Stay in your Lane: A NoC with Low-overhead Multi-packet Bypassing

Hossein Farrokhbakht*, Paul V. GratZT, Tushar Krishnai, Joshua San Miguel§, Natalie Enright Jerger*
*University of Toronto, TTexas A & M, *Georgia Institute of Technology, $University of Wisconsin-Madison
Email: *h.farrokhbakht@mail.utoronto.ca, Tpgratz@tamu.edu, itushar@ece.gatech.edu,

§ jsanmiguel @wisc.edu,

Abstract—NoCs are over-provisioned with large virtual
channels to provide deadlock freedom and performance im-
provement. This use of virtual channels leads to considerable
power and area overhead. In this paper, we introduce a novel
flow control, called FastFlow, to enhance performance and
avoid both protocol- and network-level deadlocks with an
impressive reduction in number of virtual channels compared
to the state-of-the-art NoCs. FastPass promotes a packet to
traverse the network bufferlessly; the packet bypasses the
routers to reach its destination. During the traversals, the
packet is guaranteed to make forward progress every cycle. As
a result, such a packet cannot be blocked by congestion nor
deadlock. Promoting more packets to FastPass will provide
higher throughput. To this end, FastPass allows multiple
packets to be upgraded as FastPass packets simultaneously.
To avoid any collision between these packets, FastPass pro-
vides multiple pre-defined non-overlapping lanes. Each lane
is allowed to propagate only one FastPass packet. In a time-
division multiplexed way, each router gets a chance to upgrade
its packets to the FastPass packets and then transfer them
via the pre-defined non-overlapping lanes. FastPass not only
provides high throughput but also resolves both protocol-
and network-level deadlocks. Compared to the state-of-the-
art, FastPass presents a 1.8x increase in throughput for
synthetic traffic, 46% improvement in average packet latency
for real applications, and 40% reduction in power and area
consumption.

I. INTRODUCTION

Efficient communication in many-core processors is crit-
ical to overall performance. Latency is traditionally re-
duced by avoiding router pipeline stages through bypassing.
Throughput is traditionally improved by increasing buffering
and virtual channels (VCs) to reduce head of line blocking.
Efficiently bypassing multiple routers often breeds complex-
ity. Increasing buffering contributes non-negligibly to router
area and power consumption. In this paper, we propose
a time-division-multiplexed (TDM) approach to enabling
bypass paths that improves both latency and throughput
while reducing the overall buffering of the router compared
to the baseline.

Until recently, conventional routers had a large minimum
number of buffers that they had to support. The minimum
number of buffers is typically driven by correctness re-
quirements imposed by the coherence protocol; messages
from different classes must be separated into different vir-
tual networks (composed of buffers) to avoid protocol-level
deadlock. Recent work [13], [24] demonstrates alternative

*enright@ece.utoronto.ca

deadlock-freedom solutions that eliminate the need for vir-
tual networks (VNs). However, eliminating VNs entirely
hurts throughput. Can we design a new flow control mecha-
nism such that we reduce buffering requirements while im-
proving performance and also providing deadlock freedom?

Flow control optimizations have been proposed to im-
prove throughput and latency [19], [20]. Circuit switching is
a form of flow control that bypasses the router pipeline [11].
These flow control techniques often require the exchange of
credits or handshaking to ensure that a path is available. The
Runahead NoC [21] proposes a second, lightweight network
that speculatively delivers packets but will drop them mid-
transmission if there is a conflict. Rather than pay the area
cost of an extra network, we propose to use one network to
deliver fast and regular packets. By carefully designing an
algorithm that governs which packets are locally selected by
which routers and the path they must follow, we can reduce
latency and improve throughput.

The time-division multiplexed, non-overlapping paths
must be determined a priori. As NoCs scale to increasing
numbers of cores, attempting to coordinate communication
across multiple routers becomes undesirable. This problem
is well known in adaptive routing; obtaining up-to-date
congestion information is challenging and has motivated
region-based approaches [15], [22]. Similarly in flow con-
trol, coordination such as to establish a circuit-switched
path increases latency by requiring a setup phase. To avoid
any global coordination or setup phase, our design, called
FastPass, has a predetermined algorithm to select which
router can promote a packet to a fast path. The algorithm
moves from router to router in a time-division multiplexed
way. Dynamically dependent on the load, packets reach their
destinations as fast or regular packets. But only allowing one
router to use a fast path at a time would not help performance
as the network scales. Thus, we propose a novel scheme to
partition the network such that non-overlapping bypass paths
are enabled at each step for multiple routers. This allows us
to provide significant throughput enhancement and deadlock
freedom at the same time.

This paper makes the following primary contributions:

« Proposes a novel flow control, FastFlow to route pack-
ets bufferlessly across non-overlapping paths; as the
load increases, FastFlow kicks in so that the promoted
packets can avoid congested areas.

o Proves that our FastPass also enables deadlock free-
dom by promoting blocked packets; Table I provides a
comparison between FastPass and other deadlock
freedom techniques.

o Shows that high throughput can be achieved with low
complexity and low buffering requirements.

o Compared to the state-of-the-art, FastPass provides
a 1.8x increase in throughput for synthetic traffic,
46% improvement in average packet latency and 9%
reduction in execution time for real applications, and
40% reduction in power and area consumption.

II. BACKGROUND

Deadlock Freedom: Providing correctness is of utmost
importance in a multiprocessor interconnection network. A
NoC design guarantees a cornerstone of correctness by being
free of deadlock. A deadlock happens when a set of agents
sharing a set of resources wait indefinitely to acquire the
resources in a cyclic dependence. Within a NoC, packets
are the set of agents while buffers are the set of resources
storing incoming packets as they move in the NoC to
reach their destinations. In the interconnection network, two
types of deadlocks may emerge: protocol- and network-level
deadlocks. In both cases, packets stall indefinitely causing
a system failure. Maintaining deadlock-free communication
imposes overheads in the form of VCs, performance issues
and/or hardware complexity.

Implementing cache coherence on the NoC causes atomic
coherence transactions to be divided into several non-atomic
packets. If these packets interleave with each other while
sharing the same buffers, protocol-level deadlock can hap-
pen. For example, if two cache controllers issue a burst
of coherence requests using up all of the buffers in the
network, both processors will be stalled awaiting responses;
thus they stop processing requests packets. As responses
use the same buffers as requests, the remote responses
cannot make forward progress leading to a protocol-level
deadlock. A network-level deadlock happens when in a
cyclic dependence chain, multiple packets occupy buffers
while awaiting other occupied buffers to become free. Since
packets do not give up the buffers they are residing in,
they will wait forever. This situation happens when adaptive
routing is employed; adaptive routing allows cycles to form
since packets can be routed in any directions.

III. FastPass

Analogy: As an analogy for FastPass, consider a Dis-
neyland park; to enjoy the popular rides, people need to
wait in a long line. However, Disneyland provides FastPass
service by which people can skip the long line minimizing
the amount of waiting time and maximizing the number
of rides. In a given fixed time slot, people may use the
FastPass for a few rides. In the next time slot, they may

use the FastPass service again for other rides. During each
time slot, taking the rides through the regular pass is also
available. Similarly, FastPass provides recurrent fixed
time slots. In a given time slot, only a subset of routers
may enable FastPass service simultaneously. When the time
slot elapses, another set of routers provides FastPass service.
Each FastPass service guarantees a single packet reaches its
destination whether the downstream router has enough space
or not.

