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ABSTRACT
Stochastic computing (SC), with its probabilistic data representation
format, has sparked renewed interest due to its ability to use very
simple circuits to implement complex operations. Though unlike
traditional binary computing, SC needs to carefully handle correla-
tions that exist across data values to avoid the risk of unacceptably
inaccurate results. With many SC circuits designed to operate under
the assumption that input values are independent, it is important to
provide the ability to accurately measure and characterize indepen-
dence of SC bitstreams. We propose zero correlation error (ZCE), a
metric that quantifies how independent two finite-length bitstreams
are, and show that it addresses fundamental limitations in metrics
currently used by the SC community. Through evaluation at both
the functional unit level and application level, we demonstrate how
ZCE can be an effective tool for analyzing SC bitstreams, simulating
circuits and design space exploration.

1 INTRODUCTION
Stochastic computing (SC) is a reemerging computing paradigm—
with applications in image processing [2, 7, 12], error correction
codes [6, 17] and neural networks [3, 15, 16]—that performs com-
putation on bit-serial unary bitstreams as opposed to bit-parallel
binary-encoded registers [8, 18]. Values in SC are represented by
the probability that a bit is set in a bitstream. Because of its value
encoding format and its serial nature, SC is capable of performing
computation with extremely small functional units (e.g. multiplica-
tion is reduced to a single AND gate).

Unlike traditional binary computing, SC needs to handle data
values with care to avoid the risk of unacceptably inaccurate compu-
tation results. Because SC is probabilistic, data values (bitstreams)
need to be statistically independent for key operations (e.g. mul-
tiply [9] and scaled add [9]). SC circuit designers need a way to
accurately measure and characterize independence to ensure a cor-
rectly functioning system. Applying the definition of independence
from classical probability theory to SC bitstreams is non-trivial
since in practical implementations of SC, bitstreams are not truly
random and are finite in length. Currently, the metric used for this
purpose is stochastic cross correlation (SCC) [1].
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Example: 𝑃𝑋 =
3

16
𝑃𝑌=

14

16
𝑃𝑍= 𝑃𝑋𝑃𝑌 =

3

16

14

16
=

42

256

PX = 1110 0000 0000 0000

PY = 1100 1111 1111 1111

Poor alignment (high error):

PZ = 1100 0000 0000 0000 = 
2

16

… but best alignment according to SCC (SCC = -0.3846)
error = −

10

256

PX = 1110 0000 0000 0000

PY = 1110 0111 1111 1111

Best alignment (lowest error):

PZ = 1110 0000 0000 0000 = 
3

16

… but poor alignment according to SCC (SCC = 1) error =
6

256

Figure 1: Example of when an alignment with the lowest
|𝑆𝐶𝐶 | does not correspond to the one with highest accuracy.

SCC reasons about the similarity between two finite-length bit-
streams by looking at the alignment of 0s and 1s in the two bit-
streams. For a functional unit that prefers independent inputs for
higher accuracy, the highest accuracy is attained when the input
bitstreams are uncorrelated, i.e. 𝑆𝐶𝐶 = 0. However, depending on
the values represented by the input bitstreams, sometimes 𝑆𝐶𝐶 = 0
is not achievable. To find the alignment that results in the high-
est accuracy, one might assume that finding the alignment where
|𝑆𝐶𝐶 | is closest to 0 would result in the highest accuracy. This is
however not always the case, as illustrated in Figure 1. When mul-
tiplying input values 𝑃𝑋 = 3

16 and 𝑃𝑌 = 14
16 , there are three possible

alignment variants: one matched 1s (𝑆𝐶𝐶 = −1), two matched 1s
(𝑆𝐶𝐶 = −0.3846), and three matched 1s (𝑆𝐶𝐶 = +1). If we use the
best alignment according to the SCC metric (𝑆𝐶𝐶 = −0.3846), the
final result has an error of − 10

256 , compared to the actual best align-
ment, which results in an error of 6

256 . From this counterexample,
we see that while SCC can be applied to reason about correlation
between two bitstreams, it has fundamental limitations in evalu-
ating the independence of bitstreams when certain conditions are
not met (i.e. when SCC cannot reach 0).

