
use of reduced-precision FPUs. Coarse-grained techniques, on
the other hand, have to adhere to specific code patterns: neural
acceleration only applies to precise-pure regions of code, while
loop-perforation applies to loops free of early exits [30].

Flexibility and testability will both determine the error
behavior that the application will see. Nondeterministic tech-
niques generally yield large rarely-occurring errors while de-
terministic techniques yield small frequently-occurring errors.
Nondeterministic techniques would generally not be used in
mission-critical systems. The magnitude of an error is gener-
ally better controlled on deterministic fined-grained techniques
as opposed to deterministic coarse-grained techniques. Neural
networks are known not to produce errors below 1% for
regression problems without overfitting. Thus they may not be

preferred in financial applications where a 1% would result in
large financial losses, but are acceptable to use on multimedia
or consumer virtual reality applications.

V. CONCLUSION

A wealth of approximate computing techniques has been
proposed in architecture, circuits, languages and compilers
research. Distilling this cornucopia of proposals requires a
well defined categorization that discriminates techniques based
on their most salient properties. We present a taxonomy
that categorizes approximate computing techniques based on
visibility, testability and flexibility. Our proposed taxonomy
can better inform cross-stack research in architecture, com-
pilers/runtimes, and applications to catalyze the mainstream
adoption of approximate computing.
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