High-level idea: To provide throughput enhancement and
deadlock-free communication, we use a predetermined al-
gorithm enabling FastPass service for packets. The FastPass
service guarantees that packets make forward progress every
cycle. Each router may use the FastPass service to promote
its packets. The upgraded packets then traverse the FastPass
path bufferlessly to reach the destinations. To maximize the
benefit of the FastPass service, we let a subset of routers
use the FastPass service at the same time by providing
recurring fixed time slots. To avoid collision between the
FastPass packets, we use pre-defined non-overlapping bypass
paths which cover all routers in the network. In a given
time slot, each router using FastPass service has access to
some pre-defined paths over which the FastPass packets
traverse bufferlessly to their destinations. In the next time
slot, the routers have access to another set of pre-defined
paths over which the packets can reach their destinations.
This process continues until the routers have access to all
destinations in the network. Once a set of routers complete
this procedure, in a statically predetermined order, another
set of routers may enable FastPass service. In turn, all routers
in the network will have a chance to upgrade packets to
FastPass packets. The beauty of this approach is that it
provides significant throughput enhancement and resolves
both protocol- and network-level deadlocks. This is because
that the packets traversing the NoC via the FastPass service
are guaranteed to make forward progress every cycle.

A. Definitions

We use following terminology:

« Partition: A partition includes a set of routers. There
are multiple independent partitions in the network.

« FastPass-Lane: A path which covers one partition in
the network. At any given time, there are multiple non-
overlapping FastPass-Lanes in the network.

o Prime Router: Prime routers are the set of routers
(one per partition) that are currently allowed to use
the FastPass-Lanes. Each FastPass-Lane provides an
isolated path from each prime router to the routers of
a single partition.

« FastPass-Packet: A packet picked by the prime router
to traverse bufferlessly. At any given time, there is
only one FastPass-Packet traversing through a FastPass-
Lane. Each prime router selects a FastPass-Packet
whose destination lies in the currently covered partition.

Table I: Comparison of different deadlock freedom solutions.

Proposed No Protocol Deadlock Network Deadlock Full Path High- Low- Scalability No
Solutions Detection Freedom Freedom Diversity throughput power Misrouting
Turn Restrictions [7] v X v X x* P S v
Escape VCs [8]-[10], [14] v X v X** X x* v v
Virtual Networks [23] v v X X X X v v
SPIN [31] X X v v X x* P S v
SWAP [26] v X v v X X* v X
DRAIN [24] v v v v X X e P S X
Pitstop [13] v v v v X v] S v
Our Method: FastPass v v v v v v v v

* Must use multiple VNs to avoid protocol-level deadlock.
** No full path diversity within the escape VC.

DRAIN can work with no VNs; however, it requires a large amount of buffer which is non-minimal [13].

###% Cannot support adaptive routing.

##*x% As the network size increases, the time for detecting/resolving deadlock increases.

o FastFlow: A new flow control scheme allowing
FastPass-Packets to make forward progress bufferlessly
every cycle regardless of credit availability.

o Regular Pass: A credit-based flow control which is
used when packets do not use the FastFlow control.

o Regular Packets: Packets using regular pass to make
forward progress.

B. FastFlow

The goal of this work is to design a high-throughput and
low-cost solution to minimize the head of line blocking
and provide network- and protocol-level deadlock free-
dom in NoCs. To this end, we propose an efficient flow
control called FastFlow. Packets are routed using either
FastFlow or regular pass flow (i.e., credit-based) control.
A FastPass-Packet traversing via FastFlow takes precedence
over regular packets. A FastPass-Packet reaches its desti-
nation bufferlessly using a minimal path; no misrouting is
employed. As a result, buffer turnaround time is eliminated
increasing throughput. To maximize throughput, FastPass
allows multiple FastPass-Packets to traverse the network
at any given time. However, to guarantee no collisions
between FastPass-Packets, FastPass creates multiple non-
overlapping paths (FastPass-Lanes) allowing a single router
access to each partition in a time-multiplexed way. Thus
links of each partition only propagate one FastPass-Packet
in a given slot time. Section III-C1 demonstrates how
FastPass guarantees multiple FastPass-Packets with non-
overlapping paths.

C. Detailed Algorithm

1) TDM-based Non-overlapping FastPass-Lanes:
FastPass allows multiple FastPass-Packets to traverse the
network simultaneously to maximize throughput. However,
since the FastPass-Packets traverse bufferlessly, they must
not collide with each other. To guarantee no collision
between FastPass-Packets, FastPass creates multiple
pre-defined non-overlapping paths in the network, called
FastPass-Lanes. This problem is similar to maintaining
non-interference in NoCs. Non-interference means that

packets from one application should have no effect on the
delivery of packets from other applications [36]. Here prime
routers are equivalent to the applications. The goal is to
implement such a non-interference approach that guarantees
no collision between FastPass-Packets.

To this end, FastPass breaks the topology into P sep-
arate partitions; there is one prime router in each partition.
This spatial partitioning provides the foundation for our
collision-free FastPass-Packet traversals. Assuming a mesh
topology, P could be the number of columns/rows. An effi-
cient way to support multiple FastPass-Lanes with no over-
lap is by time-multiplexing the physical links. FastPass
provides recurrent fixed time slots during which the links
of each partition are only permitted to propagate a single
packet from one prime router. When the time slot elapses,
the links of each partition handle the FastPass-Packets of
a different prime. This rotation continues until each prime
router has a FastPass-Lane with every other router. The time
needed for a such coverage is called a phase. Each phase
consists of multiple time slots. In other words, there exists
a fixed time slice for each phase where every prime router
would have the opportunity to have a FastFlow with every
other router in the network. In the next phase, the next set
of prime routers follow the same procedure. Note that all
routers along a single partition are possible destinations so
the number of FastPass-Lanes a prime router has to rotate
through is very limited and scales gracefully.

This time-multiplexing scheme guarantees that the path
used by each prime router is completely independent of the
other primes’ paths. As a result, the packets of each prime
cannot collide with others providing collision-free traversal.
As an example, Fig. 1 demonstrates the non-overlapping
FastPass-Lanes in a 3x3 mesh network.

The prime router within each partition is chosen con-
tiguously meaning that the prime ability is given to the
next adjacent router within the partition after finishing each
phase. If the current prime is located in the last row, the
router in the first row of the partition will be the next prime
router. Note that the current prime router in the last row

() T=TxK

P, Pg P,
(h) T=8xK

P, Py P, P,
(i) T=9xK

Figure 1: TDM-based non-overlapping paths: To ensure no collisions between packets, FastPass breaks the topology into P separate partitions (i.e., 0,
1 and 2) each of which has one prime router (i.e., green, orange and blue); First phase (a, b, ¢): (a) In the first K cycles, the green prime router can cover
the routers located in Py: Rg, R3, and Re; the orange one has access to the P; routers: R1, R4, and R7; the blue prime router has an isolated path to
the P> routers: R2, Rs, and Rg. When the first time slot elapses, the links of each partition switches to handle the packets of other primes; (b) Links of
Py, Py, and P> propagate the packets from blue, green and orange primes, respectively. (c) In this step, the links of Py, Pr, and P> handle packets from
orange, blue and green primes, respectively. this switching continues until each prime has covered all the routers in the network, indicating the completion
of the phase. Second phase (d, e, f) and third phase (g, h, i) follow the same approach.

must send the signal N cycles ahead of the phase schedule
for a NxN mesh to account for the N hops needed for the
signal to reach the first row from the last row. This switching
continues to give each router the opportunity to be the prime.
Thus, the completion of each phase requires a fixed number
of steps which depends on the number of partitions. Each
step also needs a fixed number of cycles (K) to complete.
This time slot is set at design time.!

2) FastPass for throughput enhancement: Each prime
router has multiple chances to provide FastFlow traversal
for its packets over the FastPass-Lanes. Each FastPass-Lane
provides an isolated path from each prime router to the
routers of one single partition. For each FastPass-Lane, each
prime router examines each input buffer in a round-robin
fashion (e.g., injection buffers, South, North, Fast and
West) to see if there is a packet at the head of input
buffer destined for a router located in the corresponding
partition. Once such a packet is found for the input buffer,

1Qn 5 discusses how this value is pre-computed.