Other than SCC, the majority of prior works that analyze error
either focus on aspects unrelated to correlation or account for mul-
tiple sources of error [5, 14]; thus they are not suited for evaluating
independence. To better understand and isolate the errors stem-
ming from a lack of input independence, it is desirable to have a
metric that quantifies this. We make the following contributions:

• We demonstrate the disparity between bitstream indepen-
dence and SCC. We perform a detailed analysis of SCC and
show that SCC is not always able to identify when two bit-
streams are independent (on average 20% of the time for
64-bit bitstreams).

• We propose a new metric called zero correlation error (ZCE),
which allows for measuring the independence of two finite-
length bitstreams, and present a step by step walk through
of its derivation based on probability theory.

https://doi.org/10.1145/3394885.3431552
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Figure 2: How often SCC correctly identifies the most in-
dependent input pairs. Correct refers to when SCC iden-
tifies the same alignment as the maximally independent
alignment; partially correctly refers to when SCC identi-
fies the same alignment as one of the maximally indepen-
dent alignments (i.e. when two alignments have the same
|𝑃𝑋∧𝑌 −𝑃𝑋𝑃𝑌 |); and incorrect refers to when SCC identifies a
different alignment from the maximally independent one.

• We evaluate the practical application of ZCE, in terms of
design space exploration, profiling, and determining optimal
bitstreams.

2 BACKGROUND AND MOTIVATION
This section provides a primer on SC, independence and cross-
correlation, and motivates the need for a new metric.

2.1 Stochastic Computing
Stochastic computing is a computing paradigm where data is en-
coded as unary bitstreams and their values are represented as the
probability of a bit being set (e.g. a bitstream representing 0.5 will
have half of its bits set and half unset in the unipolar represen-
tation) [9, 18]. For example, in Figure 1, the value 𝑃𝑌 = 14

16 is
represented by a bitstream of length 16, where 14 of the bits are
set to 1, regardless of where in the bitstreams the 1s are located.
Computation in SC leverages the transformation of probability
values through various basic circuit gates. One major advantage
of stochastic computing is that several arithmetic computations
can be performed with very simple and small numbers of gates
(e.g. multiplication using a single AND gate).

2.2 Independence of Bitstreams
In probability theory, if two events have their joint probability
equal to the product of the two probabilities (i.e. 𝑃𝑋∩𝑌 = 𝑃𝑋𝑃𝑌 ),
the two events are said to be independent. However, with finite-
length bitstreams, 𝑃𝑋∩𝑌 is not always attainable. Thus instead, SC
uses the AND-gate result 𝑃𝑋∧𝑌 , and we refer to this as the finite-
length joint probability. Two finite-length bitstreams are said to
be as independent as they can be if 𝑃𝑋∧𝑌 = 𝑃𝑋𝑃𝑌 . Because the
result of the AND gate depends on the alignment of 0s and 1s,
measuring independence of two bitstreams requires analyzing their
alignments, also referred to as their cross-correlation.

2.3 SCC and Limitations
Stochastic cross correlation (SCC) is the de facto metric to assess the
cross-correlation between two SC bitstreams [1]. The more aligned
0s and 1s there are between two bitstreams, the more positively
correlated the two bitstreams are. Similarly, the more misaligned
0s and 1s there are between two bitstreams, the more negatively
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Figure 3: Distribution of incorrect and partially correct
alignments for independence identified by SCC, for a bit-
stream length of 64. The horizontal and vertical axes show
the values represented by two SC bitstreams 𝑃𝑋 and 𝑃𝑌 , re-
spectively. Black dots indicate combinations of 𝑃𝑋 , 𝑃𝑌 values
where SCC incorrectly identifies the maximally indepen-
dent alignment. Grey dots indicate combinations of 𝑃𝑋 , 𝑃𝑌
values where SCC only identifies one of the maximally in-
dependent alignments.

correlated the two bitstreams are. While SCC and independence are
closely related, our insight in this work is recognizing that they are
not equivalent when dealing with finite-length bitstreams.

