
0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3033750, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

1

AirNN: A Featherweight Framework for Dynamic
Input-Dependent Approximation of CNNs

Maedeh Hemmat, Joshua San Miguel and Azadeh Davoodi
Department of Electrical and Computer Engineering

University of Wisconsin - Madison, Madison, WI, USA
Email: hemmat2@wisc.edu, jsanmiguel@wisc.edu, adavoodi@wisc.edu

Abstract. In this work, we propose AirNN, a novel
framework which enables dynamic approximation of an
already-trained Convolutional Neural Network (CNN) in
hardware during inference. AirNN enables input-dependent
approximation of the CNN to achieve energy saving without
much degradation in its classification accuracy at run-time.
For each input, AirNN uses only a fraction of the CNN’s
weights based on that input (with the rest remaining 0) to
conduct the inference. Consequently, energy saving is possible
due to fewer number of fetches from off-chip memory as well
as fewer multiplications for majority of the inputs. To achieve
per-input approximation, we propose a clustering algorithm
which groups similar weights in the CNN based on their
importance, and design an iterative framework which decides
dynamically how many clusters of weights should be fetched
from off-chip memory for each individual input. We also
propose new hardware structures to implement our framework
on top of a recently-proposed FPGA-based CNN accelerator.
In our experiments with popular CNNs, we, on average,
show 49% energy saving with less than 3% degradation in
classification accuracy due to doing inference with only a
fraction of the weights for the majority of the inputs. We
also propose a greedy interleaving scheme, implemented in
hardware, in order to improve the performance of the iterative
procedure and compensate for its latency overhead.

Keywords: Neural Network Accelerators, Early Termina-
tion, Input-dependent Approximation, Approximate Computa-
tion, Low-energy Design.

I. INTRODUCTION

In recent years, deep neural networks, inspired by human
brain system, have been impressively successful in performing
complicated tasks including object recognition, face detection,
and image classification. Due to high accuracy of these net-
works, they have gained significant attention in different fields
of machine learning and computer vision. However, the accu-
racy boost comes with significant increase in the size of neural
networks which mandates their efficient hardware implementa-
tion. An important challenge for the efficient implementation
is their high demand in terms of memory and computation;
state-of-the-art Deep Neural Networks (DNNs) require storage
of several Megabytes of parameters and execution of billions
of operations for each inference [7], [19].

To reduce computational and memory costs of DNNs, var-
ious approaches have been proposed to simplify the network
and boost the energy efficiency. Pruning, quantization, low-
rank approximation, and approximate computation are among
widely used techniques that aim to increase the efficiency of
the network by means of reducing the number of parameters
to store in memory or decrease the precision of computational
operations [3], [6], [18], [24], [13]. As an example, in [24],
the authors propose to approximate the network by removing
less critical nodes to reduce computation complexity. However,
all of the aforementioned techniques are mainly applicable
during training and do not provide an opportunity to trade
off accuracy and energy dynamically. More importantly, these
techniques are oblivious to the variations in the inputs.

Motivation: Need for Input-independent CNN Approx-
imation. A key insight is that not all inputs require the same
amount of computation to be correctly classified. While some
inputs need to perform all computations in the network, the
vast majority are easy to classify. Furthermore, not all weights
in the network contribute equally to generate the output. Given
these observations, reconfigurable and approximate network
designs have been proposed in [17], [23], [21].

The authors in [21], [20] propose SeFAct, a framework for
dynamically reducing the energy consumption of the network
and enabling network early termination. To achieve this, they
propose to adaptively activate a subset of all neurons to do
the inference, to be determined by the received input, thus
reducing energy. This approach though requires a special
learning phase in order to find the appropriate correlation
between activations and inputs belonging to different classes.

In [17], a teacher-student scheme is exploited to propose
Big/Little DNNs for energy-efficient inference. Here, a Little
network with fewer layers/less energy and a Big network
with higher complexity and accuracy are trained. Then, during
inference, the Little network is executed first and Big network
is inferred only if Little can not provide an acceptable result.
However, this method can even increase the memory and
computational costs if the two networks do not have shared
weights or layers. In addition, the user cannot reconfigure the
design with respect to the available energy budget.

In [23], the authors propose an incremental learn-
ing/inference framework in which the network is trained incre-
mentally at the beginning by changing its architecture through
increasing the number of filters in convolutional layers at each
iteration. Then, in the inference mode, a portion of the network

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13,2021 at 09:28:06 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3033750, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

2

can be turned off whenever the network can provide acceptable
accuracy. The main drawback of the proposed framework
though is that it needs an incremental training process and
can not be directly applied to an already trained network.
In addition, although fully connected layers are known to be
redundant and a significant portion of their weights do not
play an important role in accuracy, they are not optimized for
incremental inference to boost energy efficiency.

Our Solution: AirNN. To solve the aforementioned chal-
lenges, we propose AirNN, a featherweight framework for
dynamic and input-dependent approximation of CNNs. Our
goal is to approximate an already-trained CNN in hardware
dynamically, based on the received input in order to trade off
accuracy and energy and enable network early termination.
The unique feature of AirNN is that it approximates the CNN
for each input. The approximation is achieved by fetching
only a fraction of the total weights from off-chip memory,
to be determined based on the specific input, with the rest
of the weights remaining as 0. This directly translates into
energy saving due to fewer fetches from the energy hungry
off-chip memory and fewer computations. Orthogonal to input-
dependent approximation, the proposed framework allows the
user to control the accuracy and energy consumption in run-
time via adjusting the termination condition; As a result,
more energy saving can be achieved at the cost of negligible
accuracy degradation.

To enable network approximation while maintaining the
performance, we propose two algorithms, Clustering and In-
terleaving, to be implemented in hardware:

1) Clustering algorithm is proposed to improve network
energy-efficiency. The proposed clustering algorithm di-
vides weights of the pre-trained CNN in terms of their
importance into groups. For each input, we propose
an iterative process (implemented in hardware) which
fetches only the required number of important clusters
from memory. We also propose new hardware structures
to implement our framework on top of a recently-
proposed FPGA-based CNN accelerator to dynamically
approximate the CNN at run-time. This is while hard-
ware implementation of the core CNN remains intact.
The proposed framework can decrease the network en-
ergy consumption for around 15%-90% across different
networks with less than 3% degradation in accuracy.

2) Interleaving algorithm is proposed to improve network
performance (execution time). AirNN may increase the
latency and execution time of the network for inputs that
need several round of inference to generate acceptable
output. To tackle this, we propose an interleaving al-
gorithm, implemented in hardware. The proposed inter-
leaving algorithm exploits the ”extreme” sparsity of the
weight matrixes originated from clustering to improve
the performance. The proposed interleaving algorithm
can improve network execution time by up to 60%.

The rest of the paper is organized as follows. In Section
II, we briefly overview related works. Section III describes
the proposed framework, AirNN, followed by the details of
our clustering algorithm. The hardware design is provided in

Section V. Our proposed Interleaving scheme followed by its
hardware implementation is discussed in Section VI. Lastly,
AirNN performance is evaluated in Section VII.

II. RELATED WORKS

Prior works on reducing memory and computational cost of
deep neural networks can be divided into two main categories:
input-independent and input-dependent approaches.

Input-independent approaches compress the network
model statistically and during training, regardless of the vari-
ations in the received inputs. These techniques usually focus
on reducing the number of parameters and/or reducing the
precision of each individual weight. Quantization, low-rank
approximation, and pruning are among widely used techniques
in this category. These techniques though are mainly applica-
ble during training and do not compress the network model
based on the received input.

It should be noted that although AirNN aims to reduce the
number of fetched weights during inference, it is different
from pruning for two important reasons. First, in pruning, the
number of parameters remains unchanged during inference.
Whereas in AirNN, the number of parameters is dynamically
changed during inference with respect to the received input.
Second, in pruning, there is no opportunity to trade off
energy consumption and accuracy by means of using less/more
weights once the network is trained. In contrast, AirNN is
able to control the number of clusters (which determines the
number of weights) and termination condition to adjust energy
savings.

Input-dependent techniques, in contrast, take the varia-
tions in the received input into consideration, thus dynamically
pruning/approximating the network at run-time. The key moti-
vation for the input-dependent techniques are twofold: not all
inputs require the same amount of computation to be correctly
classified, and not all the weights in the network contribute
equally to generate the output. Input-dependent approximation
techniques can be divided into three main groups: 1) skipping
ineffectual MAC operations based on the received input, 2)
skipping non-critical layers of the network, and 3) dynamic
weight pruning. Our work falls into the third category.