The prime router

I Request Queue
Bl Response Queue
I Prime Router
Regular Router
——> FastPass-Lane

----- > Returning Path
@ Sequence Number
FastPass-Packet

Injection Buffer

Figure 2: The prime router (i.e., Ro) upgrades a request packet (A) to a
FastPass-Packet so that it can traverse the current FastPass-Lane to reach
the intended destination (i.e., R2). On the arrival, the packet can be ejected
to the respective ejection queue.

the prime router upgrades it to the FastPass-Packet by
sending it through FastFlow to reach the destination. Upon
arrival at the destination, the FastPass-Packet is ejected by
the network interface assuming the respective ejection queue

The prime router
drops [@ making a room for

\ The prime router

q. Al k(; selects [Yas the FastPass-Packet

B Request Queue
B Response Queue

I Prime Router
Regular Router

—> FastPass-Lane

----- > Returning Path

@ Sequence Number

I3 FastPass-Packet

B Regular Packet

The request queue is
v reserved for

Injection Buffer

Figure 3: When the ejection queue of the destination router is full: The
prime router (i.e., Ro) selects a request packet (A) as a FastPass-Packet.
However, it faces a full ejection queue when it reaches the destination (i.e.,
R»). In this step, the destination router reserves the intended queue for A.
A goes back to the prime router to reside in the request injection queue of
the prime. However, the queue is full with an injection packet (i.e., C). The
prime router drops C' to make a room for the rejected FastPass-Packet (A).
Note that if the request injection queue is not full, no dropping is required.

is not full (Fig. 2).> Thereafter, the prime router examines
the remaining input buffers in a round-robin manner for the
current FastPass-Lane. Note that the time slot (/) to use
of each FastPass-Lane is fixed and large enough to give the
prime router sufficient time for checking all the input buffers
and sending out the FastPass-Packets over the path.® In the
next time slot, when the prime router has access to another
FastPass-Lane, the router follows the same procedure. When
each phase elapses, the prime status moves to the next set
of pre-defined routers. Since the time slot (K) is fixed,
all the new prime routers are enabled simultaneously. This
procedure continues indefinitely through every router.
Qnl: Does a packet need to wait for the desired FastPass-
Lane to be available? As mentioned in Sec. III-C1, each
prime router eventually covers all routers in the network
during each phase. If the current FastPass-Lane does not
cover the intended destination for a packet, the packet needs
either to wait until the intended FastPass-Lane becomes
available or can traverse the router through the regular pass.
Note that the regular traversal is always available unless
there is a deadlock. In the case of deadlock, the intended
FastPass-Lane eventually becomes available making forward
progress for the deadlocked packet. Note that in the absence
of deadlocks during low load, packets do not wait for a
FastPass-Lane to become available; FastPass kicks in as
load increases.

3) FastPass as Deadlock Removal with No Vir-
tual Networks: Apart from the throughput enhancement,
FastPass provides both protocol- and network-level dead-
lock freedom. Deadlock freedom is guaranteed because of

2Sec. III-C4 and Qn 4 discuss when ejection queues is full.
3See Qn 5 for more details.

the following: (1) eventually each router gets a chance to
be upgraded to a prime router, (2) a prime router can
upgrade the packet at the head of each input buffer to a
FastPass-Packet, regardless of its message type, (3) when
each time slot elapses, the prime router has access to a
different FastPass-Lanes until it covers all routers in the
network. As a result, the movement of all packets along the
desired FastPass-Lane is guaranteed. Therefore, FastPass
ensures that any packet of any message class will eventually
have the opportunity to reach its destination router through
the FastPass. Sec. IlI-D provides a detailed proof of
correctness. In addition, FastPass allows multiple prime
routers in the network—one per partition. Allowing multiple
prime routers results in resolving multiple protocol-level
deadlocks simultaneously.

4) Dynamic Bubble: Although the prior work has shown
that the ejection queues are significantly underutilized and
the ejected packets are consumed almost immediately [13],
we need to consider what would happen if the ejection queue
is full. When the FastPass-Packet arrives at the destination
router, it is possible that the respective ejection queue is full,
preventing the FastPass-Packet from being ejected. Since
the main goal of this work is increasing throughput, a
prime router increases the credit for the upstream router
(i.e., indicating available slot) as soon as a FastPass-Packet
departs the router. Therefore, it is not possible for a FastPass-
Packet facing a full ejection queue (at the destination) to
return to its prime router and reoccupy its previous buffer
entry. To handle this challenge, we use a subtle dropping
approach providing a bubble within the prime router. In this
approach, some packets are potentially droppable.

To make the bubble, the prime router drops the injec-
tion request packet residing in the request injection queue,
making an empty entry for the rejected FastPass-Packet
(Fig. 3).* Note that if the request injection queue is not full,
no dropping happens. Thus the FastPass-Packet is routed
back to its prime router through the minimal returning
path and then resides in the recently created, available slot.
Note that collision is not possible between the FastPass-
Lanes and the returning paths as shown in Fig. 4. Also the
destination router pro-actively reserves the intended queue
of the ejection buffer for the rejected FastPass-Packet once
the intended ejection queue gets free space.’ Not until the re-
jected FastPass-Packet resides in the intended ejection queue
at the destination router, are other packets allowed to use it.
Therefore, using the dropping and reservation approaches,
the FastPass-Packet is eventually guaranteed to be accepted
by the intended destination router. The proposed dropping
approach has the following distinctive characteristics setting
it apart from other methods [17], [33]:

“If the rejected FastPass-Packet is a data packet, then multiple request
injection packets might be dropped.
>Qn 4 discusses that the ejection queues can never be full indefinitely.

[Rg. <
Partitions: 0 1 2 Partitions: 0 1 2
(a) First K Cycles (b) Second K Cycles
Partitions: 0 1 2

(c) Third K Cycles

Figure 4: The FastPass-Lanes and the returning paths when the routers
located on the diagonal are the prime routers. Dotted lines represent the
returning paths for FastPass-Lanes. There is no overlap between these
minimal paths.

1) The dropping happens when a FastPass-Packet en-
counters a full ejection queue at the destination router
and a full request injection queue at the prime router.
The likelihood of such a sequence of events is rare.

2) Since only the injection request packet is dropped, it
can simply be regenerated using the information pro-
vided by the miss status handling registers (MSHRs)
without changing the coherence protocol or using
extra buffers. Note that the MSHRs keep track of
what misses a core is waiting for. Since the dropped
packet’s MSHR is local, the router does not have to
communicate with a distant node to regenerate the
packet. Hence the dropped request packet can be easily
regenerated.

3) Last but not least, the dropped request packet has not
left the source router yet. Therefore, this dropping will
not hurt performance.

Qn2: Is it possible for the rejected FastPass-Packet,
residing in the request injection queue of the prime
router, to be dropped to make a room for a new rejected
packet? No: after that the rejected FastPass-Packet occupies
the request injection queue of its prime router, it has two
options to make forward progress: traverse as a regular
packet or traverse as a new FastPass-Packet. For the latter,
there are two possible scenarios:

1) The rejected packet was the last packet that the prime
router upgraded; thus the router is not prime during the
current phase. In this scenario, the packet needs to wait
until the router turns into the prime again if a regular
traversal is impossible. To ensure that we never drop
a rejected FastPass-Packet, in a given FastPass-Lane,
each prime router always starts examining the injec-
tion buffers first (starting with the request injection

queue) and then moves on to the remaining input
buffers.