The SCC of two input bitstreams 𝑋 and 𝑌 is defined as:

𝑆𝐶𝐶 (𝑋,𝑌 ) =
{

𝑃𝑋∧𝑌−𝑃𝑋 𝑃𝑌
min(𝑃𝑋 ,𝑃𝑌 )−𝑃𝑋 𝑃𝑌

if 𝑃𝑋∧𝑌 > 𝑃𝑋𝑃𝑌
𝑃𝑋∧𝑌−𝑃𝑋 𝑃𝑌

𝑃𝑋 𝑃𝑌−max(𝑃𝑋 +𝑃𝑌−1,0) otherwise
(1)

or alternatively:

𝑆𝐶𝐶 (𝑋,𝑌 ) =
{

𝑎𝑑−𝑏𝑐
𝐿 ·min(𝑎+𝑏,𝑎+𝑐)−(𝑎+𝑏) (𝑎+𝑐) if 𝑎𝑑 > 𝑏𝑐

𝑎𝑑−𝑏𝑐
(𝑎+𝑏) (𝑎+𝑐)−𝐿 ·max(𝑎−𝑑,0) otherwise

(2)

where 𝑎, 𝑏, 𝑐, 𝑑 are the number of bits where the alignment of (𝑋,𝑌 )
are (1, 1), (1, 0), (0, 1), (0, 0), respectively, and 𝐿 is the length of
the bitstream. For example, the inputs at the top of Figure 1 yield
𝑎 = 2, 𝑏 = 1, 𝑐 = 12, 𝑑 = 1. The SCC metric is designed to be
value-independent and always outputs +1 if 𝑋 and 𝑌 are maximally
positively correlated and −1 if they are maximally negatively cor-
related. SCC outputs 0 if the degree of alignment (𝑎𝑏) equals the
degree of misalignment (𝑏𝑐). All other points in between −1 and 1
are linearly interpolated.

In analyzing SC circuits, it can be tempting to use SCC as a proxy
to assess the accuracy of computations if the correlation affinity of
the functional unit is known. For example, if a functional unit is
designed to yield the highest accuracy when the input bitstreams
are most positively correlated (e.g. absolute subtract [2]), it makes
sense to evaluate the SCC of the input bitstreams and make the
conclusion that if a given pair of input bitstreams has SCC closer
to 1, then the result of the computation is more accurate. This line
of reasoning works when the functional unit is designed with affinity
towards positive or negative correlation but breaks down when it is
designed to have affinity for independent inputs.
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Figure 4: Plots of (a) SCC, (b) true error and (c) ZCE for all
possible alignments of 𝑃𝑋 × 𝑃𝑌 = 21

32 ×
22
32 . Point B is the most

independent alignment, whereas SCC incorrectly identifies
point C as the most independent alignment.

In this work, we recognize that having close-to-zero SCC be-
tween two bitstreams does not necessarily imply that they are maxi-
mally independent, even though they can sometimes yield the same
alignment. If we look at all pairs of values 𝑋 and 𝑌 representable
in a finite bitstream length and compare the most uncorrelated
alignment (suggested by SCC) with the most independent align-
ment (suggested by minimizing |𝑃𝑋∧𝑌 −𝑃𝑋𝑃𝑌 |), we can get a sense
of how often they correspond to each other. Figure 2 shows this
across different bitstream lengths. We see that SCC is not able to
identify the maximally independent alignment 18% of the time, on
average. To further try to understand when this happens, Figure 3
shows the distribution of input value pairs where SCC incorrectly
identifies the maximally independent alignment, or is only able to
partially identify some maximally independent alignments. We can
see that this phenomenon is not uniformly distributed across all
input values, and there are particular input value pairs that pose
difficulties (e.g. combinations of very small and very large values).
Since the fraction of cases where SCC is not able to identify the
maximally independent alignment is non-negligible, this further
motivates the need for a better metric to quantify independence.

3 ZERO CORRELATION ERROR
We propose zero correlation error (ZCE) with two goals in mind:

(1) The metric should preserve the property where the more
independent an alignment is, the closer to 0 it should yield;

(2) Themetric should output 0 for all alignments that correspond
to the most independent alignment possible given a finite
bitstream length, allowing for quick identification of whether
independence is achieved.

We want these properties so that it not only becomes possible to
use ZCE to evaluate independence of bitstreams, but that it can also
be used as a proxy to evaluate accuracy, and allows for efficient
analysis and design exploration of SC circuits.