Skipping ineffectual MAC operations. Some of the com-
putations in the network will eventually become ineffectual
due to presence of ReLU function (which clamps the negative
neurons to zero) and Pooling function (which downsamples
the neurons). With this observation, the authors in [1], [22]
propose approaches that predict whether or not a neuron
becomes ineffectual as it propagates through the network.
If eventually ineffectual, the network will skip the MAC
computations for that neuron. Due to the variations in the
received inputs, the ineffectual neurons will vary from one
input to another. Hence, ineffectual neuron prediction should
be done at run-time.

Skipping non-critical layers. Prior works in [16], [15]
exploit the concept of ”easy vs. difficult inputs” to approximate
the network. Given that some inputs are easier to classify,
these works propose to dynamically skip some of the layers
if the network reaches an acceptable output. To achieve

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13,2021 at 09:28:06 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3033750, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

3

Step 0:
Reset the weights, wait for next input

Step 1:
Load next batch of clusters from memory

Step 2:
Run the DNN with the new weights

Step 3:
Calculate score

Step 4: Score
above threshold?

NOYES

Need higher
accuracy

Reached sufficient
accuracy

Cluster the weights
of network

Figure 1: Overview of our approach.

this, for example, the authors in [16] proposed to insert a
simple classifier right after each convolutional layer. Then,
depending on the confidence of each newly-inserted classifier,
the network will decide upon executing or skipping the next
convolutional layer. This approach though will increase the
network model size and number of parameters because of the
inserted classifiers.

Dynamic weight pruning. In contrast to static weight
pruning, the works in this group aim to prune the weights
dynamically and at run-time, to be determined based on the
current input. SeFAct, proposed in [21], [20] and our proposed
framework, AirNN, fall into this category. In SeFAct, the
authors propose to adaptively activate a subset of all neurons to
do the inference, to be determined by the received input, thus
pruning non-critical weights. This approach though requires
a special learning phase to extract the correlation between
the weights and the inputs belonging to different classes. In
[20], the authors discuss how optimized thresholds for learning
phase can be found. The results show 20%-25% energy saving
in LeNet5 and AlexNet.

AirNN is fundamentally different from the prior input-
dependent approaches in three major ways. 1) Our work guar-
antees to maintain accuracy while approximating the network
and reducing the energy. It is because AirNN breaks down
the inference into several iterations and allows each input
to go through as many iterations as required to be correctly
classified. 2) AirNN is not increasing the network model size
as it is not adding new layers/parameters to the network,
thus it can be implemented with the minimal overhead. 3)
AirNN introduces the termination condition as a knob that
enables users to explore the tradeoff between the classification
accuracy and energy consumption.

III. OVERVIEW OF OUR APPROACH

We are given an already-trained CNN so the weights are
known a-priori. Our goal is to approximate the CNN, dy-
namically and for each input, thus enabling early termination.
This input-dependent approximation is performed via using
only a fraction of the original (non-zero) weights and without
altering the structure and hardware implementation of the
core CNN. Using a fraction of the weights translates into
energy saving by means of reducing off-chip data accesses
from DRAM and elimination of some multiplications. Input-
dependent approximation results in degradation in accuracy.

Our goal is to achieve the maximum energy saving subject to
not falling below a threshold of an accuracy score [12].

AirNN procedure. Figures 1 shows a high-level flow chart
of our input-dependent approximation, AirNN. First, as a
pre-processing step, we run a clustering algorithm which
groups the weights in the CNN into K clusters. The clustering
algorithm works at the granularity of a layer. The ordering
does not matter because the algorithm is independently applied
to each layer. For each layer, the weights are divided into K
clusters, by solely looking at the values of the weights in that
layer.

Clustering is done only once and offline, and the clusters are
stored as separate groups in memory. The clustering algorithm
ensures that the weights within one cluster have the most
similarity to each other, while the weights in different clusters
have the least similarity. This allows viewing the K groups of
weights in terms of their “importance” in the sense that the
cluster with the highest absolute value of weights contributes
the most to the classification accuracy.

As shown in Figure 1, after the one-time clustering, Step
0 begins upon receiving a new input for classification. In
this step, all weights in the CNN are reset to 0. Next an
iterative procedure starts to approximate the CNN and conduct
inference for that input. At Step 1, we load a new batch of
weights from memory which are fetched from the clusters with
the highest level of “importance”. AirNN fetches a new group
of weights for each layer from the clusters of that layer. As a
result, each layer is approximated more accurately compared
to the previous round because of utilizing an additional cluster
of fetched weights during inference. The remaining weights in
the network remain 0. Then the CNN runs with these weights
in Step 2 which allows calculating a score in Step 3. If the
score is below the given threshold, a new iteration starts (for
that same input) to fetch the next batch of “important” weights.
The new weights in the network will be the weights from the
iterations so far, for example the first two batches in this case,
while the remaining weights remain 0. The iterative algorithm
terminates as soon as the accuracy score reaches above the
specified threshold indicating that an acceptable classification
accuracy has been reached. Upon termination, the procedure
goes back to Step 0 and waits to receive the next input. Per-
input approximation of the network and its early termination
are main sources of energy consumption reduction during
inference.

The above procedure approximates the CNN per input with
as few non-zero (original) weights as possible. Each iteration
of our procedure can be viewed as applying a level of approxi-
mation for the considered input, with the first iteration having
the most approximation and the final one having the least.
A separate inference is done per iteration so the procedure
may be viewed as performing incremental inference with more
number of (non-zero) weights per iterations.

Each batch of weights that are fetched per iteration consists
of two clusters which are the ones with the maximum positive
and minimum negative average weights across the clusters.
The reason behind this is that some functions in the CNN
(particularly ReLU) are sensitive to the sign of the input to
generate the accurate output. Therefore, the clusters with the

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13,2021 at 09:28:06 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3033750, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

4

N

I1

3.1

Cluster 3

Cluster 6

Cluster 2

Cluster 4

Cluster 5

Cluster 1

N = (I1 W1) + (I5 W5) +
(I2 W2) + (I4 W4) + (I6 W6) + (I7 W7) +
(I3 W3) + (I8 W8)

-1.5

-0.8

2.4

-2.3

1.9

1.7

0.5

I2

I3

I4

I5

I6

I7

I8

Figure 2: Illustration of the approximate computing performed at a neuron
by sequentially fetching clustered weights.

most positive and most negative average weights should both
be given higher priority.

For each input, up to
⌈
k
2

⌉
iterations may occur to reach a

final approximation and produce the final inference result. In
the extreme case, all clusters will be fetched so no weights will
be zero and there won’t be any approximation (which guaran-
tees exceeding the minimum threshold eventually). We show
in our experiments with well-known CNNs and datasets that
often times, one or two iterations are sufficient to approximate
with high accuracy for the majority of inputs.

The termination condition of our procedure controls the
accuracy. It is based on calculating a score in Step 3. We
use the metric proposed in [17] to calculate the score which
is the absolute value of difference between the two largest
output neurons of the last layer in the CNN. Due to presence
of fully connected layer as a classifier at the last stage of
all CNNs, each output neuron represents the probability that
the input belongs to the corresponding class (i.e., a number
in range (0,1)). Consequently, small values of score translates
to higher likelihood of misclassification since it reflects that
two output neurons have close probabilities. Therefore, larger
score is equivalent to more accurate classification.

In our experiments, we first set the threshold to 0.9. This
threshold is based on empirical results reported in [23] which
shows this threshold leads to almost no degradation in ac-
curacy. Then, we use the termination condition threshold as
a knob to further trade off accuracy and energy at run-time.
To achieve energy consumption adjustment, one can vary the
termination threshold at the cost of accuracy degradation.
Decreasing the threshold will degrade the accuracy given that
more samples are prone to misclassification. However, we will
show that it can be used for further energy saving with minimal
accuracy degradation.

Figure 2 shows an example on how the result of K-
means clustering is utilized to approximate the computation at
each neuron. Assume that the clustering algorithm groups the
weights of the layer which contains this neuron into 6 clusters
based on their values. The figure shows how the weights of
the incoming edges to this neuron are grouped after clustering.

As can be seen, the weights belonging to the same cluster
have the most value similarity. The computation is then
performed iteratively, starting from fetching the clusters with
the highest absolute value of weights (i.e., clusters 1 and 2).
The output neuron is partially computed by fetching weights
W1 and W5 from memory. In fact this is done for each neuron

Data Off-chip Memory

Cluster 1 Cluster 2 Cluster K

Weight Off-chip Memory

On-chip Buffers

MAC Units

Activation

/Pooling
Control Unit

DNN with dynamic management

of hardware components

Data

Control Signal

Figure 3: Overview of the underlying hardware.

in each layer before inference starts at that iteration. If the
output of the network is then found to not be acceptable,
then the weights of clusters 3 and 4 are fetched in the next
iteration. The computation at this neuron is more accurate in
this iteration because W2, W4, W6 and W7 are used. The result
of the inference is therefore more accurate.