2) The router is still prime and is going to examine
other remaining input buffers for the current FastPass-
Lane. In other words, the prime router has checked
the injection buffer and it is the turn of the other
input buffers. To avoid dropping the previous re-
jected packet, the previous rejected packet pro-actively
moves to the empty slot which is available when
the new FastPass-Packet departs the prime router. To
provide such a transfer, the router microarchitecture
includes connections between the injection buffer and
all input buffers.°

Therefore, FastPass guarantees dropping will only

occur if needed for the injection request packets, which have
not left the source router yet. Both of these scenarios are
shown in Fig. 5.
Qn3: What if the ejection port is busy when the FastPass-
Packet arrives? This situation happens when the FastPass-
Packet arrives at the destination router while another packet
is in the middle of ejection process. There are two scenarios
for this case:

1) The first scenario is that the respective ejection queue
of the destination router was reserved for the FastPass-
Packet. This means that the FastPass-Packet faced a
full ejection queue at the destination router causing
the intended queue to be reserved for the packet. The
packet reaches the destination again while another
packet is being ejected to a different queue (not the
reserved one). In this case, the FastPass-Packet is
given higher priority over the ongoing ejection; the
ongoing ejection is stalled and the FastPass-Packet is
ejected to the respective ejection queue. Not until the
FastPass-Packet gets ejected from the network can the
current ejection packet use the ejection port. Since
the intended ejection queue for the FastPass-Packet
was reserved before, it is impossible that the stalled
ejection packet is aiming for the same queue.

2) The second scenario happens when the respective ejec-
tion queue of the destination router was not reserved
before. In other words, this is the first time that the
FastPass-Packet arrives at the router. In this case, as
discussed in Sec. III-C4, while the FastPass-Packet
goes back to reside in the request injection queue
of the prime router, the destination router reserves
the intended ejection queue for the FastPass-Packet.
Therefore, the FastPass-Packet is guaranteed to be
ejected on its next arrival.

Qnd: Is it possible that the intended ejection queue
never gets free space preventing the FastPass-Packet
from getting ejected indefinitely? It is impossible for the
ejection queues to be full indefinitely. As there are separate

6See Sec. III-E for more details.

@ [N takes[) ‘s place when [leaves.
@ Since the request injection queue is
empty now, the new rejected packet

For each FastPass-Lane, the R, first starts ety
resides in it.

with the request injection queue.
Thus [3 is selected as a new FastPass-Packet.
Pl

Injection Buffer

(a) First scenario

The Ro selects B3
as the FastPass-Packet.

B Request Queue
B Response Queue

I Prime Router
Regular Router
—> FastPass-Lane
----- > Returning Path
@ Sequence Number
FastPass-Packet
Regular Packet

Injection Buffer

(b) Second scenario

Figure 5: Under no circumstances is a rejected FastPass-Packet dropped: (a) For each FastPass-Lane, the prime router always starts with checking the
request injection queue. Thus the previously rejected packet (e.g., A) is always selected as a new FastPass-Packet. (b) The prime router still needs to check
other input buffers for the current FastPass-Lane. The prime router selects B as the FastPass-Packet. As soon as B departs the prime router, A takes the
available space in the input buffer, making the request injection queue empty. This allows us to accommodate another rejected FastPass-Packet in the prime

router.

ejection queues per message class, the ejection queues will
never be full for an unlimited time. For each protocol
transaction, there will always be at least one sink message
class (e.g., response messages) that ends the transaction.
Thus the ejection queues for sink message classes can always
be consumed. Ejection queues of request messages may fill
up if the processor awaits a response message deadlocked
elsewhere in the NoC, stalling the processor. However,
the response message will arrive eventually, unstalling the
processor; receipt of the response message will allow the
processor to restart consuming the request messages, freeing
up the request buffer slots. Since FastPass allows multiple
prime routers and FastPass-Packets in the network at any
time, ejection queues are guaranteed to eventually have free
space.

QnS5: What is the number of cycles between switching
from one FastPass-Lane to another? As mentioned in
Sec. III-C1, FastPass creates multiple non-overlapping
minimal FastPaths each of which covers one partition for a
fixed time slot (K). This time slot should be large enough
so that a packet can make a round trip to the furthest
destination in the network (network diameter). To define
the fixed time slot, we use following metrics: the maximum
number of hops in the topology, the number of input ports
per router, and the number of virtual channels per input
buffer. This pre-defined static time-bound is calculated as
follows: (2 x #Hops) x #Inputs x #V C's. This time slot
is sufficient for each prime router to check all the input
buffers to enable FastFlow traversal for each FastPass-Lane.
This value is set at the design time.

5) Lookahead: FastPass guarantees that the arrival

time of FastPass-Packets at the destinations is fixed. This
means that FastPass-Packets are always granted the output
port while traversing the FastPass-Lane. The FastPass-Packet
is given higher priority over regular packets by the routers.
This approach is needed to have the FastPass-Packets make
forward progress every cycle. To this end, the FastPass-
Packets need to suppress the movement of regular packets
through the intended output port at the next downstream
router. To make this happen, FastPass employs a looka-
head signal similar to prior work [19], [20]; when a prime
router upgrades a packet to a FastPass-Packet, it enables
the lookahead signal on the link to the downstream router
one cycle ahead of the traversal. The signal informs the
downstream router of the intended output port so that
the downstream router can reserve the output port for the
upcoming FastPass-Packet. Since FastPass uses minimal
routing, the intended output port at the downstream router
can be pre-computed. Therefore each router receiving the
lookahead signal can update the signal and then forward it
to the next downstream router.

The lookahead signal includes the destination ID and the
output port ID. Assuming an 8x8 mesh, this information
requires 10 bits. Since this information is also carried by the
head flit, FastPass uses the first 10 bits of the datapath
as lookahead.

D. Proof of Correctness

Lemma 1. Every packet selected for FastFlow is guaranteed
to reach its destination.

Proof: During each phase, FastPass creates multiple
non-overlapping FastPass-Lanes for a prime router which

covers all routers in the network. When a prime router
upgrades a packet to a FastPass-Packet, it traverses the
FastPass-Lane bufferlessly to reach its destination which
lies on the current covered partition. Since the FastPass-
Packet takes precedence over the regular packets, it is
guaranteed that the FastPass-Packet makes forward progress
every cycle with the help of lookahead signal. Therefore
FastPass guarantees that the FastPass-Packet will arrive
at the intended destination. Note that getting ejected is not
guaranteed yet.]

Lemma 2. Every packet is eventually guaranteed to be
selected for FastFlow traversal.

Proof: During each phase, FastPass allows a set
of prime routers in the network—one per partition. On the
completion of each phase, the prime ability is given to
the next adjacent router within the partition. This switching
continues indefinitely so that all routers in the network will
have a chance to be prime. As a result, since FastPass
gives each router a chance to be a prime router, all the routers
will be able to enable FastFlow for the packets of their input
buffers. [|

Lemma 3. There will eventually be free space in the ejection
queues.

Proof: Ejection queue will never be full indefinitely
since: (1) there are separate queues in the ejection buffer—one
per message class, (2) each protocol transaction has at least
one sink message (e.g., response message class) ending the
transaction; thus the ejection queues for sink message classes
can always be consumed, (3) in the case that the ejection
queue for request messages is full and the processor does
not process requests since it awaits a response message, the
response message will eventually arrive at the destination
using FastFlow (Lemma 1 and Lemma 2); receipt of the
response, will lead to consuming the requests, creating free
space in the request ejection queue.]

Lemma 4. Since each FastPass-Packet will eventually get
ejected, freedom from protocol- and network-level deadlocks
is guaranteed.

