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ABSTRACT
Intermittent systems on energy-harvesting devices have to fre-
quently back up data because of an unreliable energy supply to
make forward progress. These devices come with non-volatile mem-
ories like Flash/FRAM on board that are used to back up the system
state. However, quite paradoxically, writing to a non-volatile mem-
ory consumes a lot of energy that makes backups expensive. Idem-
potency violations inherent to intermittent programs are major
contributors to the problem, as they render system state inconsis-
tent and force backups to occur even when plenty of energy is
available. In this work, we !rst characterize the complex persist
dependencies that are unique to intermittent computing. Based on
these insights, we propose NvMR, an intermittent architecture that
eliminates idempotency violations in the program by renaming
non-volatile memory addresses. This can reduce the number of
backups to their theoretical minimum and decouple the decision
of when to perform backups from the memory access constraints
imposed by the program. Our evaluations show that compared to a
state-of-the-art intermittent architecture, NvMR can save about 20%
energy on average when running common embedded applications.
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1 INTRODUCTION
With cutting-edge connectivity and computing resources, there has
been a surge in the number of IoT devices in recent years. These

∗This work was done while the author was at UW-Madison.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro!t or commercial advantage and that copies bear this notice and the full citation
on the !rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci!c permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’22, June 18–22, 2022, New York, NY, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8610-4/22/06. . . $15.00
https://doi.org/10.1145/3470496.3527413

���
��
��
���

	���������
�	
��	���

�������

������ �
�
�

������ �

������ �
�
�

������ �

Figure 1: A sudden power loss can cause an idempotency
violation in intermittent program execution

devices, in spite of their small form factor, can support several so-
phisticated algorithms that can run on a normal desktop or a laptop.
Most of the time, these devices draw their energy for computation
(e.g. smartphones, smartwatches, etc.) from a battery that needs to
be charged periodically. This makes batteries the bulkiest compo-
nents in these devices. However, in many cases these devices come
in small form factors or are installed in remote locations and thus,
may not be tethered to a battery. Hence, there is a push towards bat-
teryless devices that harvest energy from ambient sources around
them (Solar, RF,Wind, or Piezoelectric devices) [11, 12, 15, 29, 32, 35]
to run applications until battery technologies evolve. In general,
energy is stored in the form of charge across a capacitor or current
passing through a resistor.

These batteryless devices come with their own set of challenges
that require both software and hardware solutions. Since these
devices depend on ambient sources for energy, it makes the power
supply unpredictable. From an architectural perspective, the key
challenge is to perform useful computation before the device runs
out of energy. This type of computing, also known as intermittent
computing, often needs to back up application and processor state
to a non-volatile memory (NVM) before the charge in the capacitor
drains out. The system state is restored and computation is resumed
once there is enough charge in the capacitor again. As writing to
NVMs consumes a lot of energy, backups tend to be quite expensive.
So, it is important to minimize the energy overhead for backups
so that the remaining energy can be utilized for making forward
progress.

1.1 Challenges in Correctness and E!ciency
Previous works have suggested various ways to perform backups
in an energy-e"cient way. Early works use just-in-time check-
points at a predetermined threshold voltage [2, 3, 17] to backup
when absolutely necessary. However, recent works have shown
that minimizing backup overheads is not enough. An unexpected
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Figure 2: (a) Backuppolicywith an optimistic threshold (backupmust be atomic), (b) Clank (backupwhen there is an idempotency
violation), (c) DINO (backup at the boundary of pre-de"ned atomic tasks), (d) NvMR (any backup policy of choice); R stands for
renaming. NVM addresses A and B are renamed to X and Y.

power loss in the middle of a running application can lead to an
incorrect processor state. For instance, consider the program in
Figure 1. LD A returns a value 0 since address A is initialized to
0 in NVM. The following ST A writes a value 1 to address A in
NVM. However, an abrupt power outage after the store leads to
re-execution of the program. But this time LD A reads from NVM
and returns a value 1 which is incorrect. This discrepancy is known
as an idempotency violation [27, 34]. The software solution, pro-
posed in [7, 22, 26], divides an application into programmer-de!ned
idempotent tasks and performs backups at task boundaries. But this
approach puts the burden of determining execution-safe regions
of code on the programmer. In [16], the hardware detects idempo-
tency violations and performs a backup upon detection. But if an
application has too many idempotency violations the device will
have to back up often even though there is su"cient energy to sus-
tain further execution of instructions. This presents a conundrum
where an intermittent architecture has to backup on idempotent
violations but also make forward progress. An ideal solution will be
an intermittent architecture that guarantees program correctness
in the most energy-e"cient manner.

1.2 Our Approach: NvMR
To address the problems discussed above, we !rst characterize the
complex persist dependencies that must be enforced for correctness
and are unique to intermittent computing. Upon careful examina-
tion we !nd that renaming NVM addresses can eliminate most of
these dependencies and reduce backup costs to their theoretical
minimum.We propose Non-volatile Memory Renaming (NvMR) – an
intermittent architecture that bypasses idempotency violations by
renaming addresses of stores to NVM. This achieves two key goals:
(1) it minimizes the number of backups that need to be invoked, and
(2) it decouples the decision of when to perform a backup from the
program execution. Ideally, a backup scheme should be #exible and

solely dependent on environmental conditions. However, due to the
presence of idempotency violations, the program is more often the
dominant decider of when to perform backups in state-of-the-art
intermittent systems. Our experiments on a previous intermittent
architecture (Clank [16]) with popular embedded benchmarks show
that backups due to idempotency violations account for more than
30% of the total energy consumption on average.