As the above example shows, by fetching the clusters
sequentially and from the more important ones, we can ap-
proximate the computations per neuron and reduce the number
of memory accesses. We also show that for the majority of
the inputs, only one or two iterations are needed to reach a
desired accuracy. This translates into energy savings because
the overall number of fetches from the off-chip memory are
significantly reduced.

It should also be added that AirNN will be most beneficial
when the weights do not fit on chip which is the case for
many complex neural networks and/or when neural networks
are deployed on resource-constrained platforms with limited
memory and energy budget such as embedded systems or
mobile devices.

Abstract Hardware model. An abstract hardware model
of AirNN is also shown in Figure 3. From the hardware
side, the weights and input data are stored off-chip. Unlike
conventional CNN implementations, in our hardware model
the weights are stored by their clusters. During an inference,
the network receives the weights and data from memory to
perform computations and generates an output. We use a
control unit to implement input-dependent approximation and
dynamic management of hardware resources in the CNN. The
control unit receives its input from the output of the imple-
mented CNN and controls the memory and computational
units of the neural network to either load more clusters of
weights and run the network for more iterations or generate
the final output, terminate the execution of network, and reset
the on-chip buffer.

We show in our experiments that well-known CNNs can
be approximated with a small subset of important weights for
majority of the inputs in their testing datasets. This translates
into significant energy saving due to significant reduction in
number of fetches of weights from off-chip memory. This is
also in part because the number of iterations to reach a final
approximation per input is typically small (e.g., only one or
two iterations for majority of inputs per CNN as shown in
our experiments). Next, we discuss more details about our
clustering algorithm..

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13,2021 at 09:28:06 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3033750, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

5

IV. DETAILS OF CLUSTERING

In this work, we use the K-means clustering algorithm [2]
to cluster the weights of the trained CNN. The objective of
K-means clustering is to minimize the Within-Cluster Sum of
Squares of the clustered elements (denoted by WCSS) [18].
This in turn maximizes the similarity between the elements of
each cluster. To compute WCSS for a cluster, sum of square
is measured using the distances of the elements in a cluster
from the centroid of that cluster.

To use the K-means clustering algorithm, we need to first
determine the number of clusters (value of K). Determining
the appropriate K for each CNN needs a number of consid-
erations. On one hand, K controls the cluster size which in
turn translates into the number of weights which are fetched
from off-chip memory per iteration of our input-dependent
approximation procedure. Having a higher number of clusters
translates into smaller cluster size which may lead to more
number of iterations per input, and thus a higher energy
consumption. Having many clusters in theory is better to
provide more flexibility in approximation and higher chance
that the elements within the same cluster are similar (i.e., have
a smaller WCSS). However too many clusters in practice may
lead to performance degradation in the CNN due to overhead
of the control unit to manage dynamic approximation and early
termination of the network.

We use the following procedure to determine a suitable
value of K to account for the above-described considerations.

Specifically, we use the Elbow algorithm [2] to determine
the number of clusters. In the Elbow algorithm, WCSS is
reported as a function of K. As expected, WCSS decreases
with increase in K because the elements in each cluster are
more likely to be similar if having more number of clusters.
Based on our observations, there exists a point where the rate
of reduction in WCSS as a function of K will be the most,
and after that point, increasing the number of clusters does not
significantly reduce WCSS. We choose that point to select the
number of clusters which achieves a reasonably-small value
of WCSS with a reasonably-small number of clusters.

V. HARDWARE DESIGN

We use a recent FPGA-based CNN accelerator [25] and
modify it to incorporate input-dependent approximation of the
CNN at run-time. In this section, we assume the CNN is
already implemented in hardware and do not alter its imple-
mentation. The new hardware component that we propose is
composed of two control units to keep track of the number of
iterations, load the appropriate weights (for the right number
of clusters) at a given iteration, evaluate the termination
condition, stop/reset the network upon termination, and wait
for the next input. Figure 4 shows the overall architecture
of the (modified) accelerator used in this work. The parts
highlighted in orange are added by us. We first discuss the
FPGA accelerator from [25] which we refer to as the base
accelerator followed by design of control units.

A. Overview of the Base CNN Accelerator
As shown in Figure 4, in the base CNN accelerator [25], the

weights and input data are stored in off-chip memory and are

transferred to on-chip buffers through a DDR3 interface. In
addition, each layer of the network is implemented separately
and has its own input/output/weight buffers and computational
units, as shown in Figure 4. During inference, the weights and
input data are read from the main memory and are stored in
the on-chip buffers according to the instructions provided by
a Read Weight Controller unit. Then, the computational phase
starts to perform one inference. The main functions of this
phase are multiplication and accumulation operations in each
layer of the network in which each weight is multiplied by its
corresponding input neuron. Next, the results are accumulated
using adder trees and are passed through a linear/non-linear
activation function to generate output neurons.

While the accumulation operation needs to wait for the
results of previous multiplication, the multiplications are inde-
pendent from each other. Therefore, to increase the throughput,
there are several parallel two-input multipliers to compute each
output neuron. The output neurons of each layer will then be
stored in appropriate buffers and serve as an input for the next
layer. This parallel implementation using two-input multipliers
is key to our because it provides maximum flexibility to do
inference with a fraction of the total weights, as we require in
our approach.

B. Implementation of Convolutional Layers

A convolutional layer in a CNN is a layer with feature
maps as its inputs and outputs. Each convolutional layer takes
as an input a set of C input feature maps and produces M
output feature maps. Each output feature map is generated
by convolving the input feature maps with a kernel of size
C×K×K. To generate M output feature maps, the layer has
M kernels and the size of the weight matrix for the layer is
M × C ×K ×K. To generate each feature map, the kernel
slides over the input feature map with stride of size S. Then,
at each position, the kernel’s weights are multiplied with the
overlapping values of the input feature map and are summed
together to generate one single point in the corresponding
output feature map. This process is repeated for all of the
M kernels to generate M output feature maps.

Consider the example in Figure 5 for LeNet5. The first
convolutional layer is C1 and receives one 28 × 28 input
feature map, so C=1. It maps this input feature map to 20
output feature maps of size 24 × 24, so M = 20. This is
done by defining a kernel of size 5 × 5 which slides over
the input feature map with a stride of 1. Hence, the weight
matrix for this layer is 20 × 1 × 5 × 5. Similarly, the second
convolutional layer is C2 and it receives 20 feature maps as
its input and generate 50 feature maps as its output. Hence,
the weight matrix for the layer is 50× 20× 5× 5.

To implement the convolutional layer in hardware, we
exploit parallelism over input feature maps and process them
simultaneously. To do so, at each cycle, a tile of input feature
maps of size C ×K ×K as well as one kernel with the same
size are fetched to the computational units. Each computational
unit consists of K × K multipliers followed by adder trees
with C of them in parallel to process C input feature maps.
Then, the computation phase starts and the input feature map

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13,2021 at 09:28:06 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3033750, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

6

Off-chip Memory

(Input Data)

Off-chip Memory

(Weights)

Off-chip Memory

(Weight Indexes)

DDR3 Interface

Read Weight

Controller

Weight

Buffer

Input

Buffer

Layer 1

Weight

Buffer

Input

Buffer

Layer N
Output

Neurons

Score

Calculation

Unit

C
la

ss
if

ic
at

io
n

T
h
re

sh
o

ld

Bring next

clusters

Buffer

Address

Calculation

Unit

On-chip

Off-chip

Figure 4: Overall architecture of the modified accelerator. The parts highlighted in orange are added to the base architecture to enable dynamic input-dependent
approximation of the CNN.

INPUT
28*28

Convolutions Convolutions

Subsampling Subsampling Full
Connection

Full
Connection

C1: feature maps
20 @ 24*24

S1: feature maps
20 @ 12*12

C2: feature maps
50 @ 8*8

S2: feature maps
50 @ 4*4

F1: 500 neurons
F2: 10 neurons

CS1
CS2

Figure 5: Overview of LeNet5 Architecture.

is mapped to a single position in output feature map. In the
next cycle, while the input feature maps remain unchanged,
the weights of a new kernel are fetched to the computation
units and the second kernel is now processed. Hence, the
data flow for the convolution is input-stationary. This process
repeats sequentially until all of the kernels are processed and M
outputs are generated in the same location for different output
feature maps. To further increase throughput and improve data
reuse, usually Z tiles of the inputs are processed in parallel to
generate Z output neurons. Figure 6 shows the corresponding
architecture for C=1. Also, note that to accumulate the results
of multiplications, several two-input adders are used, forming
a big adder tree.