Proof: When a FastPass-Packet arrives at its destination,
it will get ejected if the respective ejection queue has enough
space. Otherwise it will get back to its prime router to
reside in the request injection queue of the prime. Once the
intended ejection queue of the destination router gets a free
space (Lemma 3), the queue is pro-actively reserved for the
packet. Thereafter, the packet will eventually be selected
as a new FastPass-Packet to reach the destination again
(Lemma 1 and Lemma 2). On arrival at the destination, it
will get ejected to the reserved ejection queue successfully.
Therefore, both protocol- and network-level deadlocks are
guaranteed to be resolved.]
Qn6:What if request packets consume all of the buffers in

d- FASTPASS)
< E §
! Management [{] ,:E(';‘gl“(;']gad
gB | Route Compute “ VC Allocator |
. ===
o= pe Table
oE
Vs
So
5 Input buffer K Cycles
B Port i: No VNs | aan)
21 WveTTT™m
opif < 5
2T VeI > <
Inc0||'ning 3 PS Fi
-
Flit — ® [4 2| 7o downstream
[4 [b router
o (] (]
Switch
------------ ﬂif
©
8
T ¥
Droppin
Manac_]pgmgn
Ve VC1
N, VN]:E!:D o
e | Proc.
i M| T — | 0 — |,
o Snmn]
ot N N
= e |
njection Buffer Ejection Buffer

Figure 6: FastPass architecture; For simplicity, only one direction is
represented. An incoming FastPass-Packet bypasses the input buffers (red
path). An incoming rejected FastPass-Packet can reside in the request injec-
tion queue (purple path); the rejected FastPass-Packet can be transferred to
the input buffer as soon as a new FastPass-Packet departs the router (green
path).

the network preventing responses from getting injected
to the NoC? Since each prime router always starts exam-
ining the injection buffer and then moves on to the other
input buffers to select the FastPass-Packets per FastPass-
Lane, the response packet will be upgraded to a FastPass-
Packet to reach its destination via FastFlow. Upon receiving
the response packet, the processor will resume processing
the requests, creating free spaces in the request ejection
queue. Therefore FastPass can make forward progress
for all the responses residing in the response ejection queue
by upgrading them to the FastPass-Packets.

E. Router Microarchitecture

Fig. 6 depicts the FastPass router microarchitecture
and its network interface controller (consisting of the in-
jection and ejection buffers).

Minimal FastPass-Lanes and returning paths: The
FastPass-Lane table has P entries where P is the number
of partitions. For an 8x8 mesh, it translates into 3-bits for
each entry. We use a pointer which determines the partition
(i.e., column) that the prime router can have access to via
the FastPass-Lane. If a prime router has a packet whose
destination is located in the current partition,” it promotes
the packet and then sends it out via the XY routing. In the
next time slot, the pointer determines the next partition.

To route a rejected packet back to its prime router, the
destination router uses the PrimelD? (6 bits for an 8x8
mesh) to find the column where the prime router is located

7Route compute unit provides this information.
8The PrimelD is sent a cycle ahead similar to the lookahead signal.

in. Then the rejected packet is routed back to the prime using
Y X routing.

To guarantee no collision between the FastPass-Lanes and
the returning paths, the concurrent prime routers should
not be in a same row and in a same column. All other
arrangements with above minimal routing algorithm lead to
non-overlapping paths with no collision.

Upgrading routers: FastPass management is responsible
for upgrading a router to prime when it is its turn. For each
prime router, there are multiple non-overlapping FastPass-
Lanes over which the FastPass-Packets traverse to reach the
destinations located on the currently covered partition. After
each K cycles, the current partition is changed to another
one, leading to a different FastPass-Lane. When the prime
routers are done with the input buffers for all partitions (all
routers in network), the next set of routers are selected as
new primes in a statically determined order. To this end,
the FastPass management unit uses a side-band signal
(i.e., one bit PrimeStatus). To enable the next set of prime
routers at a same time, recall that a prime router in the
last row must send the signal N cycles ahead of the phase
schedule for a NxN mesh to account for the /N hops needed
for the signal to reach the corresponding router in the first
row.

Upgrading packets: FastPass management of a prime
router also upgrades a regular packet of its input buffers to a
FastPass-Packet using the M5 multiplexer if its destination is
located on the current partition. Note that M5 is responsible
to direct the incoming FastPass-Packet from the upstream
router, the upgraded packet for the current router, and the
regular packets of the input buffers.

Lookahead: After upgrading the packet, one cycle ahead
of the FastPass-Packet traversal, the FastPass manage-
ment sends the lookahead signal to the downstream router.
The lookahead signal is needed to set the multiplexers
and demultiplexers of the downstream router so that the
FastPass-Packets take precedence over regular ones. Thus
the output ports are always granted to the FastPass-Packets.
The incoming FastPass-Packets bypass the router through
Dy and Ms. As mentioned earlier, FastPass uses the first
10 bits of the datapath as lookahead for an 8 x8 mesh.

Making bubble in a prime router: When a rejected
FastPass-Packet is heading to its prime router using the
returning path, it is sent to the request injection queue of
the prime via M; (purple path). If the request queue is full,
the dropping management drops the request packet making
room for the rejected packet. Note that if another packet
is getting buffered through the injection port, the rejected
packet takes precedence over that. After the rejected packet
leaves the router, the dropped packet is re-injected with the
help of MSHREs.

Freeing up the request injection queue from the rejected
FastPass-Packet: The rejected packet can be transferred to

Table II: Key Simulation Parameters.

Core 16 and 64 cores, x86 ISA, 1GHz, 000, 8-Wide, ROB size:192
L1 Cache private, 32KB Ins. + 64KB Data, 2-way set assoc.
LLC shared, distributed, 2MB, 8-way set assoc.

Cache Block Size 64B
Cache Coherence ~ MOESI Hammer

Topology 4x4, 8x8, and 16X 16
Evaluated Schemes EscapeVC [8], SWAP [26] (swap duty: 1K cycle)
SPIN [31] (detection threshold: 128 cycles)
DRAIN [24] (DRAIN period: 64K cycles)
Pitstop [13], MinBD [12], TFC [19]
Routing Algorithm SWAP, SPIN, DRAIN, Pitstop, FastPass (fully adaptive routing)
EscapeVC: west-first within escape VC and fully
adaptive within other VCs, TFC: West-first
minDB: Deflection routing
I-cycle
0-VN (FastPass and Pitstop)
and 6-VN (EscapeVC, SPIN, SWAP, DRAIN, TFC)
FastPass (1, 2, 4) per input buffer
EscapeVC, SPIN, SWAP, DRAIN, MinBD, TFC, Pitstop (2 VCs)
Buffer Size 5-flit
Link Bandwidth 128 bits/cycle
Flow Control VCT - Single packet per VC
Synthetic traffic Uniform, Transpose, and Shuffle — Mix of 1-flit and 5-flit

Router Latency
Number of VNs

Number of VCs

the input buffer (the green path) as soon as a new FastPass-
Packet departs the prime. Note that the rejected packet can
be selected as a new FastPass-Packet whether residing in
the injection queue or the input buffer. It also can traverse
the router through the regular pass while residing in either
buffer.

Virtual networks: As shown in Fig. 6, FastPass does not
use any VNs for the input buffers. Protocol-level deadlock
freedom is guaranteed with no VNs. However, it still has
one queue per message class in the injection and ejection
buffers similar to the prior work [13], [24].

F. FastPass in Irregular Topologies

FastPass is agnostic to the topology types. To handle
irregular topologies, we can leverage algorithms from prior
work [24] that can find holistic paths that are guaranteed
to traverse every physical link in the network exactly once.
Such algorithms are applicable to any arbitrary topology as
long as all channels between routers are bidirectional (i.e.,
two opposing unidirectional physical links). Segmenting
a holistic path is guaranteed to produce a set of non-
overlapping paths, which FastPass can use to derive its
partitions.

IV. EVALUATION

We evaluate FastPass using full-system gem5 [4] with
the Garner2.0 [1] network model and the Ruby memory
model to run PARSEC [3] and SPLASH-2 [37] applications.
Table II lists the key configuration parameters used.