2 BACKGROUND
Previous studies have explored di$erent techniques to checkpoint
data in order to make forward progress. In this section, we explain
some of the backup schemes using the same example program.
These backups schemes can be broadly classi!ed as hardware-based
or software-based.

2.1 Hardware-based Checkpointing
[2, 3, 17] propose backup schemes with an optimistic threshold
by recording updates to NVM in logs and atomically committing
them on a backup (stores to addresses A, B and C in Figure 2a. They
use an analog-to-digital converter (ADC) to detect if the supply
voltage dips below a predetermined threshold and back up once
just before power failure. However, the backup needs to be atomic
to guarantee program correctness. In such systems data updates
are stored in a redo log in NVM. Such systems do not need to be
idempotency violation-aware as the store updates are re-executed
from the log during restore [7, 48] and loads are never re-executed
if the backup were successful. HOOP [6] is a log-based architecture
for persistent memory that we adjust to semantically resemble a
log-based intermittent architecture. HOOP does out-of-place (OOP)
updates to a statically allocated OOP Region in NVM. A mapping
table renames the addresses of dirty cache blocks evicted from a
data cache to addresses from OOP Region. To reduce NVM writes,
a volatile OOP Bu$er packs word updates into slices that are !nally
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written to OOP Region during a backup. HOOP invokes a backup
when the OOP Bu$er or the mapping table gets full, or based on
the backup policy. During restore or if the OOP Region gets full,
HOOP has to perform garbage collection. During restore, HOOP
does garbage collection to update the original addresses with the
new data from the OOP Region.

Clank [16] is a hardware solution that divides the addresses of a
program into two categories: read-!rst and write-!rst, in order to
detect idempotency violations. If the !rst access to an address after
a backup is a load, the address is placed in a read-!rst bu$er. Thus,
addresses A and C in the example programwill be inserted into read-
!rst bu$er. On the other hand, an address is put in the write-!rst
bu$er if the !rst access to it is a store (e.g. address B). An address
can be present in only one of these bu$ers at any time. If there is a
subsequent write to an address which is in the read-!rst bu$er, the
hardware #ags an idempotency violation and triggers a backup. ST
A and ST C are the violating stores that cause backups. They are
highlighted in red text and shown again with dotted curved arrows
in Figure 2b to indicate that an idempotency violation is detected
!rst, followed by a backup and then the violating instruction is
executed. If the address is in the write-!rst bu$er instead, there is
no action and normal execution resumes. If any of the bu$ers gets
full, the device does a backup when a new entry is needed. Though
this approach ensures correct intermittent execution, it imposes
numerous backups on the system than actually needed, since there
is plenty of energy available to continue execution most often.

2.2 Software-based Checkpointing
[7, 22, 26] suggest decomposing long-running executions into user-
de!ned atomic tasks. Checkpoints are inserted at task boundaries,
guaranteeing application state to be consistent. Such a backup
scheme is shown in Figure 2c. To keep a task idempotent, [25]
introduce a privatization bu$er that stores updates to variables
shared between tasks until the task commits atomically. Similar to
Clank, this approach imposes more backups on the system than
actually needed, since tasks are sized much smaller than the avail-
able energy supply. Furthermore, as highlighted in prior work [16],
task-based solutions can be challenging for programmers since task
decomposition is static and often needs detailed knowledge of the
intermittent hardware to make appropriate task decomposition.

NvMR renames the addresses of the idempotency violating stores
in our toy program, ST A and ST C, to X and Y respectively (shown
with a red R above a dotted arrow in Figure 2d)1. The subsequent
load to address A will read the updated data from the most recent
mapping X. This way NvMR decouples the backup scheme from
the underlying hardware execution. So, any backup policy based
on the operating conditions can be deployed.

In the following sections, we !rst model the fundamental per-
sist dependencies that are unique to intermittent computing and
analyze them in detail. We then present our NvMR architecture in
Section 4, inspired from concepts (and limitations) of these prior
works. Section 5 then talks about the tools and techniques used for
our simulation and performance evaluation. Section 6 provides a
thorough analysis of both performance and energy results from

1Addresses are renamed after the execute stage of the pipeline when all addresses are
known

our simulation. In Section 7, we present a brief discussion of liter-
ature from related work before summing up with a conclusion in
Section 8.

3 INTERMITTENT PERSIST DEPENDENCIES
Several works have built models to characterize the e"ciency of
intermittent systems [3, 5, 29]. However, none have built general-
ized models that describe the necessary persistency constraints for
correct intermittent execution. These persist dependencies must
be upheld for a program to execute correctly, as if it had run in a
continuously-powered system. Memory persistency models have
been explored [20, 33] though they address fundamentally di$er-
ent challenges; these works instead focus on interactions between
memory persistency and consistency for shared-memory multi-
processors. According to our knowledge, this is the !rst work that
provides a persist dependency (and ordering) model for intermittent
systems. Although prior works have suggested correctness models
for intermittent execution based on data dependencies, they bypass
the discussion on persist dependencies by assuming an architecture
with no bu$ering of dirty data (e.g. a write-through cache) [41, 42].
We consider an architecture where all load and store instructions
access NVM addresses, with a volatile write-back cache acting as an
intermediary. As shown by [48], a write-back cache enables reuse
of dirty data and reduces the number of expensive writes to NVM.
Backups save the contents of the volatile register !le (including the
program counter) into NVM. After a power loss, processor state is
restored to the last persisted backup. Any instructions that were
executed after the backup must be re-executed. Our goal is to pro-
vide a theoretical understanding of which persists depend on each
other and why, in the context of intermittent execution.