C. Design of the Control Units

Recall, in our input-dependent approximation scheme, for
each input there may be several iterations of incremental
inference. At each iteration, the weights corresponding to a

new batch of weights (two clusters) are fetched until the
termination condition is satisfied. This requires design of
control units which should support the following features:

• A control unit is needed to load the weights of two
clusters from memory to their corresponding on-chip
buffers of the computational units, prior to start of the
computation. This should be done for each iteration of
incremental inference per input. The challenge is that the
weights that are fetched (belonging to the same cluster)
may be used in different layers of the CNN so it is
not necessary that all weights of a layer are brought
in, prior to the subsequent layers. We propose a sparse
representation scheme to address this challenge.

• A control unit is also needed to evaluate and keep track
of the termination condition based on the current output,
and then decide if more iterations are needed at the end
of each step of incremental inference.

Moreover, AirNN requires the weights to be stored in the

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13,2021 at 09:28:06 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3033750, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

7

Figure 6: Architecture of a convolutional layer.

w11 w12 w13 w14 w15

w21 w22 w23 w24 w25

…….

w

1

Value

Column index

Row index

Layer index

w12 w13 w15 w21 w23

2 3 5 1 3

1 4

....

....

1

Cluster 1

Cluster 2

Figure 7: Sparse storage of weights in a cluster with CRS scheme.

order of clusters in the off-chip memory to enable loading a
particular cluster each time. This also requires slight modifi-
cations to the base accelerator as we discuss shortly.

We note the weight matrix of each layer is sparse initially
and gradually gets populated if more clusters are fetched. We
therefore store the weights using a sparse matrix representation
and in particular discuss how such representation is used when
two cluster of weights need to be fetched each time. First, to
store a sparse matrix, several schemes including Compressed
Row Storage (CRS), Compressed Column Storage (CCS), and
Compressed Diagonal Storage (CDS) have been proposed [5].
In this work, we use the CRS scheme because it is applicable
to any matrix structure and improves data efficiency.

As shown in Figure 7, in our scheme, we utilize four arrays
to store the value and address indexes of the weights in the
same cluster. The address is stored in three arrays which keep
the row index, column index, and the layer that the weight
belongs to. There is a column index entry for each weight
value. The row array is shorter and changes whenever the
row is changed. The layer array is implemented similar to the
row array. The left side of Figure 7 shows the weight matrix
in which two clusters are color-coded. The right side shows
sparse storage for one cluster as an example. The row index
changes to ‘4’ from the second entry to indicate moving to the
second row from the 4th element. These indexes are stored in
off-chip memory with the weight value, as shown in Figure 4
[12].

In the base accelerator, the Read Weight Controller was re-

sponsible to generate the off-chip memory addresses whenever
new weights needed to be fetched. Here this unit needs to be
modified so it generates the off-chip addresses corresponding
to each cluster. We require the weights to be stored in the order
of clusters in the off-chip memory. Given this, the modification
to the existing Read Weight Controller will be minor so Figure
4 shows this as an existing unit from the base accelerator.

Once the off-chip memory is triggered to read two new
clusters of weights, these weights need to be delivered to the
corresponding buffers feedings the computational units which
may belong to various layers. Here we take advantage of the
above-described CRS scheme which already stores an index
along with the value of each weight. Specifically, we propose
to add a Buffer Address Calculation unit, as shown in Figure
4. It receives as input new weight from the memory which
includes value and addresses of its row, column, and layer.
This unit then calculates the address of the buffer for each
weight using its layer, column, and row indexes.

Once the computations are done and the inference results
are generated at the network outputs, the termination condition
needs to be evaluated to decide if it is necessary to bring a new
batch of weights. Recall, the termination condition required
to calculate an accuracy score and determine if it is above a
threshold. Here we introduce a score calculation unit which is
shown in Figure 4. It receives the outputs of the last layer of
the network and generates a control signal which is fed back
into the Read Weight Controller unit to trigger fetching a new
batch of weights. Recall, the score calculation unit calculates
the difference between the two largest output neurons of the
network (as defined earlier in Section II) and compares it to
the given threshold which can easily be implemented. Then,
depending on the generated control signal, the Read Weight
Controller unit loads the next batch of clusters or terminates
the network execution for the current input , resets the weight
buffers and waits for the next input. Per-input approximation
and early termination of the network enabled through weight
clustering, is the key feature of our proposed framework.

VI. GREEDY INTERLEAVING SCHEME: ALGORITHM AND
HARDWARE IMPLEMENTATION

To improve the performance of AirNN, we have proposed a
greedy interleaving scheme. This scheme exploits the extreme
sparsity of weight matrixes, originated from the clustering and
mainly targets convolutional layers of the network as they
contribute to more than 90% of the computational complexity
and power/energy consumption of the network.

In AirNN, many of the weights in the convolutional layer are
zero due to clustering, particularly in the earlier stages of the
approximation. As a result, when one kernel is processed, the
multipliers corresponding to the zero weights are idle (Recall
the hardware implementation of convolutional layers discussed
in V-B.). The idle multipliers can be utilized efficiently to
exploit parallelism across output feature maps in addition to
input ones and process more than one kernel. It subsequently
improve the performance of the accelerator. To achieve this,
we propose a greedy interleaving scheme which interleaves
the kernels with respect to the location of their non-zero

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13,2021 at 09:28:06 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3033750, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

8

w11 0 w13 0 0

w21 0 w23 0 w25

0 w32 0 0 w35

0 0 0 w44 0

0 w52 0 w54 0

w11 w32 w13 w44 w35
w21 w52 w23 w54 w25

Kernel 1
kernel 2
Kernel 3
kernel 4
Kernel 5

a) Before interleaving b) After interleaving

1 3 4 2 5Kernel index

Group index

c) Storage scheme for the results of interleaving

1 1 1 2 2

Figure 8: An example of the proposed greedy interleaving scheme.

weights and enables to process several kernels within one
single computational unit.

A. Details of the Greedy Interleaving Scheme:

Here, we discuss the proposed interleaving scheme in more
details. We first convert the 4D weight matrix of size M×C×
K×K to a 2D matrix of size M×N , where N = C×K×K.
With this representation, each row corresponds to one kernel
and our goal is to interleave the rows with respect to their non-
zero elements. For this, we start from the first row of the matrix
(i.e., the first kernel), called as the reference row. The reference
row then should be compared against all the remaining rows
to find the rows (kernels) it can interleave with. Starting from
the second row, our algorithm traverses through every column
of these two rows and check whether they can be interleaved
or no. Two kernels can be interleaved if there is no “overlap”
in the position of their non-zero element, meaning that they
are not using the same multiplier in hardware. If two rows
can be interleaved, the algorithm updates the reference row
by interleaving it with the second one and go to the third row.
This process repeats until the algorithm traverses through all
of the rows. At this point and after processing the first row,
we have the first group of interleaved kernels which can be
processed simultaneously. Note that we need to keep track of
the rows that are interleaved and grouped together and do not
consider them in next rounds of the algorithm. We then go
to the next “non-interleaved” kernel, select it as the reference
row, and repeat the above process.

Note that, as we go through different number of iterations,
the kernels that are interleaved with each other are changed,
given that in different iterations different fraction of weights
are included in computations. Therefore, we need to apply
the interleaving scheme to each iteration separately. Based
on our results, the network is extremely sparse at the first
three iterations and becomes considerably populated at the last
two or three iterations. Hence, the interleaving scheme can be
beneficial only in the first three iterations.

Figures 8a and 8b show an example on the proposed
interleaving scheme for the weight matrix of size 5 × 5.
Different rows are color-coded to distinguish different kernels.
As mentioned above, we start from the first row and compare it
against all of other 4 remaining kernels. Comparing it against
the second row, they can’t interleave with each other given

that they both have a non-zero weight in their third column.
In contrast, it can be interleaved with third and fourth rows.
Recall that each time two rows interleave, we will update
the reference row. Once the first reference row is processed
completely, we pick the next row provided that it is not already
interleaved with other rows in previous iterations. In this case,
we need to pick the second row and interleave it with the
last row. As the figure shows, after applying the interleaving
scheme, 5 rows (representing 5 kernels) are divided into
2 groups, one containing rows 1, 3, and 4 and the other
containing rows 2 and 5.