3.1 SCC vs. ZCE
This section illustrates why SCC cannot always identify the most
independent alignment and describes what we want to accomplish
in deriving ZCE. We plot the value of SCC, ZCE, and quantization
error for all possible alignments of 𝑃𝑋 × 𝑃𝑌 = 21

32 × 22
32 in Figure 4.

Comparing the SCC plot in Figure 4a and the quantization error plot
in Figure 4b, we see that the SCC metric takes the two end points
(A and D) and normalizes these points to to −1 and 1, respectively.

While this was done in order to allow for identification of maxi-
mally positive and negative correlation, it results in a difference in
slope when approaching 0 from the positive and negative side. This
difference in slope is the reason why the |𝑆𝐶𝐶 | closest to 0 is not
always the most independent alignment. In this example, if we look
at the quantization error, the point with the lowest absolute error
is B, yet the point with the lowest absolute SCC is C (since there are
more points on the positive side than the negative side). Looking at
this plot, we can observe that SCC is perfectly capable of evaluating
how positively or negatively correlated two bitstreams are, and
is able to indicate whether a certain alignment has reached the
most positive correlation possible (𝑆𝐶𝐶 = +1) or the most negative
correlation possible (𝑆𝐶𝐶 = −1).

Visually, the intent of ZCE is twofold. First, we want to retain
the slope of the line shown in the quantization error (to satisfy
goal (1) above). Second, we want to “thicken” the crossing at 0 such
that if the minimum positive error and the minimum negative error
have the same magnitude, they both appear as 𝑍𝐶𝐸 = 0 (to satisfy
goal (2)). Doing this gives us Figure 4c, which now enables us to
evaluate how independent two bitstreams are and validate that a
certain alignment has reached the most independence possible. In
this example, we see that the points with the lowest absolute error
and the lowest ZCE are both B. ZCE further provides a direction by
maintaining the direction of error — ZCE is a positive value if two
bitstreams are positively correlated, and vice versa.
Takeaway: SCC should still serve as the metric for determining
maximally positive and maximally negative correlation. Mirroring
this, our goal with ZCE is to instead determine how maximally
independent two bitstreams are.

3.2 Derivation of ZCE
With the high-level goal of ZCE in mind, we now walk through the
derivation of the ZCE equation.
Quantization Error: As mentioned in Section 2.2, two finite-
length SC bitstreams 𝑃𝑋 and 𝑃𝑌 are as independent as they can
be when 𝑃𝑋∧𝑌 − 𝑃𝑋𝑃𝑌 = 0. Assume 𝐿 is the length of the bit-
stream. While 𝑃𝑋𝑃𝑌 requires 𝐿2 precision, 𝑃𝑋∧𝑌 only has 𝐿 pre-
cision, which results in a certain amount of quantization error
introduced. Given 𝑃𝑋 and 𝑃𝑌 as inputs, the amount of quantization
error for any arbitrary pair of bitstreams can be expressed as

Δ0 = 1/𝐿 ·
⌊𝑃𝑋𝑃𝑌
1/𝐿 + 1

2

⌋
− 𝑃𝑋𝑃𝑌 (3)

The first term is the product of inputs quantized to 1
𝐿
, and the

second term is the desired product. Δ0 therefore represents the
amount of error when we have the most independent alignment
(i.e. distance from 0 of point B in Figure 4(b)). Looking at the bit
values in the two input bitstreams, if 𝑎, 𝑏, 𝑐 , 𝑑 are the number of bits
where (𝑋,𝑌 ) = (1, 1), (1, 0), (0, 1), (0, 0) respectively, Equation 3
can also be equivalently expressed as

Δ0 =

⌊
(𝑎+𝑏) (𝑎+𝑐)

𝐿
+ 1

2

⌋
𝐿

− (𝑎 + 𝑏) (𝑎 + 𝑐)
𝐿2

(4)

Note that in this equation, since 𝑎 + 𝑏 equals the number of 1s in 𝑋
and 𝑎 + 𝑐 equals the number of 1s in 𝑌 , the value of Δ0 is the same
regardless of the actual alignment between 𝑋 and 𝑌 .
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Figure 5: Average error of AND-gate multiplication when
following the alignment recommended by SCC, normalized
to quantization error.