3.1 Requirements for Correct Intermittent
Execution

The !rst observation we make is that there are three main require-
ments that must be enforced in traditional intermittent architec-
tures for correct program execution:

(1) Code Progress: Stores to the same address must be persisted
in program order and backups must be persisted in the order
that they are invoked. This ensures that the program eventu-
ally completes, as long as the device’s energy supply is large
enough for at least one backup.

(2) Data Progress: The value of a store to NVM address X that
precedes a backup (in program order) must be persisted prior
to persisting the backup. This ensures that program data is
always kept up-to-date across power losses.

(3) Idempotency: If the !rst access to NVM address X after a
backup is a load, the value of any subsequent store to the
same address that succeeds the backup (in program order)
must not be persisted until the next backup is persisted, in
case power is lost before the next backup. This ensures that
program data is not corrupted by instructions that were not
backed up before the last power loss.

3.2 Code Sections in Intermittent Execution
A non-volatile memory location X is read-dominated if the !rst load
from X after the most recent backup precedes the !rst store to X in



ISCA ’22, June 18–22, 2022, New York, NY, USA Abhishek Bha!acharyya, Abhijith Somashekhar, and Joshua San Miguel

program order. Conversely, X is write-dominated if the !rst store
precedes the !rst load. Thus, in an intermittent code section an
address X can be either read-dominated or write-dominated2. This
distinction is vital to characterizing the correctness requirements
for persists. Recent work [16, 46] recognizes that Requirement 3
only needs to be enforced if X is read-dominated. If X is write-
dominated, the store’s value can be persisted prior to the next
backup. Though X would be corrupted upon a power loss, upon re-
execution, X will !rst be overwritten before being read, nullifying
the corruption.

3.3 Modeling Intermittent Persist Dependencies
Understanding when backups may be persisted relative to when
stores are persisted is important. Thus, we aim to characterize all
the persist orderings including the ones between persist backups
and persist stores for correct program execution in an intermit-
tent setting. We will show that current intermittent systems have
only scratched the surface in understanding the complex dependen-
cies between persists and, thus, enforce conservative (ine"cient)
constraints on backups and stores.

What are theminimum ordering constraints for correct per-
sists? We formulate the problem statement as: for a given program
and set of backups invoked during its execution, what dependen-
cies must be respected among persists? Each backup records the
contents of the volatile register !le (including the program counter)
at some instance in the program execution and persists them into
NVM. Similar to store instructions, persisting the backup can be
decoupled from its execution.3 That is, writing the register contents
into NVM can occur after (or even before) the backup is invoked, as
long as the persisted register contents match what they would be
at the position in program order at which the backup was invoked.
Thus, the processor may invoke a backup and continue executing
instructions after it; however, if power is lost before the backup is
persisted, the processor must revert its state to an earlier backup.

We o$er a formal description of the dependencies among per-
sists in an intermittent execution. With this purpose, we model
the happens-before persist orderings as relations between a pair
of persist operations {p1,rel,p2}, where p1 and p2 are two persist
operations in program order and the direction associated with rel

represents the persist order between the pair. For example, {st,
spo
−−→,

st} is the relation between a pair of persist stores to the same ad-
dress, representing the necessary ordering between them to main-
tain program order (Requirement 1). We color code the various
relations that exist in an intermittent execution and list them along-
side the requirements that they satisfy in Table 1. Note that the

ordering, {st,
spo
−−→, st}, is needed for correct program execution in

continuous execution too, while the other orderings are speci!c to
intermittent execution. In general, all backup schemes for intermit-
tent systems can be broadly classi!ed as single-backup [3, 23] or
multi-backup [7, 15, 16] schemes based on the number of backups

invoked before a power loss [39]. {backup,
bpo
−−−→, backup} ordering

is necessary in multi-backup schemes only.

2Address X is symbolic and representative of any address
3Note that the persist backup itself must be performed atomically (i.e., all registers’
contents and program data must be backed up together), usually via double bu$ering.
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Table 1: Persist happens-before orderings (spo: store persist
order, bpo: backup persist order, rfpo: read from persist order
and irpo: idempotent re-execution enforced persist order) in
an intermittent execution along with the correctness require-
ments that they ful"ll, shown with color-coded arrows
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(b) write-dominated

Figure 3: Happens-before persist orderings for correct inter-
mittent execution. Cyclic sequence of orderings represent
atomicity constraints

Figure 3 shows the necessary persist dependencies for any gen-
eral program execution, characterized by read-dominance andwrite-
dominance, focusing on the symbolic NVM location X. We ignore
the dependencies in instruction execution and assume that they
respect program order. We also ignore loads and assume the most
up-to-date values are readily available in the write-back cache, ex-
cept immediately after a power loss; in that case, the load must read
the value in NVM. Backups can be invoked at any arbitrary point
in the program, but when invoked, they introduce a set of happens-
before ordering and atomicity constraints with surrounding stores.
The backup point also decides if the next intermittent code section
is read-dominated or write-dominated for address X.

3.4 Read-Dominance
Figure 3a models the dependency pattern when all stores access
read-dominated addresses. To ensure data progress (Requirement 2),
each store must persist before the next backup persists. Otherwise,
if the next backup were persisted !rst and power is lost, the most
up-to-date value of X would be lost. Simultaneously, to ensure
idempotent execution (Requirement 3), each store must not persist
until the next backup persists. Otherwise, if the store were persisted
!rst and power is lost, the program would re-execute from the prior
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Figure 4: Happens-before persist orderings with proposed
NVM renaming. By renaming X, all stores access only write-
dominated memory locations. Only the stores that immedi-
ately precede backups must be persisted.

backup and incorrectly load the later store’s value of X. These
constraints combined imply that all stores to a read-dominated
address must atomically persist with the next backup. This is a
unique, fundamental challenge in intermittent computing systems.