A. Synthetic traffic

Fig. 7 draws a comparison between FastPass and the
baselines for different synthetic traffic patterns when using
4 VCs per input buffer across an 8x8 mesh. As shown,
FastPass outperforms all the schemes under comparison;
the main reason for this improvement is that FastPass

® EscapeVC - SPIN @ SWAP -e DRAIN
. 50 "

Pitstop @ MinBD TFC @ FastPass

o
t=]

IS

o
I
[=]

(5]

I=]
@
=]

n
=]

n
o

o
=]

IS
o

[
o

n
o

o

s
Average Packet Lactency

Average Packet Latency

=)

Average Packet Latency

0
0.01 0.05 0.09 0.13 0.17 0.21 0.25 0.29 0.33 0.37 0.41 0.45
Injection Rate (packet/node/cycle)

(a) Transpose

0
0.01 0.05 0.09 0.13 0.17 0.21 0.25 0.29 0.33 0.37 0.41 0.45 0.49
Injection Rate (packet/node/cycle)

(b) Shuffle

0
0.01 0.05 0.09 0.13 0.17 0.21 0.25 0.29 0.33 0.37 0.41 0.45 0.49
Injection Rate (packet/node/cycle)

(c) Bit Rotation

Figure 7: Performance of the schemes under comparison and FastPass for synthetic traffic.

=SPIN = SWAP DRAIN mFastPass

m Pitstop

4x4 8x8

Figure 8: Saturation throughput as the network size increases.

40

g % mRegular Latency EFastPass Latency

Q

5

-

T 20

x

[} T

&]

Iy 10 4 v} T

S .

IS o

2 o ‘ 3

< ZIZEIEIEIZIEIRIE|R|E

D k7 k7 k7 k7

EREEEEEEEE
009 | 011 | 013 | 015 | 0.16

Figure 9: Breakdown of the latency distribution for FastPass-Packets and
regular packets across uniform traffic using 1 VC.

provides multiple FastPass-Lanes in the network over which
FastPass-packets can traverse bufferlessly, providing higher
saturation point compared to other techniques. On average,
FastPass provides up to 51% higher throughput over
periodic deadlock solutions (SWAP, Pitstop, and DRAIN),
1.8x over SPIN and TFC, and 1.4x over MinBD.

Throughput across different topology sizes: Fig. 8§ demon-
strates saturation throughput for Transpose traffic using 4-
VCs as the network size increases. As shown, FastPass
outperforms the baselines in all the network sizes. Since
the number of prime routers determines the number of
FastPass-Packets at a time, the throughput enhancement in
FastPass increases as the network size does. SPIN has the
lowest throughput in all the cases because its deadlock de-
tection imposes considerable latency overhead at saturation
to detect deadlock cycles. In summary, compared to SWAP,
FastPass provides 17% higher throughput in 4x4, 67%
in 8x8 and 78% in 16x 16 networks.

a2 EscapeVC(VN=6, VC=2)
DRAIN(VN=6, VC=2)
mFastPass(VN=0, VC=2)

=SPIN(VN=6, VC=2)
@Pitstop(VN=0, VC=2)
mFastPass(VN=0, VC=4)

5 SWAP(VN=6, VC=2)
2 TFC(VN=6, VC=2

N
S}

Average Packet Latency

Averag

o

S © o o h
oM r o @ = i

Normalized Execution Time
ARSI

i

A A
Streamcluster

Radix Canneal FFT Fi

Volrend

4
=
-
c
)
&

Average

Figure 10: Average packet latency and execution time (normalized to
EscapeVC).

Latency of regular packets vs. FastPass-Packets: Fig. 9
shows the breakdown of the average packet latency for
FastPass-Packets and regular packets for different injection
rates. The latency of the FastPass-Packets consists of two
components: regular time (i.e., buffered time) and FastPass
time (i.e., bufferless time). To collect the result, we use
Uniform traffic with 1 VC. At low injection rates, the
fraction of the regular time for FastPass-Packets is small. As
the load increases, the regular time makes up the majority
of the latency for the FastPass-Packets. As shown, the
bufferless time of the FastPass-Packets remains small across
all the injection rates (including post saturation).

B. Application Traffic

Fig. 10 shows average packet latency and execution time
of FastPass and the baselines. Pitstop and FastPass
use no VNs while other schemes use 6-VNs to avoid
protocol-level deadlocks in MOESI Hammer protocol. Note
that DRAIN can function correctly with no VNs; however, it
requires a large amount of buffers which is not minimal [13].
On average, FastPass with 2-VCs provides 6% improve-
ment on execution time over network-level deadlock solu-
tions (EscapeVC, SPIN, and SWAP), 8-9.5% over protocol-
level deadlock solutions (DRAIN and Pitstop), and 3% over
TFC. FastPass with 4 VCs improves execution time by
5% over TFC at 1/3th buffer area/power budget. In terms
of average packet latency, FastPass provides up to 46%

oCrossbar @ Arbiters mSPIN Overhead

=DRAIN Overhead

= Buffers
o SWAP Overhead
400,000
350,000
300,000
250,000
200,000
150,000
100,000
50,000
0

m Pitstop Overhead mFastPass Overehead

Power (uw) and Area (um*2)

Escape SPIN SWAP DRAIN Pitstop FastPass
(VN=6, VC=2) | (VN=6, VC=2) | (VN=6, VC=2) | (VN=6, VC=2) | (VN=0, VC=2) | (VN=0, VC=2)

Figure 11: Post Place-and-Route router power and area (28nm TSMC,
1GHz).

=SPIN (VN=6, VC=2)
& Pitstop (VN=0, VC=2)

=SWAP (VN=6, VC=2)
mFastPass(VN=0, VC=2)

DRAIN (VN=6, VC=2)

0000

scale)

o
S
s]

99th-percentile latency

(Logarithmic

d Avel

Canni

Figure 12: 99t" percentile tail latency (Logarithmic scale).

improvement over prior art.

C. Area and Power

As mentioned in IV-B, FastPass and Pitstop use no
VNs but other methods need to use 6 VNs due to provid-
ing correctness or minimizing the amount of buffer space.
Fig. 11 shows the breakdown of static power and area
used by FastPass and the baselines using TSMC 28nm.
FastPass reduces power and area by 41% and 40%
over EscapeVC. FastPass has similar area and power
consumption as Pitstop. SPIN imposes 6% area overhead
compared to EscapeVC due to its deadlock detection circuit.
The area overhead of FastPass consumes only ~4% of
FastPass area.

D. Sensitivity study

Tail latency: Fig. 12 shows the worst-case latency (i.e.,
99" percentile tail latency) of packets in the network.
FastPass with 2 VCs has the lowest tail latency compared
to all baselines. This is because FastPass allows multiple
FastPass-Packets at any given time bypassing congested ar-
eas. DRAIN has the worst tail latency due to its misrouting;
misrouted packets may create deadlocks which must wait
until next DRAIN period to arrive.

Fraction of dropped packets: Fig. 13 shows the breakdown
of different packet types in FastPass: FastPass-Packet,
regular, and dropped packets. Fig. 13(a) shows Uniform
traffic using 1 VC. During low loads, regular packets are
dominant-FastPass operates mostly like baseline. As the
load increases, FastFlow kicks in, increasing the number of
FastPass-Packets. Note that the fraction of dropped packets

RegularPackets oFastPassPackets mDroppedPackets

100%
90%]

40%

!

10%
0%

A\

(a) Uniform

= RegularPackets oFastPassPackets mDroppedPackets

100%
90%
80%
70%
60%
50%

N
40% N
30% |
20% I
10%

0% N A

Barnes Canneal FFT FMM

(b) Real Workload

Volrend

Average

Figure 13: Breakdown of the different packet types using 1 VC under (a)
uniform traffic and (b) application traffic.

is negligible even at post saturation (5.9%). In real ap-
plications, the fraction of dropped packets is 0.3%. As a
comparison, SCARAB [17] drops up to 9% of the total
packets mid-transmission for real applications.