B. Hardware Modifications for Implementation of the Inter-
leaving Scheme

Here, we discuss the details of implementing the proposed
interleaving scheme which aims to accelerate the execution
of convolutional layers in the earlier iterations of AirNN
by exploiting the sparsity in the weight matrices observed
in the those iterations. More specifically, our design enables
processing more than one kernel at a time and thus improves
the execution time of computationally-intensive convolutional
layers.

To implement the proposed interleaving scheme in hard-
ware, we need to modify the underlying accelerator while
considering the following issues:

1) Once the interleaving scheme is applied, one single
computational unit is processing a group of kernels.
As a result, the multipliers’ outputs belong to different
kernels rather than one kernel. Hence, the computational
unit should be modified in accumulation phase to only
accumulate the results of multiplications that belong to
the same kernel. This is in contrast to the conventional
design of computational units where all multiplications’
results are added. Furthermore, one computational unit is
now generating more than one output neuron, each be-
longing to a different output feature map. Therefore, the
accelerator controller should be able to keep track of the
generated output neurons and store them appropriately.

2) Since interleaving the kernels is done once offline, we
need to store the results of interleaving appropriately on
hardware. More importantly, the Read Weight Controller
should be able to read the weights of the interleaved
kernels appropriately.

Modification of computational units. To address the first
issue, we need to modify the architecture of each computa-
tional unit in accumulation phase, so that multiplication results
are added up appropriately. This can be done by limiting the
maximum number of interleaved kernels and inserting a few
multiplexers in accumulation phase.

To be more specific, the modified design is shown in Figure
9 for a kernel of size 5×5, which is the kernel size of LeNet5
and CIFAR10 studied in this work. As can be seen, the base
computational unit has 25 multipliers. To enable interleaving
in hardware, we limit the “maximum” number of kernels
to be interleaved to “four kernels”. Accordingly, the base
computation unit is divided into four blocks, each block having
six multipliers with the last one having seven multipliers. Here,

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13,2021 at 09:28:06 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3033750, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

9

Multiplier 1

Multiplier 6

Multiplier 7

Multiplier 12

Multiplier 13

Multiplier 18

Multiplier 19

Multiplier 25

Adder tree

Adder tree

Adder tree

Adder tree

Two- input
Adder

Two- input
Adder

1

1

0

1

0

1

0

0

Flag
0

Flag
1

Flag
2

Flag
3

(Flag 0 == flag1)

(Flag 0 == flag1)

(Flag 2 == flag3)

Two- input
Adder

1

0

1

0

Add2

Add3

(Flag 2 == flag3)

(Flag 0 == flag2)

(Flag 0 == flag2)

Output buffer

Output buffer

Output buffer

Output buffer

Add1

Add2

Add3

Add4

Add12

Add22

Add31

Figure 9: Overview of the modified computational unit.

we add one more constraint to our interleaving scheme: the
kernels interleaving with each other should occupy multipliers
in the granularity level of blocks; So, a kernel with less than
6 non-zero weights occupies one block, while a kernel with
more than 6 and less than 12 non-zero weights occupies
two blocks. Following the proposed granularity, each kernel
occupies either one, two, or four blocks in the computation
unit. Also, each block has a flag which is used to indicate
whether or not two consecutive blocks are occupied by the
same kernel. If the kernel is changed from one block to
another, then the flag bit will be inversed. As a result, each
rising/falling edge of the flag bits implies a different block.

The proposed block granularity enables us to accumulate
the results of multiplications appropriately. Regardless of how
many kernels are interleaved, the results of multiplications
within each block should be accumulated and as a result, four
outputs are generated. Then, depending on the way the kernels
are interleaved, three cases can happen:

Case 1. No kernel occupies more than one block. In this
case, we only need to transfer the four generated results,
shown as Add1, Add2, Add3, and Add4, to output buffers
and no other addition is required. Accordingly, the flag bits
are switching from one block to another and the multiplexers
enable the architecture to bypass next adders and generate the
appropriate outputs.

Case 2. The kernel is occupying four blocks (i.e., no inter-
leaving has happened). In this case, we need to accumulate all
the partial sums generated by each block (i.e., Add1, Add2,
Add3, and Add4) and transfer Add31 to output buffers as
shown in Figure 9. Given that all blocks have the same flag,
the multiplexers enable transferring Add31 to output buffers.

Case 3. Atleast one kernel is occupying two blocks (i.e.,
either blocks one and two or blocks three and four). In this
case, we need to have one more addition to accumulate the
partial sums and Add21 and Add22 should be transferred to
output buffers.

Selecting appropriate number of blocks. Number of
blocks (which corresponds to the number of the kernels pro-

cessed simultaneously) in our design depends on two factors:
1) Size of the kernel which determines the number of available
multipliers. 2) Sparsity of the weight matrix in the first initial
iterations which determines the distribution of the number of
the interleaved kernels at each iteration. Also, to appropriately
sum the partial additions with the help of multiplexers, we
need to have an even number of partial additions at each
level of adder tree in the computational unit (such as Add1,
Add2, Add3, and Add4 in the first level and Add12, Add22
in the second level). Hence, the number of blocks should be
a power of two (i.e., two, four, eight, etc). Using the above
considerations, we can determine the number of blocks for
each DNN model.

For instance, assume a convolutional layer in a given
network has a kernel size of 4×4. This results in 16 multipliers
per processing unit. Also, the number of blocks should be less
than or equal to the total number of available multipliers in the
processing unit and is constrained to power of two (i.e., two,
four, eight, and sixteen stages in this case). To pick the most
appropriate value for the number of blocks, we need to look
at the distribution of interleaved kernels. The most frequent
number of interleaved kernel should be then rounded to the
nearest power of two which in turn determines the number of
blocks.

In the case of LeNet5 and CIFAR10, we observe in our
profiling that interleaving up to four kernels happens most
frequently. Hence, we divided each computational unit to 4
blocks to minimize the overhead of the multiplexers, while
achieving the desired speedup in execution time of convolu-
tional layers.

Storing interleaving results. To address the second issue,
we need to store the interleaving results and enable the Read
Weight Controller to fetch appropriate weights considering the
interleaved kernels. For this, we first store number of groups
per iteration and kernel indexes of the kernels belonging to
the same group for each iteration. More specifically, at each
iteration, there are two arrays where the first array stores the
“kernel index” such that the kernels in one group appear right

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13,2021 at 09:28:06 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3033750, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

10

after each other. The second array stores “group index” which
distinguishes the groups and separates one group of interleaved
kernels form the next group. The size of each array is the total
number of kernels in the underlying layer. Recall the example
in SectionVI, Figure 8. There, we had 5 kernels which resulted
in two groups after interleaving. You can see the corresponding
interleaving arrays in Figure 8c. In the first array, the kernels
belonging to same group appear after each other (i.e., 1, 3, 4
and 2, 5) and the second array distinguishes the groups.

Next, we need to enable the the Read Weight Controller
to bring the weights of the kernels belonging to the same
group. It can be achieved with the help of the Compressed
Row Storage scheme which was discussed earlier. It enables
us to store the weights by their cluster (see Figure 7). Recall
that in this storage scheme, the row index changes whenever
we move from one row to another. In addition, as we discussed
in Section VI, we can view the 4D weight matrix as a 2D one,
where each row represents a kernel. Hence, the change in the
row index reflects a change in the kernel in process. On the
other hand, we have stored the kernel indexes for the kernels
belonging to the same group. Putting all these together, the
Read Weight Controller should be slightly changed to read
the kernel weights by their groups rather than reading them
consecutively. As a result, we are able to fetch weights for
several kernels in one group to the computational units to start
the inference.

VII. SIMULATIONS RESULTS

In our experiments we used five well-known CNNs namely,
LeNet300-100 and LeNet5 (running on MNIST dataset), CI-
FAR10 (running on CIFAR10 dataset), VGG-16 (running on
ImageNet dataset), and MobileNet-V2 (running on ImageNet
dataset). These networks are first implemented and trained
with Neupy [9] and TensorFlow. Then, we quantized the
trained floating point weights to 32 bits and imported each
network in Matlab to verify post-quantization accuracy. This
framework was used to compute accuracy for different clus-
tering scenarios as determined by our approach.

To measure energy consumption of the network during
inference, we first adapted the energy consumption of the
components in the network from [14] and [19]. We used Syn-
opsys Design Compiler to measure energy consumption of our
proposed control units including the score margin calculation
unit and the address calculation unit. The main memory of
the network is DDR3 DRAM in 65nm technology [25]. We
used NVSIM simulator [4] to measure energy consumption of
DRAM accesses. The results are summarized in Table I.