3.5 Write-Dominance
Figure 3b shows that for the same program, with a simple shift of
when backups are invoked, X becomes write-dominated. As a result,
the dependency pattern changes dramatically. Now only Require-
ments 1 and 2 need to be enforced, which is done by persisting
backups in program order and ensuring that stores are persisted
before the next backup. As discussed earlier, idempotent execution
is guaranteed when stores access write-dominated addresses. This
implies that stores no longer have to wait until the next backup to
persist, eliminating the atomicity constraint. In fact, stores after a
backup may even be persisted before the backup persists. Since X
is always write-dominated, whenever power is lost, regardless to
which backup we revert, X will always be overwritten !rst, nullify-
ing the last persisted store.

3.6 Motivating Non-Volatile Memory Renaming
Idempotency is a requirement for correct intermittent execution
and can only be violated by false (write-after-read) dependencies on
NVM locations. This principle will guide the creation of our novel
intermittent architecture that dynamically renames read-dominated
NVM addresses. Renaming is a standard technique for breaking
false register dependencies (i.e., write-after-read, write-after-write)
in out-of-order processors. This allows falsely-dependent instruc-
tions to bypass each other during execution. Memory renaming
has also been referred to in the context of store bu$ers and mem-
ory disambiguation in out-of-order processors [18, 44]. Though
inspired from these approaches, our concept of NVM renaming is
fundamentally di$erent. We do not aim to enable out-of-order exe-
cution but rather translate NVM addresses to guarantee idempotent
execution (Requirement 3) regardless of when backups are invoked.
Our key insight is: by renaming NVM locations, all addresses become
write-dominated. As evident from Figure 4, renaming eliminates

the orderings {st,
spo
−−→, st}, {backup,

irpo
−−−→, st} and {st,

irpo
←−−−, backup}
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Figure 5: Flowchart showing the handling of idempotency
violations in NvMR

present in Figure 3a. Only the stores that immediately precede
backups must be persisted to ensure data progress (Requirement 2)
as shown in Figure 4; all other stores do not need to be persisted
at all, achieving the theoretical maximum e"ciency. Backups are
still required to be persisted in the order that they are invoked to
maintain code progress (Requirement 1). In other words, rendering
all addresses as write-dominated minimizes ordering constraints to
their theoretical minimum, thus decoupling the decision of when to
perform a backup from the correctness constraints of the program.

4 NvMR ARCHITECTURE
Based on the discussion in the previous section, we propose Non-
volatile Memory Renaming (NvMR) intermittent architecture that
detects idempotency violation in hardware and uses renaming of
NVM address to eliminate the relevant perist orderings.

4.1 Overview
Figure 5 explains the whole process of renaming in NvMR in a con-
cise, high-level #owchart. NvMR renames the address of a persist
store to a read-dominated address. NvMR uses a write-back data
cache to take advantage of an application’s data locality deriving
motivation from previous works [10, 43, 48]. Besides, NvMR has two
other structures apart from the write-back, write-allocate (WBWA)
data cache to keep track of read-dominated and write-dominated ad-
dresses and detect idempotency violations: global bloom !lter (GBF)
and local bloom !lter (LBF). GBF keeps track of read-dominated
cache blocks and LBF keeps track of read-dominated or write-
dominated words in a cache block.

NvMR renames the address of a read-dominated cache block if
it is dirty when it is evicted from the cache. NvMR identi!es such a
cache block by reading the value of its dirty bit and the composite
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Figure 6: Block diagram of NvMR architecture (blocks shown
in gold are added)

state calculated from its LBF4. GBF logs if a cache block is read-
dominated or not when they get evicted from the cache using their
address for the membership hash function. NvMR renames the
NVM address of such a cache block with the aid of a map table
and a free list, allocated in NVM, to a new address from a region
in NVM that has been reserved by the compiler. The data from the
cache block is written to this new mapping in NVM, guaranteeing
that the contents of the original address are left untouched. In this
manner, NvMR bears some resemblance to copy-on-write (COW)
mechanisms used in operating systems to reduce storage overhead
associated with forking multiple processes [38, 47]. However, in
operating systems, copy-on-write is done to prevent sharing of
modi!ed resources between two processes, while in NvMR, a new
location of the modi!ed cache block is created to avoid idempotency
violations. Since NVM accesses are expensive, NvMR has an SRAM
write-backmap table cache on-chip to reduce the number of accesses
to the map table. The map table and the map table cache keep a
record of the old and the new mappings, while the free list is a
queue of available mappings from the compiler-reserved region of
NVM that can be used for renaming. Figure 6 presents an overview
of our NvMR architecture with a block-level representation of all
the hardware components described so far.

4.2 Intermittent Execution
In Figure 7 we can see the map table cache. Each entry in the map
table cache contains !ve !elds:

• valid: set to 1 to allocate a new entry.
• dirty: set to 1 to indicate that this entry has the latest map-
ping of a program address and not the map table.

• tag: derived from the program address and used to look up
the map table cache.

• old: original address or most recently backed up mapping of
a program address.

• new: new mapping assigned during renaming.

4Each LBF stores the individual state of the constituent words of a cache block (Un-
known=00, Read-dominated=01 and Write-dominated=10) and is tightly coupled with
the data cache. The composite state of a cache block is the OR of the LSBs of the LBF
states of all the constituent words. The composite state can be either Unknown=0 or
Read-dominated=1

Each entry in the map table holds only three of the above !elds:
valid, tag and old.On a backup, the old !eld of the map table is
updated with the latest mapping from the new !eld of a dirty map
table cache entry. Memory addresses are shown at cache block
boundaries in the Application Region to simplify the discussion
(Figure 7). In order to understand the microarchitecture of NvMR
better, we divide intermittent execution into separate events and
explain them individually in detail with an example.