Actual Error: For the two bitstreams ZCE is evaluating, they may
have a different alignment from Δ0 (i.e. can be any point on Fig-
ure 4(b)). We can compute the error (distance to the x-axis) as:

Δ = 𝑃𝑋∧𝑌 − 𝑃𝑋𝑃𝑌 (5)

where 𝑃𝑋∧𝑌 is the AND-gate result of the two input bitstreams.
Again, Equation 5 can equivalently be expressed as

Δ =
𝑎

𝐿
− (𝑎 + 𝑏) (𝑎 + 𝑐)

𝐿2
(6)

Zero Correlation Error: With Δ and Δ0 defined, we can now
use them to evaluate how close you are to the most independent
alignment (displacement from the lowest error – i.e. removing the
error due to limited precision) with the following metric:

ZCE =
Δ

|Δ| ( |Δ| − |Δ0 |) = Δ

(
1 −

���Δ0
Δ

���) (7)

4 EVALUATION
In this section, we demonstrate how ZCE can be valuable in the de-
sign of SC systems via use cases in determining optimal alignments,
profiling bitstreams and design space exploration.

4.1 Use Case: Finding Optimal Alignment
How do we align the input bitstreams such that our circuit yields the
lowest error? This is an important question for SC circuit design-
ers since the cross-correlation of input bitstreams can affect the
accuracy of the computation. For functional units that have affinity
towards independent input bitstreams (e.g. AND-gate multiplica-
tion, MUX-based scaled addition), ZCE is a good metric to help
answer this question. In Section 2.3, we motivated the need for a
better metric to quantify independence of bitstreams than SCC, and
here we compare how well ZCE and SCC perform in this task.
Multiplication: In the first experiment, we evaluate the input
bitstreams of an AND-gate multiply. For all possible values that the
two input bitstreams can take, we use SCC and ZCE to recommend
an optimal alignment. With each of the recommended alignments,
we evaluate the accuracy of the multiplication output and compare
it to the desired product of the two input values when quantized
to a finite bitstream length. Because of the way ZCE is designed,
the AND-gate products of ZCE’s recommended alignments are all
equivalent to the quantization results and are the best that can be
achieved. In comparison, Figure 5 shows the average error across all
possible input value pairs, normalized to quantization error, when
the alignment recommended by SCC is used. We can see that the
error decreases as the bitstream length increases, which is due to
the diminishing contribution of a bit in the overall value as the
bitstream length increases.
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Figure 6: Average error of scale-by-4 addition (𝑃𝑍 =
𝑃𝑋 +𝑃𝑌

4 )
when following the alignment recommended by SCC and
ZCE, normalized to quantization error.
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Figure 7: Average RMSE of a 3 × 3 Gaussian blur filter when
following the alignment recommended by SCC and ZCE.

Scaled Addition:We perform the same experiment with a multi-
plexer that implements scaled addition in SC. For a scaled addition,
the highest accuracy can be achieved when each of the input bit-
streams are independent from the bitstream of the mux select signal.
To evaluate howwell SCC and ZCE can serve as a proxy for accuracy
for a scaled addition, we pick an example computation: 𝑃𝑍 =

𝑃𝑋 +𝑃𝑌
4 .

In the experiment, the select bitstream is kept the same ( 14 ), and
SCC and ZCE are used to find the best alignment for the input
bitstreams with respect to the select bitstream. Figure 6 shows the
ratio of average error across all possible pairs if the recommended
alignment of SCC and ZCE are used, normalized to quantization
error. Here, we see that the error across different bitstream lengths
stays mostly constant, and ZCE produces lower error than SCC.
One thing to note is that unlike the AND-gate multiply experiment,
ZCE does not necessarily achieve the lowest possible error (i.e. only
quantization error). To understand this, we can look at the logic
expression of a 2-to-1 mux, which is 𝑍 = ¬𝑆𝑋 + 𝑆𝑌 . As shown
previously, ZCE is able to find the most independent alignment for
each of the two components (¬𝑆𝑋 and 𝑆𝑌 ) since they are both AND
gates. However, because the error of a mux is now from more than
one component, it is possible that aggregating a mix of positive and
negative errors can cancel out and result in lower error. In ZCE’s
case, because it outputs 0 for the most independent alignment,
the cancelling of positive and negative does not occur, leading to
non-zero amounts of error compared to quantization error.
2D Convolution:We perform application-level analysis on a 2D
convolution benchmark. In this experiment, we take a 256 × 256
grayscale image and convolve it with a 3 × 3 weight filter that
represents a Gaussian blur. For each multiplication in the bench-
mark, SCC and ZCE are used to determine the best alignment for
each pixel and weight value. The output of the multiplication is
then accumulated in a parallel adder to sum up the result of nine
products for each output pixel. The root-mean-square error (RMSE)
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Figure 8: Speedup of using ZCE to determine whether bit-
streams are optimally aligned compared to using SCC.