As can be seen, the majority of energy is consumed by
DRAM accesses. In our experiments, we show significant
decrease in total number of DRAM accesses using input-
dependent approximation scheme. This is despite the fact that
multiple inference iterations may be needed to approximate
per input.

A. Number of Clusters in K-means Clustering

The first step for AirNN is clustering the weights of a pre-
trained CNN in which the weights are grouped into K clusters

TABLE I: Energy consumption of different components.

Component Energy (pJ)

Two-input multiplier 1.00
Two-input adder 0.40

ReLU 0.90
Max-pool 1.20

Address calculation unit 0.35
Score margin calculation unit 0.27

DRAM memory access 1950.00

Figure 10: Within-Cluster Sum of Squares (WCSS) of weights as a function
of number of clusters (K).

based on their similarities (i.e., their values and signs). As
explained before, to determine the value of K for a CNN, we
used the Elbow method to measure the With-in Cluster Sum
of Squares (WCSS) for each CNN layer and then calculated
the average WCSS over all the layers as a function of number
of clusters. Figure 10 plots the average WCSS as a function
of K for four CNNs studied in this work. As can be seen,
a small number of clusters can be found by looking at the
point where the rate of decrease in WCSS is maximum. This
corresponds to the value of K for LeNet300-100 to be 8 while
it is 10 for LeNet5, CIFAR10, VGG-16 and MobileNet-V2
from the figure. We note, for MobileNet-V2, clustering was
applied to all the layers except the 19 point-wise convolutional
layers with 1×1 kernels because these layers only had a single
weight so the clustering algorithm was not applicable to them.

The results obtained form the Elbow method guarantee that
the weights within each cluster have the most similarity to
each other and hence the clusters can be fetched with respect
to their importance (i.e., their contribution to generate the
output result). Also, in the proposed iterative approach, the
accuracy will improve as more clusters are included. However,
in addition to having impact on performance, the number
of clusters will determine the energy saving of the iterative
framework as it determines the number of iterations required
per input. Thus, we need to gain more insight on the relation
between number of clusters and network energy consumption.
On one hand, more clusters may be desirable as they provide
more opportunities for the network to be terminated if the
current output is acceptable. Moreover, with more clusters,
the number of weights within each cluster will reduce as the
total number of weights are constant. As a result, an acceptable
output may be achieved with lower energy consumption. On
the other hand, more clusters and subsequently more iterations
can degrade the performance of the network due to latency
overhead incurred by the iterative framework.

To consider this tradeoff while determining the number of
clusters, we have conducted further experiments where number

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13,2021 at 09:28:06 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3033750, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

11

TABLE II: Accuracy versus fraction of weights used per iteration for
LeNet300-100 for different number of clusters for LeNet300-100.

Number of Iterations Fraction of Weights Included Accuracy

8 clusters

Base architecture 1 97.41
iteration 1 0.01 45.90
iteration 2 0.10 93.80
iteration 3 0.31 97.16
iteration 4 1 97.41

10 clusters

Base architecture 1 97.41
iteration 1 0.01 33.10
iteration 2 0.05 95.90
iteration 3 0.16 97.29
iteration 4 0.37 97.39
iteration 5 1 97.41

12 clusters

Base architecture 1 97.41
iteration 1 0.01 28.90
iteration 2 0.02 75.23
iteration 3 0.09 96.50
iteration 4 0.20 97.00
iteration 5 0.40 97.39
iteration 5 1 97.41

of clusters are varied for a particular network. (Note that the
minimum number of clusters is the one obtained by the Elbow
method). Then, for different number of clusters, the fraction
of weights at each iteration and their corresponding accuracy
are measured. As an example, Table II reports the accuracy
versus fraction of weights used per iteration for LeNet300-100
under various number of clusters. Then, we compared them
and chose the one that results in almost the same accuracy
compared to the others using smaller fraction of weights. In
the case of LeNet300-100, we need at least 30% of weights to
achieve an acceptable accuracy with 8 clusters (i.e., less than
1% degradation compared to the base case), while it is around
16% with 10 clusters and 20% for 12 clusters. Hence, 10
clusters is chosen for LeNet300-100.Using the same approach,
we have chosen 12 clusters for LeNet5 and 10 clusters for
CIFAR10, VGG-16, and MobileNet-V2.

Note that the number of fetched clusters is determined by
the termination condition and is input-dependent and equal to
twice the number of iterations. It is at most K per input. In
fact we show in our experiments it is often much smaller than
K.

B. Accuracy vs Energy Tradeoff during Incremental Inference

In this experiment, we show the tradeoff between various
parameters during incremental inference using AirNN.

Figure 11 shows classification accuracy, cumulative energy
consumption (since iteration 1), and fraction of used weights,
as a function of number of iterations for the five CNN models.
The orange/blue bars show the accuracy and cumulative energy
when averaged across all the inputs for which AirNN has
not yet been terminated. (The majority of the inputs will
terminate in less than 4 iterations, as we will report in
another experiment.) More specifically, the reported energy
number in each iteration is cumulative, meaning it includes the
energy that is consumed in all the previous iterations, and is
normalized to the energy consumption of the base model. Note

that if AirNN is terminated with fewer iterations for an input,
then that input is not counted towards energy consumption
in future iterations. To compute the classification accuracy
at a particular iteration, we only considered the inputs for
which AirNN terminated up to that iteration. The classification
accuracy for the rest of the inputs was set to 0 because AirNN
was not yet terminated for them. The red curve shows the
fraction of used weights in an iteration which is independent
of the input (but can vary from one network to another).

As can be seen, executing more iterations increases energy
consumption due to fetching more weights but in turn the
accuracy is improved. The fraction of fetched weights directly
translates to the number of DRAM accesses which is the
dominant source of energy consumption, as was previously
reported in Table I.

Next, in Table III, we report the number of required itera-
tions (until termination), cumulative energy consumption, and
fraction of the fetched weights to reach within 3% accuracy
of the base model for the five CNN models. The classification
accuracy, before and after applying AirNN, is also reported in
the last two columns of the table. Note, the numbers for each
network is an average, when running AirNN across all the test
inputs except fraction of weights which is independent of the
input.

As the results in Table III show, AirNN is able to signifi-
cantly reduce the energy consumption of the network without
any significant loss in the accuracy. As an example, in case of
LeNet5, we can reach within 2% accuracy of the base model
after 3 iterations with using at most 45% of the weights and
consuming only 49% of the energy, compared to the base
model. A similar trend can be seen for the other CNNs.

Figure 13 shows the distribution of percentage of input
samples with respect to the number of required iterations for
AirNN to terminate, for each CNN. As can be seen, for the
majority of the inputs, AirNN terminates with only two or
three iterations. This means, for the majority of the inputs each
CNN can be approximated with significantly fewer non-zero
weights, translating into a significant energy saving.

C. Adjustment of the Score Threshold for Accuracy versus
Energy Tradeoff

In this section, we have run some experiments to investi-
gate the impact of changing the score threshold on energy
consumption and accuracy. To achieve this goal, we have
decreased the score threshold to values less than 0.9 and
measured the accuracy and normalized energy consumption
corresponding to each score threshold. The results are shown
in Figure 12 for four networks. As expected, reducing the
score threshold will decrease the accuracy of the network given
that with smaller score threshold, more samples are prone
to misclassification. In the meantime, it will also decrease
the energy consumption of the network, because many inputs
require fewer number of iterations to be classified. As the
figure shows, by decreasing the score threshold from 0.9 to
0.8, the network accuracy is degraded around 5%. Also, AirNN
achieves more energy saving for the inference. As an example,
in the case of CIFAR10, the normalized energy consumption
is reduced from 0.47 to 0.38 of the base network.

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13,2021 at 09:28:06 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3033750, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

12

Figure 11: Accuracy, cumulative energy consumption, and fraction of used weights, as a function of number of iterations for various CNN models. The
numbers shown for each iteration are averaged across all inputs for which AirNN has not yet been terminated by that iteration. (The majority of the inputs
only require a couple of iterations, as will be shown later.) As can be seen, executing more iterations increases energy consumption due to fetching more
weights but the accuracy improves in return.

TABLE III: Results of applying AirNN to various neural network models. The numbers for each network is an average, when running AirNN across all the
tested inputs.

Network #Required iterations Fraction of weights Normalized
cumulative energy

Accuracy
(Before AirNN)

Accuracy
(After AirNN)

LeNet300-100 3 0.16 0.11 97.41 97.29
LeNet5 3 0.45 0.49 98.40 97.11

CIFAR10 3 0.35 0.32 80.10 78.10
VGG-16 4 0.76 0.76 89.44 88.01

MobileNet-V2 4 0.92 0.85 78.30 75.60

Energy consumption Energy consumption Energy consumption Energy consumption Energy consumption

LeNet300100 LeNet5 CIFAR10 VGG-16 MobileNet-V2

Figure 12: Accuracy and energy consumption as a function of score.