4.3 Idempotency Violation.
Figure 7 shows a cache block X in the write-back cache with a
tag, Xtag. This cache block was fetched from NVM because of a
read-dominated access to the word [C]. Later word [A] of the same
cache block was written with [Anew]. Thus, its dirty bit in the data
cache is set and the corresponding LBF states of [C] and [Anew]

are set as R and, W respectively. In NvMR, upon a dirty cache block
eviction, the composite state of the cache block is calculated from
the individual LBF states of its constituent words. If the composite
state is 0, there is no idempotency violation. However, block X is
dirty and its composite state is 1. On eviction of this block, NvMR
logs the composite state in GBF and #ags an idempotency violation
A1 .

4.4 Renaming
Write back of a dirty cache block triggers a lookup in the map table
cache to !nd its latest mapping. The block X incurs a miss as it
does not have any entry in the map table cache A2 . This, in turn,

triggers a lookup in the map table, which also results in a miss A3 .
A new mapping is popped from the head of the free list and the
read pointer is moved to the next location of the free list as shown
in Figure 7 A4 . NvMR logs 200 and 710 as old and new mapping
of the block X respectively in a new entry in the map table cache
A5 . Thus, address 200 of block X is renamed to address 710. This
entry is marked valid, and dirty. It is important to note that NvMR
can allocate a new map table cache entry only if there is at least
one empty entry in the map table. The contents of the block X are
written to the address 710 in NVM using the new mapping from
the map table cache, A6 . If a lookup is a hit in the map table, the old
mapping is fetched into the old !eld of the map table cache before
renaming. It is noteworthy to mention here that if the lookup in
the map table cache returns a hit, an evicted, dirty cache block is
persisted at the location pointed to by the new mapping and no
renaming is necessary.

4.5 Cache Miss
As shown in Figure 8, there is a subsequent store request to the
cache block X. It wants to write a word, [Bnew]. But since this block
was recently evicted from the data cache, the lookup causes a cache
miss B1 . To fetch the cache block data from its latest mapping in
NVM, the cache controller invokes a lookup in the map table cache.
Since address 200 has been renamed to address 710 and the entry
with this information still exists in the map table cache, the lookup
is a hit B2 . The cache block will be fetched from the new mapping
710 in NVM, which has the latest data. The word [Bnew] is updated
in the cache block, and it is marked dirty B3 . To update the states
of the associated LBF, NvMR performs a lookup in GBF. GBF stores
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Figure 7: Eviction of a cache block with tag Xtag causes an idempotency violation. Cache block address 200 is renamed to address
710. The dirty cache block is stored at the new mapping 710 instead of 200.

	$$ ���'�#"�����#" ��&�%)�������#"

������
���

���

 ��
 ��

��

�

���

�

������

�

���

�

���

�

���

�

���

�

���

�

���

��$���� �

�

�

��

����

���

 ��
	�

%�����&'

�
�

�

� � � �

�#"�)# �'� ����!#%+������

�


�
�
�
�
�
�
�

�� ��� ���

��$���� �������

�

� ���� ���  ��

�##�($
!�$�'�� ��
�������� ��'

�#����%#!�"�*�
!�$$�"���"��&'#%��

���

��'�������

����� �� ������

������������������ 	�	�	�	������

�##�($��
�
'#�($��'��
&'�'���"��


�##�($���'��
�������� ��&&


�


�


�


�

�����

�


�

 ��

Figure 8: A store miss causes the cache block to be fetched from the new mapping 710. NvMR keeps a log of the new mapping
in the map table cache.

the composite state of cache block address, which indicates if it is
read-dominated or not. As the composite state of the block X in
GBF is 1, it is read-dominated. All the LBF states are conservatively
marked as R to re#ect this B4 . If the composite state of a block is U,
the corresponding LBF state of the word is marked as either R or
W based on whether it is a read or write request, respectively.

4.6 Backup
NvMR can back up on three occasions. First, NvMR performs a
backup when a dirty entry is evicted from the map table cache.

This is to ensure that the map table in NVM always contains the
mappings from the most recent backup. In addition, NvMR can
also perform a backup based on the backup policy implemented
by the user to ensure forward progress. Lastly, NvMR invokes a
backup if there is an idempotency violation after either the map
table is full or the free list is empty, as renaming is not possible in
both the circumstances. Like all other intermittent architectures,
NvMR too takes a snapshot of its general-purpose registers and
special registers like the program counter. Hence, it is not shown
in Figure 9. Since NvMR has a write-back data cache, it persists
all the dirty blocks on a backup. However, NvMR must store the
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Figure 9: Backup will cause the data cache to persist its dirty blocks. The old mappings from the map table cache are pushed
into the free list, and the new mappings are written to the map table. All states in LBF and GBF are reset.

dirty data to the latest mapping if the block has been renamed at
some point of the program execution to guarantee correctness. So,
NvMR looks up the map table cache to !nd the latest mapping for
every dirty cache block. Otherwise, the latest mapping has to be
fetched from the map table. If the lookup in the map table is a miss,
the data is stored to the program address of the cache block.