V. RELATED WORK

A. Performance Optimizations

Credit flow control: This flow control employs credits so
that the upstream router can track of the number of available
buffer slots at the downstream router. Only when there are
available slots can the upstream router forward a packet
to the downstream router. Prior work improves on this by
enabling a bufferless bypass approach. This type of approach
eliminates the need for arbitration and buffering for the
packet traversal. Token Flow Control (TFC) [19] employs
tokens indicating resource availability in the network. Each
router broadcasts a token along a fixed length so that packets
can bypass the congestion. However, in the case of conflict
between two packets, one packet must get buffered. In
Express Virtual Channels (EVCs) [20], packets can skip
the entire router pipeline by creating straight bypass paths.
Packets cannot bypass routers when changing dimensions.
Both TFC and EVCs provide opportunistic bypass paths
where every packet is not guaranteed to use the bypass
approach.

SDM- and TDM-based flow control: Circuit-switched
coherence [11] partitions each link into multiple planes
in a space-division multiplexing (SDM) approach. Packets
can opportunistically travel bufferlessly in a circuit-switched
manner in an assigned partition; however, in the event of
contention, the packet must be buffered and cannot move to
an idle partition. Prior work improves on this by enabling
TDM [38]. During each time slot, the links are configured
to handle either packet-switched or circuit-switched connec-
tions.

Deflection flow control: This type of solution [12] relies
on misrouting packets; in these techniques if multiple flits
contend for the same output port, one of them is given the
requested output port and others are deflected (misrouted).
Due to the misrouting, they suffer from throughput degra-
dation.

Drop-based flow control: Instead of misrouting packets,
BPS [33] proposes a dropping approach when multiple
packets contend for the same output port. In this case, one
packet is given the intended output port while the other one
is dropped. As a result, this method suffers from frequent
dropping. SCARAB [17] reduces the number of dropped
packets by using MSHRs as a temporary storage and im-
posing a dedicated circuit-switched network to enable packet
re-transmission. Both BPS and SCARAB need to have an
additional buffer per router for possible re-transmission.

B. Protocol-level Deadlock Freedom Solutions

A certain number of VNs are required to prevent protocol-
level deadlock. The minimum number of required VNs is
determined by the cache coherence protocol. The larger
the number of message classes, the larger the number of
VNs required. Since VNs are implemented using memory
elements, a large number of VNs leads to considerable
power and area overhead. Most of the prior work [2],
[26], [31], [32] uses costly VNs as the primary de facto
solution to avoid protocol-level deadlocks. Therefore, there
is an opportunity to reduce this cost without sacrificing
correctness and performance.

Some prior work maintains the protocol-level deadlock
freedom with no VNs. mDisha [34] adds extra buffers in the
network to detect protocol-level deadlock and then resolve
it. Bubble Coloring (BC) [35] statically reserves two packet-
sized bubbles per router in a virtual ring. This approach
results in frequent misrouting. DRAIN [24] periodically
misroutes packets in the network to break potential deadlock
cycles. Pitstop [13] fundamentally improves on this by
providing a bypass mechanism between network interfaces
to avoid misrouting. However, only one message type can
use the bypass approach in the network at a time, leading to
performance issues as the network size increases. SEEC [27]
provides simultaneous bufferless paths like FastPass.
However, FastPass is free from sending tokens (i.e.,
seekers) and its associated overhead to upgrade packets.

C. Network-level Deadlock Freedom Solutions

Applying turn restrictions to the routing algorithm avoids
network-level deadlock at the cost of limiting path diversity.
EscapeVC [8] improves on this by imposing an additional
VC (per VN) as the escape virtual channel. However, packets
within the escape VC cannot exploit full path diversity.
Other solutions eliminate the need for an extra VC by using
deadlock detection and recovery mechanisms [2], [31]. This

type of solution needs global coordination and synchro-
nization between routers leading to significant overhead.
Another type of solution eliminates the need for detecting
deadlock by employing a periodic approach [25], [26],
[28]. For example, SWAP [26] periodically makes forward
progress for a blocked packet at the cost of misrouting.
Bubble flow controls [6], [30] insert empty buffer slots
(called bubbles) to prevent network-level deadlocks. None
of the aforementioned methods can handle protocol-level
deadlocks without using VNs.

D. FastPass vs. Prior work

In this section, we highlight the differences between
FastPass and prior work.

Comparison against other performance optimization
techniques: Unlike the flow control techniques such as
EVCs and TFC [19], [20], FastPass guarantees that every
packet can be upgraded to a FastPass-Packet to traverse
bufferlessly over FastPass-Lanes. FastPass is also capable
of using one single VC while TCF and EVCs need multiple
VCs to provide bypass paths. FastPass also can provide
both protocol- and network-level deadlocks freedom with no
VNs while TCF and EVCs are only limited to deadlock-free
algorithms.

Comparison against other TDM techniques: The TDM
used in FastPass has differences with other TDM-based
NoCs [29], [38]. For example, Yin et al. [38] require
multiple setup phases to reserve and then remove a circuit-
switched path, congesting the network. Unlike these meth-
ods, FastPass provides multiple non-overlapping pre-
defined paths without global coordination making it free
from such challenges. These methods also rely on multiple
VCs [5], [29], [38] while FastPass can work with a single
VC. None of the these methods can resolve network- and
protocol-level deadlocks.

Comparison against other deadlock freedom techniques:
Unlike the prior work which targets only deadlock freedom,
FastPass guarantees both types of deadlock freedom and
also provides a large throughput enhancement. FastPass
has following unique characteristics setting it apart from
prior work: (1) no VNs, (2) high performance, (3) no mis-
routing, (4) no scalability issue, (5) no deadlock detection,
and (6) no additional buffers.

Comparison against highly-connected topologies: Highly-
connected topologies [16], [18] provide performance gains
through express paths at the cost of the physical variety.
Furthermore, none of these topologies alone can guar-
antee protocol- and network-level deadlocks. Therefore,
FastPass provides significantly better power and area
results over those topologies.

VI. CONCLUSION

FastPass proposes a unified solution for head of line

blocking and deadlock problems. FastPass upgrades mul-
tiple packets to reach their destinations bufferlessly. To avoid
any collisions between the upgraded packets, we provide
non-overlapping pre-defined paths over which packets can
make forward progress every cycle. Therefore, these pro-
moted packets cannot be blocked by congestion nor dead-
lock. Unlike the prior work, FastPass does not use VN,
additional buffer/VC, deadlock detection, or misrouting.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and members of the
NEJ Group for their helpful comments to improve this
work. We thank the SPIN authors for sharing their gem5
implementation. Special thanks to Mayank Parasar for shar-
ing the gem5 implementation of SWAP, MinBD, and TFC.
The authors also would like to thank William Won for his
help on placed-and-routed RTL implementations. This work
was supported by the Natural Sciences and Engineering
Research Council of Canada and the Canadian Foundation
for Innovation.

REFERENCES

[1] N. Agarwal, T. Krishna, L. Peh, and N. K. Jha, “Garnet: A
detailed on-chip network model inside a full-system simula-
tor,” in 2009 IEEE International Symposium on Performance
Analysis of Systems and Software, 2009.

[2] K. V. Anjan and T. M. Pinkston, “An efficient, fully adaptive
deadlock recovery scheme: DISHA,” in Proceedings 22nd
Annual International Symposium on Computer Architecture,

199s.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
benchmark suite: Characterization and architectural implica-
tions,” in Proceedings of the 17th International Conference
on Parallel Architectures and Compilation Techniques, 2008.

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A.
Wood, “The gem5 simulator,” SIGARCH Comput. Archit.
News, 2011.

[5] T. Bjerregaard and J. Sparso, “A router architecture for
connection-oriented service guarantees in the mango clockless
network-on-chip,” in Design, Automation and Test in Europe
(DATE), 2005.

[6] L. Chen, R. Wang, and T. M. Pinkston, “Critical bubble
scheme: An efficient implementation of globally aware net-
work flow control,” in 2011 IEEE International Parallel
Distributed Processing Symposium, 2011, pp. 592-603.