TABLE IV: Results of applying AirNN to two already-pruned networks to achieve additional energy savings.

Network #Required iterations Fraction of weights Normalized
cumulative energy

Accuracy
(Before AirNN)

Accuracy
(After AirNN)

VGG-16
(pruned with [8])+AirNN) 4 0.78 0.78 88.90 87.30

VGG-16
(pruned with [11])+AirNN) 4 0.84 0.81 87.90 86.60

Figure 13: Distribution of number of inputs based on the required number
of iterations of our algorithm for different CNNs.

D. Assessment of AirNN on Already-Pruned DNNs:

As mentioned earlier, AirNN may be combined with ex-
isting model pruning techniques to further reduce the energy

consumption of the network by pruning a subset of weights
dynamically and at run-time based on its received input.

To show this, we first considered two different pruned
models of VGG-16 (pruned using two recent works [8] and
[11])1. Next, we applied AirNN to each pruned model to
cluster the remaining, post-pruned weights in each case. The
clustering led to 10 groups for the pruned model of [8] and
12 groups for the pruned model of [11]. Then, we ran the
networks for different number of iterations and measured the
energy consumption and classification accuracy. The results
are summarized in Table IV. Note that cumulative energy
and accuracy are averaged across all test inputs. As can be
seen, after 4 iterations, both pruned models reach within 2%

1We directly used the pruned and retrained models which were publicly
available.

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13,2021 at 09:28:06 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3033750, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

13

accuracy of the base models by consuming only 0.78 (in
[8]+AirNN) and 0.81 (in [11]+AirNN) of energy, compared
to the corresponding base models.

E. Results of the Proposed Interleaving scheme

In this section, we provide the results of applying the
interleaving scheme to the convolutional layers of LeNet5,
CIFAR10 and VGG-16. To apply the interleaving scheme,
we first extracted the weight distribution of the kernels at
different iterations for each network. Then, we have applied
the interleaving scheme to non-zero kernels while limiting the
maximum number of interleaved kernels to 4.

Results of LeNet5 and CIFAR10. The results are shown
in Tables V and VI for LeNet5 and CIFAR10, respectively.
The first column of the table reports the number of iterations.
The second column reports the number of non-zero kernels
for each layer per iteration. Note that due to clustering, it is
possible to have a kernel with all zero weights for a specific
iteration. These kernels are not considered when applying
the interleaving scheme, given that they are not executed in
the base iterative framework. As can be seen, for the first
convolutional layer of LeNet5, there are 3 and 16 non-zero
kernels in the first and second iterations, respectively (while
the original number of kernels in non-iterative framework is
20). The third column reports the number of interleaved kernel
achieved once we apply interleaving. This number reflects
the total number of kernels which should run sequentially
while each of these interleaved kernels consists of up to 4
individual kernels, running in parallel. The last column reports
the speedup achieved per layer after interleaving the kernels.

As the results show, in the first iteration up to 3.5x and 2.9x
speedup can be achieved across different convolutional layers
of LeNet5 and CIFAR10. The performance speedup per layer
decreases in the second iteration and it gets saturated in the
third iteration. However,as the majority of inputs go through
one or two iterations, the proposed interleaving scheme will
be beneficial to improve network performance.

Results of VGG-16. Unlike LeNet5 and CIFAR10, the
proposed interleaving scheme is not effective at speeding
up the inference for VGG-16. It is because the sparsity
of convolutional layers is not significant in VGG-16 as we
reach the second iteration. Low sparsity of weight matrices
in convolutional layers originates from the distribution of the
weights in these layers. Unlike LeNet5 and CIFAR10, in VGG-
16, a significant fraction of the weights have relatively high
absolute values. Given that our clustering algorithm is value-
based, these weights are fetched to the computational units in
the very first iterations. This in turn reduces the sparsity which
is the key to our interleaving scheme.

F. Performance Evaluation

Latency measurement setup. In this section, we measure
the latency of AirNN before and after applying the inter-
leaving scheme for LeNet5, CIFAR10 and MobileNet-V2. To
measure the latency of the network during inference, we first
adapted the latency numbers of each individual computation
unit including Pooling and ReLU from [19], [14]. We used

TABLE V: Results of applying the interleaving scheme to LeNet5.

Iteration # of non-zero kernels
(Before interleaving)

of grouped kernels
(After interleaving)

Speedup
(Per layer)

Convolutional layer 1

iteration 1 3 1 3.0x
iteration 2 16 5 3.2x
iteration 3 20 17 1.2x

Convolutional layer 2

iteration 1 50 14 3.6x
iteration 2 50 23 2.1x
iteration 3 50 48 1.0x

TABLE VI: Results of applying the interleaving scheme to CIFAR10.

Iteration # of non-zero kernels
(Before interleaving)

of grouped kernels
(After interleaving)

Speedup
(Per layer)

Convolutional layer 1

iteration 1 11 5 2.2x
iteration 2 28 17 1.6x
iteration 3 32 29 1.1x

Convolutional layer 2

iteration 1 32 11 2.9x
iteration 2 32 23 1.4x
iteration 3 32 32 1.0x

Convolutional layer 3

iteration 1 64 24 2.6x
iteration 2 64 51 1.2x
iteration 3 64 60 1.0x

Synopsys Design Compiler to measure energy consumption
of our proposed control units. We have also used NVSIM [4]
to measure latency of DRAM accesses. Table VII summarizes
the latency of arithmetic operations in 45nm technology and
memory accesses in 65nm technology [25]. Then, according
to the architecture of the underlying layers in the network
such as number of input channels, number of output channels,
and size of the convolutional kernels, we build our analytical
model to map the network into the hardware. The underlying
hardware is modeled according to Google’s Tensor Processing
Unit (TPU) design [10] which is also shown in Figure 3. Since
the mapping is done based on the network architecture, our
analytical model accounts for the available hardware resources.
Lastly, once the model is built, we measure the network latency
as the total number of clock cycles that is required to finish
the inference for a given input. We note that the number of
iterations per inference varies from one input to another.

In the case without interleaving, the latency is increased
with increase in the number of iterations given that each input
needs to repeat the inference phase for several times. The
performance of the iterative framework can be alleviated by the
proposed interleaving scheme; Because it allows the hardware
to utilize idle multipliers and exploits parallelism over both
input and output feature maps.

AirNN execution time. Table VIII summarizes the cumula-
tive execution time (since iteration 1), as a function of number
of iterations. The runtimes are normalized to those of the cor-
responding base models (which are non-iterative). Execution
time at each iteration is measured by calculating the number of
required clock cycles to finish the inference up to that iteration,
when averaged over all the test inputs. The execution time of

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13,2021 at 09:28:06 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3033750, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

14

TABLE VII: Latency of various arithmetic operations and memory accesses.

Component Latency (clock cycle)

Two-input multiplier 1
Two-input adder 1

ReLU 1
Max-pool 2

Address calculation unit 2
Score margin calculation unit 1

DRAM 120

TABLE VIII: Cumulative execution time of iterative CNNs after interleaving,
normalized to the runtime of the base model (which is non-iterative).

Normalized execution time

Number of iterations LeNet5 CIFAR10 MobileNet-V2

Iteration 1 0.28 0.37 0.52
Iteration 2 0.34 0.50 0.59
Iteration 3 0.43 0.58 0.64
Iteration 4 0.52 0.65 0.72
Iteration 5 0.58 0.70 0.83
Iteration 6 0.63 - -

the iterative framework after interleaving is normalized to that
of the iterative framework before interleaving. Note that if
AirNN is terminated with fewer iterations for an input, then
that input is not counter towards the execution time in future
iterations.

As the results show, the proposed interleaving scheme
is successfully able to reduce the total execution time of
the network over iterations. More importantly, although the
interleaving scheme is only applied to the first three iterations
of the inference, we still have performance improvement at
later iterations. This is because a significant speedup can be
achieved in the earlier iterations due to extreme sparsity of
weight matrices.