Fortunately, for the block X, the lookup is a hit in the map table
cache C1 . The new mapping 710 is where the dirty cache block

data is !nally persisted C2 . The dirty bit of block X is set to 0 to
indicate that the write-back completed successfully. After the dirty
cache blocks are persisted, the new mappings from the dirty map
table cache entries are written back to the map table in NVM. The
old mappings from the dirty map table cache entries are added
to the tail of the free list. In our example, NvMR writes back the
new mapping 710 for the block X in the map table C3 . It also adds
the old mapping 200 to the tail of the free list (shown with the
dotted orange arrow to indicate the change in position of the write
pointer) C4 . The dirty bit of the map table cache entry is set to 0

upon completion of the write-back, and the new mapping is copied
to the old mapping in the map table cache. Thus, 710 is copied to
the old !eld and the dirty bit is cleared in Figure 9. The read and
write pointers of the free list are also saved at this point (not shown
in !gure). Finally, GBF and LBF array are reset C5 .

4.7 Restore
For an intermittent system, power loses are frequent. The system
state has to be restored to the previous checkpoint when there
is enough power to resume execution. In NvMR, restore is pretty
simple. The program counter and the other registers are restored
from the previous snapshot saved in NVM. The read and write
pointers of the free list from the most recent checkpoint are also
restored.

4.8 Reclamation
The map table is a limited hardware resource and can get full pretty
quickly for applications that incur a lot of idempotency violations.
Besides, most of the energy-harvesting devices have small non-
volatile memories on board and can’t a$ord to have a large map
table. To mitigate this issue, we introduce a technique called re-
claiming. The idea is quite simple and elegant. The original mapping
of a cache block is the cache block address of the memory request
from the program. After a backup due to an idempotency violation
and a full map table, NvMR reclaims a map table entry based on a
replacement policy like the one used in the caches. Reclaiming has
to atomically push the old mapping from the map table to the tail of
the free list, invalidate the entry and copy the contents of the cache
block from the freed mapping to the original mapping. Thus, origi-
nal mapping of the address is reclaimed. Besides, NvMR also does a
lookup in the map table cache and invalidates the corresponding
entry on a hit. Thus, reclaiming reduces the number of backups
after the map table becomes full. But there is a caveat with using
reclaiming. The original mappings cannot be added to the free list
which e$ectively reduces the size of the free list. Thus, the free list
should have a higher number of mappings in order to compensate
and avoid backups due to shortage of available mappings.

5 METHODOLOGY

5.1 Simulation Infrastructure
For our evaluations, we extend a cycle-accurate C++ simulator from
prior works [16, 39] to model an intermittent execution platform
with an ARM Cortex M0+ [1] (3-stage in-order pipeline) that exe-
cutes instructions fromARMThumb ISA. Our powermodel samples
voltage traces collected in a previous work at 1kHz frequency to
calculate the charge across the supply supercapacitor [28]5. We use

5All our results presented in Section 6 are averaged across 10 di$erent voltage traces.
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Parameter Value

Processor ARM Cortex M0+ (Thumb ISA), 8MHz

Data Cache 256B, 8-way associative, 16B block, LRU,
1 cycle hit latency

GBF 8 one-bit entries

LBF 4 two-bit entries per cache line

Map Table Cache 512 entries, 8-way associative, LRU

Map Table 4096 entries, LRU

Free List 4096 + 512 + 1 = 4609 mappings

Flash 2MB

Supercapacitor 100mF, 2.4V max. voltage

Table 2: System con"guration used in evaluation

CACTI [31] to model dynamic and leakage power of the hardware
structures added - data cache, global bloom !lter, local bloom !l-
ter, map table cache. The energy numbers for NVM accesses are
from the data sheet for a STM32L011K4 MCU board [40]. We com-
pare NvMR with our version of Clank [16]. Clank is a hardware
solution proposed to tackle backups in intermittent systems with-
out causing idempotency violations. We modify the original Clank
to implement our version of Clank. Our version of Clank has a
GBF and an LBF instead of bu$ers to track read-dominated and
write-dominated addresses. We also replace the write-back bu$er
with a write-back data cache, following suit from recent works that
have shown the bene!ts of caches in state-of-the-art intermittent
architectures [10, 48].

We use the con!guration listed in Table 2 for the results pre-
sented in Section 6.1, 6.2, 6.4 and 6.5. Our experiments yield that
the con!guration (data cache, GBF and LBF) in Table 2 works the
best for our version of Clank6. For NvMR, we allocate a free list
with the worst-case size (#available mappings = #map table entries
+ #map table cache entries + 1) in order to eliminate any backups
due to an idempotency violation when the free list is empty.

5.2 Backup Schemes
Unless stated otherwise, the results presented in Section 6 are for
a Just-In-Time (JIT) backup scheme. The JIT scheme accurately
estimates when a power loss will happen and triggers a backup just
before it. Apart from it, we use two other schemes in Section 6.1
– spendthrift and watchdog timer. The spendthrift backup scheme
uses a lightweight neural network to predict when to back up [24],
representative of JIT schemes deployed commercially. The neural
network takes in two input parameters, current environment and
battery voltages. The model is implemented using PyTorch v1.8 and
was trained o%ine with the selected benchmarks.We train 2 models,
one on baseline and one on NvMR with the system con!gurations
as shown in Table 2 using output collected from running with
oracle backup scheme on 7 di$erent voltage traces and tested on
3 di$erent voltage traces. It is about 97% accurate. The trained
models are deployed to work in conjunction with the simulator
using libtorch library for C++. The watchdog timer backup scheme

6For the same on-chip data storage, our version of Clank saves 11% more energy than
the original Clank

Figure 10: Energy saved in NvMR with di#erent backup
schemes compared to Clank

invokes a backup every 8000 cycles [16]. It is the most conservative
policy out of the three.