with respect to the floating-point version is computed for six differ-
ent images, and the geomean across all six images for each of the
different bitstream lengths are shown in Figure 7. We can see that
ZCE consistently produces alignment recommendations that lead
to higher overall accuracy than SCC, across all bitstream lengths.
Again, the gap between the errors that result from a difference in
alignment recommendation narrows as bitstream length increases,
due to each bit having a lower contribution to the overall value as
bitstream length increases.
Takeaway: ZCE consistently identifies alignments that yield lower
error than SCC, both at the functional unit level and at the applica-
tion level. Thus, it can serve as a valuable tool for measuring the
independence of bitstreams in arbitrary SC systems.

4.2 Use Case: Profiling Bitstreams
How quickly can we determine if our bitstreams are aligned as inde-
pendently as they can be? This is an important question for designers
who are simulating and debugging their SC circuits. We evaluate
the amount of time it takes to answer whether bitstreams are opti-
mally aligned using SCC and ZCE. Using ZCE to figure out whether
a pair of bitstreams is optimally aligned simply involves checking
whether ZCE equals zero. On the other hand, since there are input
value pairs where it is not possible for SCC to output 0, using SCC
to figure out whether two bitstreams are optimally aligned often
involves evaluating the SCC of a second alignment in order to see
which one yields |𝑆𝐶𝐶 | closer to 0. Recall though that even when
|𝑆𝐶𝐶 | is closest to 0, it may not be the most independent alignment;
for simplicity, since this experiment evaluates simulation time, we
assume that identifying |𝑆𝐶𝐶 | closest to 0 is sufficient.

In this experiment, we generate random bitstream alignments
for all possible input value pairs and measure both the number of
operations (i.e. number of times each metric is invoked) and the
amount of time it takes to compute. We average the results over
six different runs and show the speedup of using ZCE compared to
using SCC in Figure 8. In terms of the number of operations, we
observe that SCC needs to be computed twice most of the time,
and the speedup of ZCE increases as the bitstream length increases.
This is because the number of input value pairs where 𝑆𝐶𝐶 = 0
is impossible (i.e. no alignment exists with 𝑆𝐶𝐶 = 0) increases
as bitstream length increases, from 91% for a length-64 bitstream
to 99% for a length-1024 bitstream. If we look at the wall clock
speedup, we see that using ZCE is faster by roughly 1.45×, even
though ZCE’s computation is more involved than SCC’s.
Takeaway: ZCE can determine whether two bitstreams are opti-
mally aligned faster than SCC since the optimal alignment is defined
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(a) 6-bit LFSRs.
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(b) 8-bit LFSRs.

Figure 9: Ranking of 6-bit and 8-bit LFSR configurations
based on true error (via AND-gate multiplication), ZCE and
SCC, averaged over all possible input value pairs. ZCE’s and
SCC’s rankings yield a Kendall’s 𝜏 coefficient of 1 and 0.82
respectively for 6-bit LFSRs, and 1 and 0.83 for 8-bit LFSRs.

to always yield 𝑍𝐶𝐸 = 0. This simplifies and speeds up the profiling
and debugging of SC circuits during design iterations.