[71 W.J. Dally and C. L. Seitz, “Deadlock-free message routing
in multiprocessor interconnection networks,” IEEE Trans.
Comput., vol. 36, no. 5, pp. 547-553, 1987.

[8] J. Duato, “A new theory of deadlock-free adaptive routing
in wormhole networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 4, no. 12, pp. 1320-1331, Dec 1993.

91

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(7]

(18]

[19]

[20]

(21]

(22]

J. Duato and T. M. Pinkston, “A general theory for deadlock-
free adaptive routing using a mixed set of resources,” IEEE
Transactions on Parallel and Distributed Systems, vol. 12,
no. 12, pp. 1219-1235, Dec 2001.

J. Duato, “A necessary and sufficient condition for deadlock-
free adaptive routing in wormhole networks,” IEEE Trans.
Parallel Distrib. Syst., vol. 6, no. 10, pp. 1055-1067, 1995.

N. Enright Jerger, L.-S. Peh, and M. Lipasti, “Circuit-
switched coherence,” in International Symposium on
Networks-on-Chip, 2008.

C. Fallin, G. Nazario, X. Yu, K. Chang, R. Ausavarungnirun,
and O. Mutlu, “MinBD: Minimally-buffered deflection
routing for energy-efficient interconnect,” in 2012 Sixth
IEEE/ACM NOCS, 2012, pp. 1-10. [Online]. Available:
http://dx.doi.org/10.1109/NOCS.2012.8

H. Farrokhbakht, H. Kao, K. Hasan, P. Gratz, T. Krishna,
J. San Miguel, and N. Enright Jerger, “Pitstop: Enabling a
virtual network free network on chip,” in Proceedings of
the International Symposium on High Performance Computer
Architecture, 2021.

C. J. Glass and L. M. Ni, “The turn model for adaptive
routing,” in Proceedings the 19th Annual International Sym-
posium on Computer Architecture, 1992.

P. Gratz, B. Grot, and S. Keckler, “Regional congestion
awareness for load balance in networks-on-chip,” in IEEE
International Symposium on High-Performance Computer
Architecture (HPCA), 2008.

B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Express
cube topologies for on-chip interconnects,” in International
Symposium on High Performance Computer Architecture,
2009, pp. 163-174.

M. Hayenga, N. Enright Jerger, and M. Lipasti, “SCARAB: A
single cycle adaptive routing and bufferless network,” in 42nd
Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2009, pp. 244-254.

J. Kim, J. Balfour, and W. Dally, “Flattened butterfly topol-
ogy for on-chip networks,” in International Symposium on
Microarchitecture (MICRO), 2007, pp. 172-182.

A. Kumar, L.-S. Peh, and N. K. Jha, “Token flow control,”
in Proceedings of the 41st annual IEEE/ACM International
Symposium on Microarchitecture. 1EEE Computer Society,
2008, pp. 342-353.

A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha, “Express
virtual channels: towards the ideal interconnection fabric,” in
ISCA, 2007.

Z. Li, J. San Miguel, and N. Enright Jerger, “The runahead
network-on-chip,” in International Symposium on High Per-
formance Computer Architecture (HPCA), 2015.

S. Ma, N. Enright Jerger, and Z. Wang, “DBAR: An efficient
routing algorithm to support multiple concurrent applications
in networks-on-chip,” in International Symposium on Com-
puter Architecture (ISCA), 2011.

http://dx.doi.org/10.1109/NOCS.2012.8

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb,
“The Alpha 21364 network architecture,” in HOT 9 Intercon-
nects. Symposium on High Performance Interconnects, 2001.

M. Parasar, H. Farrokhbakht, N. Enright Jerger, P. Gratz,
T. Krishna, and J. San Miguel, “DRAIN: Deadlock removal
for arbitrary irregular networks,” in 2020 IEEE International
Symposium on High Performance Computer Architecture
(HPCA), 2020.

M. Parasar, A. Sinha, and T. Krishna, “Brownian bubble
router: Enabling deadlock freedom via guaranteed forward
progress,” in 2018 Twelfth IEEE/ACM International Sympo-
sium on Networks-on-Chip (NOCS), 2018, pp. 1-8.

M. Parasar, N. Enright Jerger, P. V. Gratz, J. San Miguel,
and T. Krishna, “SWAP: Synchronized weaving of adjacent
packets for network deadlock resolution,” in Proceedings of
the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019.

M. Parasar, N. Enright Jerger, P. V. Gratz, J. San Miguel,
and T. Krishna, “SEEC: Stochastic escape express channel,”
in The International Conference for High Performance Com-
puting, Networking, Storage, and Analysis (SC), 2021.

M. Parasar and T. Krishna, “Bindu: Deadlock-freedom with
one bubble in the network,” in Proceedings of the 13th
IEEE/ACM International Symposium on Networks-on-Chip,
2019.

A. Psarras, 1. Seitanidis, C. Nicopoulos, and G. Dimitrakopou-
los, “PhaseNoC: TDM scheduling at the virtual-channel level
for efficient network traffic isolation,” in Design, Automation
Test in Europe(DATE), 2015.

V. Puente, C. Izu, R. Beivide, J. Gregorio, F. Vallejo, and
J. Prellezo, “The adaptive bubble router,” J. Parallel Distrib.
Comput., vol. 61, no. 9, pp. 1180-1208, 2001.

(31]

(32]

(33]

[34]

[35]

[36]

(37]

(38]

A. Ramrakhyani, P. V. Gratz, and T. Krishna, “Synchronized
progress in interconnection networks (SPIN): A new theory
for deadlock freedom,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture, 2018.

A. Ramrakhyani and T. Krishna, “Static bubble: A framework
for deadlock-free irregular on-chip topologies,” in 2017 IEEE
International Symposium on High Performance Computer
Architecture (HPCA), 2017.

C. G. Requena, M. E. G. Requena, P. J. L. Rodriguez, and
J. D. Marin, “An efficient switching technique for NoCs with
reduced buffer requirements,” in International Conference on
Parallel and Distributed Systems, 2008.

Y. Song and T. Pinkston, “A progressive approach to handling
message-dependent deadlock in parallel computer systems,”
Parallel and Distributed Systems, IEEE Transactions on,
vol. 14, pp. 259-275, 2003.

R. Wang, L. Chen, and T. M. Pinkston, “Bubble coloring:
Avoiding routing- and protocol-induced deadlocks with min-
imal virtual channel requirement,” in Proceedings of the 27th
International ACM Conference on International Conference
on Supercomputing, 2013, pp. 193-202.

H. M. G. Wassel, Y. Gao, J. K. Oberg, T. Huffmire, R. Kast-
ner, F. T. Chong, and T. Sherwood, “SurfNoC: A low latency
and provably non-interfering approach to secure networks-on-
chip,” in International Symposium on Computer Architecture
(ISCA), 2013.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
“The SPLASH-2 programs: Characterization and method-
ological considerations,” in Proceedings of the 22nd Annual
International Symposium on Computer Architecture, 1995.

J. Yin, P. Zhou, S. S. Sapatnekar, and A. Zhai, “Energy-
efficient time-division multiplexed hybrid-switched NoC for
heterogeneous multicore systems,” in International Parallel
& Distributed Processing Symposium (IPDPS), 2014.

	Introduction
	Background
	FastPass
	Definitions
	FastFlow
	Detailed Algorithm
	TDM-based Non-overlapping FastPass-Lanes
	FastPass for throughput enhancement
	FastPass as Deadlock Removal with No Virtual Networks
	Dynamic Bubble
	Lookahead

	Proof of Correctness
	Router Microarchitecture
	FastPass in Irregular Topologies

	Evaluation
	Synthetic traffic
	Application Traffic
	Area and Power
	Sensitivity study

	Related Work
	Performance Optimizations
	Protocol-level Deadlock Freedom Solutions
	Network-level Deadlock Freedom Solutions
	FastPass vs. Prior work

	Conclusion
	References