5.3 Benchmarks
We select seven benchmarks (adpcm_encode, basicmath, blow!sh,
dijkstra, picojpeg, qsort and stringsearch) from a benchmark suite
for IoT applications, MiBench [13] for evaluation. These bench-
marks have higher number of idempotency violations than the
others in that suite (Table 3)7. We also port three benchmarks, 2D
Convolution (2dconv), histogram equalization (hist) and discrete
wavelet transform (dwt) from PERFECT benchmark suite [4] to our
simulation infrastructure and tune them to have similar memory
requirement as that of applications generally supported in ultra-low
power platforms.

6 EVALUATION
In this section, we compare the results of NvMR against our version
of Clank. In Section 6.1, we study the results for energy saved when
we execute the selected benchmarks in NvMRwith di$erent backup
schemes. In Section 6.2, we o$er a comparison to a transaction-
based system, HOOP. In Section 6.3, we analyze the sensitivity
of energy saved in NvMR when we vary the con!gurations of
the hardware components. Since both NvMR and our version of
Clank has a GBF, an LBF and a write-back cache, we don’t present
sensitivity studies for them. We also vary the supercapacitor size
and analyze its impact on the results. In Section 6.4, we present the
results of NvMR with and without reclaiming. In Section 6.5, we
brie#y discuss the overheads associated with NvMR.

6.1 NvMR vs. Clank
Figure 10 presents the percentage of energy saved in NvMR com-
pared to Clank using the three backup schemes mentioned in Sec-
tion 5.

6.1.1 Just-In-Time. With this backup technique, NvMR saves on
average about 20% energy compared to Clank. Out of the bench-
marks studied, picojpeg performs the best on NvMR. The energy
savings can range from 2% to 37% based on the application. NvMR
shows the highest improvement in energy savings with this scheme,
as it is the most aggressive out of the three.

7These numbers are obtained by simulations with an ideal architecture where backups
occur due to the JIT scheme and not because of any structural hazards.
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adpcm_encode basicmath blow!sh dijkstra picojpeg qsort stringsearch 2dconv dwt hist

9.71x103 2.87x106 4.71x104 1.29x105 1.52x105 7.21x105 4.19x105 3.37x105 1.36x104 2.61x103

Table 3: Number of idempotent violations per benchmark

6.1.2 Spendthri!. With the neural network-based scheme, NvMR
saves about 15.6% energy on average. Blow!sh and dijkstra are the
benchmarks that marginally consume more energy in NvMR. Both
these benchmarks spend the least amount of energy on backups due
to idempotency violations. Without an optimistic backup scheme
it is di"cult to extract energy savings from these benchmarks.

6.1.3 Watchdog Timer. On average, the percentage of energy saved
with this backup policy is just above 9%. stringsearch and hist, per-
form worse than in Clank because the timer period is not pro!led
well enough for them. Since it is not a JIT backup scheme, there is
dead energy spent on re-execution. The percentage of dead energy
for these two benchmarks is between 6.5%-7%, while for the rest
it is below 2%. Since it is the most naive backup scheme out of the
three discussed, NvMR saves the least amount of energy with this
scheme.

6.1.4 Break-down of energy consumed. The total energy consump-
tion for a benchmark in an intermittent architecture can be split
into four components according to previous work - forward progress,
backup, restore and dead energy. For a detailed explanation of these
energy components, we refer the reader to the previous work [39].
In addition, NvMR has overhead versions of forward progress and
restore energy due to the dynamic and leakage energy spent for
the map table cache and additional NVM accesses to the map table
and the free list. Also, there is an energy component related to
reclamation.

Figure 11 presents the break-down of normalized energy con-
sumption of Clank and NvMR. Due to the JIT backup scheme that
invokes a backup just before a power failure, there is no dead en-
ergy. Restore energy and its overhead version for NvMR are also
small, since restore only consists of retrieving the previously backed
up copy of the CPU registers. Thus, none of these are shown in
Figure 11. stringsearch is the worst performing benchmark. It has
little opportunity for reducing backup energy costs as almost 90%
of its energy is consumed in making forward progress because
it involves searching a list of strings in a !le which does not in-
cur a lot of idempotency violations. Note that there are forward
progress and backup overheads in NvMR which add to the total
energy consumption of a benchmark. There is an additional energy
component when reclaiming is employed. The forward progress
component in NvMR is higher than in Clank for a few benchmarks.
It is because we include the energy spent on persisting data to
a renamed address in forward progress. In Clank, this would be
part of backup energy. Since reclaiming is carried out when an
idemptency violation occurs and the map table is full, only a few
benchmarks actually reclaim map table entries enough times to
incur a considerable overhead. Thus, energy spent on reclaim is
signi!cant only for a few benchmarks like blow!sh, dijkstra and
qsort. Overall, the energy overhead of renaming and reclaiming in
NvMR amounts to just 3% of its total energy consumption; a small

Figure 11: Breakdown of normalized energy consumption of
Clank (left bars) and NvMR (right bars)

Structure Mapping Table OOP Bu$er OOP Region

Size In!nite 128 2048

Table 4: System con"guration of a simpli"ed version of
HOOP. The in"nitely large map table has no energy and
area overhead

price to pay for a reduction of 185X in the number of backups on
average.

6.2 NvMR vs HOOP
So far we have limited our discussion to intermittent systems that
are idempotency violation-aware and backup data to avoid incon-
sistent program execution. However, there are transaction-based
intermittent systems that store data updates to NVM in a redo log
and re-execute the updates from the log during restore. In this sec-
tionwe compare NvMR against such a system, HOOP [6]mentioned
in Section 2.