4.3 Use Case: Design Space Exploration
How can we compare different number generator designs and select
the best one(s) for our circuit? When designing an SC application, the
choice of random number generator can affect the cross-correlation
between different values and thus the accuracy of the computation.
In this exploration, we evaluate the independence of bitstreams
generated by different pairs of linear feedback shift registers (LF-
SRs). For a 6-bit LFSR, there are six possible designs with different
feedback taps, leading to a total of

((
6
2

))
= 21 different LFSR pairs,

which we refer to as a configuration. For each configuration, we
evaluate all possible value pairs and compute the average SCC and
ZCE, as well as the average computation error.
Multiplication: The first experiment evaluates the ability of SCC
and ZCE to rank LFSR configurations when bitstreams are used
as inputs to an AND-gate multiply. Figure 9a shows the overall
ranking of the configurations using the true error, ZCE and SCC.
We see that ZCE is able to produce the same rank ordering as the
true error, while SCC produces a slightly different ranking. Using
Kendall’s 𝜏 coefficient [10] to measure the rank correlation between
SCC and true error, we get 0.82 out of a range of -1 (most dissimilar)
to 1 (most similar). Figure 9b shows similar results when evaluating
six possible designs (i.e. 21 configurations) for 8-bit LFSRs; SCC
yields a Kendall’s 𝜏 coefficient of 0.83.
2D Convolution: To evaluate ZCE’s ability to rank number gener-
ator designs at an application level, we compare the true error, ZCE
and SCC for the same 3×3Gaussian blur benchmarkwith 6 different
grayscale input images used in Section 4.1. All the input pixels share
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Figure 10: Kendall’s 𝜏 coefficient of the rankings produced
by ZCE and SCC for a 3 × 3 Gaussian blur benchmark.

a random number generator, and all the weight values share a ran-
dom number generator. For each of the different bitstream lengths,
six different LFSR designs are considered, resulting in 21 LFSR-pair
configurations. For this experiment, the ranking produced by ZCE
does not 100% agree with the ranking based on true error. This
follows from our observation in Section 4.1, whereby using the
ZCE-recommended alignment may not necessarily produce the
lowest application error due to the effect of positive and negative
errors cancelling out in the actual computation. Figure 10 shows
the Kendall’s 𝜏 coefficient for ZCE and SCC when compared to
the ranking based on true error. Across different bitstream lengths,
ZCE consistently produces a ranking that is more similar to the
reference ranking than SCC.
Takeaway: Compared to SCC, evaluation of design choices using
ZCE yields higher similarity to evaluation based on functional unit
and application error. ZCE thus serves as a valuable metric for
pruning design spaces and comparing different implementations /
parameters of SC number generators.

5 RELATEDWORK
As described in Section 2.3, SCC [1] is a metric that evaluates the
cross-correlation between two SC bitstreams. SCC can be used to
identify if and to what degree two bitstreams are positively or neg-
atively correlated, whereas ZCE can be used to identify if and to
what degree two bitstreams are independent. Other than SCC, there
have been several tools in literature that address correlation. Proba-
blistic transfer matrices (PTM) is an algebraic framework designed
to help analyze correlation-induced errors in an SC circuit [1, 5].
With PTM, the user provides the probability of each input combi-
nation (e.g. 𝑃00, 𝑃01, 𝑃10, 𝑃11) in a row vector and performs matrix
multiplication with a matrix that describes the logic function of
the circuit. The resultant vector yields the expected value of the
circuit with the given input correlation. Automated synthesis of
number sequences used for random number generators has also
been proposed to produce optimal accuracy for SC circuits [11].
Here a mixed integer programming formulation is used to generate
number sequences to obtain maximum accuracy for a circuit. ZCE
is orthogonal to these works, serving as an evaluation metric as
opposed to a synthesis tool.

Another form of correlation for SC bitstreams is autocorrelation,
which refers to the correlation of a bitstream with a delayed version
of itself. SBoNG [13] is a random number generator designed to
have low autocorrelation and has been proposed to enable higher
potential for sharing among different bitstreams. SANG [4] is an
algorithm that generates bitstreams with prescribed autocorrelation
properties and has been proposed to help designers understand and

manage the effects of autocorrelation. Though these works focus
on number generation, ZCE instead provides a methodology for
measuring bitstream independence.

6 CONCLUSION
In this work, we introduce ZCE, an independence metric for finite-
length SC bitstreams. Through careful analysis of the existing SCC
metric, we highlight limitations in its ability to evaluate bitstream
independence and show how ZCE can overcome them. We then
present several use cases where ZCE can be a valuable tool in the
design cycle of SC systems. Compared to SCC, ZCE is able to pro-
vide better alignment recommendations for lower application error,
faster identification of bitstream independence, and more accurate
comparison between variants of random number generators when
choosing what to include in an SC system.
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