Lastly, we have measured the total execution time of
LeNet5, CIFAR10 and MobileNet-V2 when running on the
test dataset. The test dataset consists of 10,000 images for
each of these networks. Similar to the setup for energy
measurement, the execution time is measured with respect
to the number of inputs at each iteration. Hence, the inputs
which are classified correctly at a particular iteration are not
considered in the next iterations anymore. We have measured
the execution time under three different configurations: 1) non-
iterative CNNs where each input needs only one round of
inference, 2) AirNN without interleaving, and 3) AirNN with
interleaving. Figure 14 shows the normalized execution time
for these networks. Note that execution time is normalized to
non-iterative framework. As the results show, AirNN increases
the total execution time of LeNet5, CIFAR10, and MobileNet-
V2 by 1.86, 1.6, and 1.9, respectively. It in turn can degrade the
performance of network and decrease energy efficiency. This
is while when the interleaving scheme is applied, the total
execution time of AirNN (i.e., the total number of required
clock cycles) is reduced to 0.37, 0.47, and 0.71 of the non-
iterative framework for LeNet5, CIFAR10, and MobileNet-V2,
respectively.

With this observation, the proposed input-dependent frame-
work with kernel interleaving is successfully able to reduce
energy consumption and latency of CNNs compared to the
base accelerator without significant degradation in accuracy.

Figure 14: Normalized execution time of CNNs.

G. Energy Overhead of the Proposed Interleaving Scheme

As described in section VI-B, the proposed interleaving
scheme can be implemented in hardware by slightly changing
the architecture of each computation unit and at the cost of
adding six 2-1 multiplexers. As a result, the energy overhead
of implementing the interleaving scheme is negligible and the
energy consumption of AirNN will almost remain the same.

VIII. CONCLUSIONS

This work is the first to propose an input-dependent approxi-
mation of CNN in hardware, without actually altering the CNN
implementation and by means of few additional control units.
Using our novel iterative framework called AirNN, we showed
in our experiments that the majority of inputs in popular CNNs
can be inferred with a fraction of the weights. With less than
3% loss in accuracy, AirNN is able to achieve around 49%
energy saving. In addition, we proposed a greedy interleaving
scheme which is able to improve the performance of AirNN
by exploiting the extreme sparsity of weight matrices and by
utilizing the idle multipliers. As a result, the execution time
per input is not increased despite the fact that each input may
require more than one round of inference.

ACKNOWLEDGMENTS

This research was supported by Award Number 1812600
from National Science Foundation and by Semiconductor
Research Corporation GRC Task Number 2845.001.

REFERENCES

[1] V. Akhlaghi, A. Yazdanbakhsh, K. Samadi, R.K. Gupta, and H. Es-
maeilzadeh. SnaPEA: Predictive early activation for reducing computa-
tion in deep convolutional neural networks. In International Symposium
on Computer Architecture, pages 662–673, 2018.

[2] P. Bholowalia and A. Kumar. A clustering technique based on Elbow
method and k-means in WSN. International Journal of Computer
Applications, 105, 2014.

[3] R. Ding, Z. Liu, R. D. Blanton, and D. Marculescu. Quantized deep
neural networks for energy efficient hardware-based inference. In IEEE
Asia and South Pacific Design Automation Conference, pages 1–8, 2018.

[4] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi. NVSIM: A circuit-level
performance, energy, and area model for emerging nonvolatile memory.
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 31(7):994–1007, 2012.

[5] P. Grigoras, P. Burovskiy, E. Hung, and W. Luk. Accelerating SpMV
on FPGAs by compressing nonzero values. In International Symposium
on Field Programmable Gate Arrays, pages 64–67, 2015.

[6] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights
and connections for efficient neural network. In Advances in neural
information processing systems, pages 1135 –1143, 2015.

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13,2021 at 09:28:06 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3033750, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

15

[7] S. Hashemi, N. Anthony, H. Tann, R. I. Bahar, and S. Reda. Understand-
ing the impact of precision quantization on the accuracy and energy of
neural networks. In Design, Automation, and Test in Europe Conference,
pages 1474–1479, 2017.

[8] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very
deep neural networks. In International Conference on Computer Vision,
pages 1389 – 1397, 2017.

[9] http://neupy.com/pages/home.html.

[10] N. P. Jouppi et al. In-datacenter performance analysis of a tensor
processing unit. In International Symposium on Computer Architecture,
pages 1 – 12, 2017.

[11] J. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning method for deep
neural network compression. In International Conference on Computer
Vision, pages 5058 – 5066, 2017.

[12] M.Hemmat and A. Davoodi. Dynamic reconfiguration of CNNs for
input-dependent approximation. In International Symposium on Quality
Electronic Design, pages 176–182, 2018.

[13] M.Hemmat and A. Davoodi. Power-efficient ReRAM-aware CNN model
generation. In International Conference on Computer Design, 2018.

[14] M. Nazemi, G. Pasandi, and M. Pedram. Energy-efficient, low-latency
realization of neural networks through boolean logic minimization. In
IEEE Asia and South Pacific Design Automation Conference, pages 274
– 279, 2019.

[15] K. Neshatpour, F. Behnia, H. Homayoun, and A. Sasan. ICNN: An
iterative implementation of convolutional neural networks to enable
energy and computational complexity aware dynamic approximation. In
Design, Automation, and Test in Europe Conference, pages 551 – 556,
2018.

[16] P. Panda, A. Sengupta, and K. Roy. Conditional deep learning for
energy-efficient and enhanced pattern recognition. In Design, Automa-
tion, and Test in Europe Conference, pages 475 – 480, 2016.

[17] E. Park, D. Kim, S. Kim, Y. Kim, G. Kim, S. Yoon, and S. Yoo. Big/little
deep neural network for ultra low power inference. In CODES +ISSS,
pages 1624–132, 2015.

[18] M.S. Razlighi, M. Imani, F. Koushanfar, and T. Rosing. LookNN: Neural
network with no multiplication. In Design, Automation, and Test in
Europe Conference, pages 1779 –1784, 2017.

[19] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. Strachan,
M. Hu, R. Williams, and V. Srikumar. ISAAC: A convolutional neural
network accelerator with in-situ analog arithmetic in crossbars. In
International Symposium on Computer Architecture, pages 14–26, 2016.

[20] F. S. Snigdha, S. D. Manasi, J. Hu, and S. S. Sapatnekar. SeFAct2:
Selective feature activation for energy-efficient CNNs using optimized
thresholds. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 2020.

[21] F.S Snigdha, I. Ahmed, S.D. Manasi, M.G. Mankalale, J. Hu, and S.S
Sapatnekar. SeFAct: selective feature activation and early classification
for CNNs. In IEEE Asia and South Pacific Design Automation Confer-
ence, pages 487–492, 2019.

[22] M. Song, J. Zhao, Y. Hu, J. Zhang, and T. Li. Prediction based execution
on deep neural networks. In International Symposium on Computer
Architecture, pages 752 – 763, 2018.

[23] H. Tann, S. Hashemi, R. I. Bahar, and S. Reda. Runtime configurable
deep neural networks for energy-accuracy trade-off. In CODES + ISSS,
pages 34:1–34:10, 2016.

[24] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan. AxNN:
energy-efficient neuromorphic systems using approximate computing. In
International Symposium on Low Power Electronics and Design, pages
27–32, 2014.

[25] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. Optimizing
FPGA-based accelerator design for deep convolutional neural networks.
In International Symposium on Field Programmable Gate Arrays, pages
161–170, 2015.

Maedeh Hemmat received the M.S. degree in
electrical engineering from University of Tehran in
2016. She is currently pursuing the Ph.D. degree
in Computer Engineering with the University of
Wisconsin-Madison. Her research interests include
power-efficient realization of Deep Neural Networks
(DNNs) on resource-constrained platforms, imple-
mentation of neural networks using new emerging
technologies, and design space exploration of DNNs
for reconfigurable and approximate implementation.
She was a recipient of the Electrical and Computer

Engineering Chancellor’s Opportunity Fellowship, the CRA-W Grad Cohort
for Women workshop, and the A. Richard Newton Young Student Fellowships.

Joshua San Miguel is an Assistant Professor at
the University of Wisconsin-Madison. His research
interests include approximate computing, intermit-
tent computing and interconnection networks. San
Miguel received a PhD in electrical and computer
engineering from the University of Toronto.

Azadeh Davoodi (SM’13) is Professor of Electrical
and Computer Engineering at the University of
Wisconsin–Madison. Her primary research interests
are in Electronic Design Automation and debug
of Integrated Circuits, hardware security, and in
Design Automation of Things, in general. Azadeh is
recipient of a 2011 NSF CAREER award. Her work
with collaborators received the best paper awards of
the 2015 ACM Transactions on Design Automation
of Electronic Systems and Best Paper nomination
at the 2010 Design Automation Conference.

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13,2021 at 09:28:06 UTC from IEEE Xplore. Restrictions apply.