Table 4 lists the HOOP con!guration used for producing the
results presented in Figure 12. We run HOOP with the JIT and
watchdog timer backup schemes mentioned in Section 5. The com-
ponents, except for the mapping table (the in!nite mapping table is
an ideal scenario where the mapping does not consume any energy),
are carefully sized to match the on-chip area and memory footprint
overheads of NvMR with the con!guration listed in Table 2. In case
of JIT backup, NvMR saves on average 40%more energy. Only with
stringsearch, picojpeg and basicmath HOOP saves more energy than
NvMR. These three benchmarks have high store locality (stores to
the same cache block) which gives better opportunity to the OOP
Bu$er to pack data without !lling up completely and reduce NVM
writes. In case of watchdog timer backup, NvMR saves about 19.4%
more energy on average than HOOP. Since watchdog timer backup
is a naive technique the energy saved is less than that in case of JIT
backup.

6.3 Sensitivity Analysis
Energy e"ciency of NvMR can vary based on the characteristics of
the structures like map table cache, map table and free list. In order
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Figure 12: Energy saved in NvMR compared to HOOP

to simplify the discussion, we keep the number of entries of the free
list !xed as per the worst-case scenario mentioned in Section 5 and
vary the con!guration of the rest. We also vary the supercapacitor
size to show the bene!ts of NvMR at di$erent supply capacities.

6.3.1 Map Table Cache. We use results for the JIT backup pol-
icy of all sensitivity study experiments. For the results shown in
Figure 13a and Figure 13b, we use a map table with 4096 entries.
Figure 13a shows how energy saved varies with the number of
entries in the map table cache. The associativity is kept !xed at 2.
We can observe that there is a steady increase in energy savings
with a larger map table cache because the number of backups due to
eviction of a dirty map table cache entry decreases as the number of
entries increase. Figure 13b shows the trend when the associativity
of map table cache varies. We use a small map table cache with 32
entries because as the map table cache size increases, the impact
of associativity on the percentage of energy saved diminishes. Per-
centage of energy saved does not vary a lot with associativity. In
fact, after an associativity of 4 only about 0.2% energy is saved until
a full associativity (indicated as ’0’ on the x-axis of Figure 13b).

6.3.2 Map Table. For Figure 13c , we chose a map table cache with
512 entries and associativity of 8. In Figure 13c, we can see that there
is a small jump of about 1% when the number of map table entries
increased 8-fold from 1024 to 8192. These savings are coming from
the reduction in the number of backups due to an idempotency
violation when the map table is full, which occurs in the case of
only a few of the benchmarks - blow!sh, dijkstra, qsort and dwt.
Since the amount of Flash needed for a small percentage increase
in energy savings is quite high, we use a map table that has 4096
entries for our results in Section 6.1, a reasonable choice considering
the limited amount of Flash on energy-harvesting devices.

6.3.3 Capacitor Size. We vary the size of the supercapacitor to
analyze the bene!t of NvMR with di$erent supply capacities. The
default capacitor size for our observations so far has been 100mF as
was used in [8]. We run benchmarks on NvMR, con!gured accord-
ing to Table 2, with smaller capacitor sizes 7.5mF [8] and 500µF [9]8.
As shown in Figure 13d, there is an increase of about 7% when the
capacitor size increases from 500µF to 7.5mF. However, the growth
in energy savings slows down (2%) as the capacitor size increases
to 100mF from 7.5mF. The primary reason behind this trend is that

8The capacitor sizes are in mF - µF range because we are using Flash which is the
most commonly found NVM on commercial micro-controller(MCU) boards. FRAM
consumes three orders of magnitude less energy and can operate with a capacitance
in nF range.

as the capacitor sizes get bigger, active periods get longer9. It re-
sults in an increase in the number of idempotency violations until
a capacitor size of 7.5mF, after which the growth slows down. In
fact, the number of idempotency violations increases by about 14%
from 500µF to 7.5mF and 3% from 7.5mF to 100mF. NvMR uses this
opportunity to reduce the number of backups due to idempotency
violations and save more energy than Clank.

6.4 Reclaim vs. No Reclaim
Reclaiming is used to reduce the number of backups due to an
idempotency violation when the map table is full. However, out
of the benchmarks studied, only a few face this issue with the
con!guration in Table 2. As we can see from Figure 14, on average,
reclaiming yields only about 1% better energy savings compared
to the "no reclaim" case. However, it does not eat into the energy
savings obtained from NvMR. Only qsort (9%) and dwt (1%) bene!t
from reclaiming. Only in the case of dijkstra, blow!sh and 2dconv,
reclaiming results in a little higher energy consumption. Reclaiming
is useful when the MCU board at hand does not come with a large
NVM so that allocating a large map table and free list becomes out
of question. Our experiments show a map table with 1024 entries,
reclaiming saves around 9%more energy than the "no reclaim" case.

6.5 NvMR Overhead
The sizes of the software and hardware structures in NvMR can be
con!gured to !t the requirements of the target application, only
to be constrained by the available memory on board (both volatile
and non-volatile). The memory footprint of the reserved region is
about 6% of the Flash on-board (2MB). A Flash of such size falls
within the range of those found in commercially available MCU
boards [37]. It is worth mentioning that renaming in NvMR reduces
NVM wear-out. Our experiments show that the maximum number
of writes to a single NVM location reduces by 80.8% (averaged
across all benchmarks) in NvMR compared to Clank.

The map table and the free list are software structures in NVM.
Thus, the hardware cost of NvMR only consists of the map table
cache. We use McPAT [21] to !nd an estimate of the hardware
overhead of NvMR compared to our version of Clank. For the con-
!guration listed in Table 2 on-chip area overhead of the map table
cache in NvMR is about 6%.

7 RELATEDWORK
In this section, we brie#y discuss a few of the previous works which
are related to our work. We note the similarities and point out the
key di$erences between these works and the work proposed in this
paper.

7.1 Memory Renaming
Memory renaming has been suggested in earlier works mainly
to address the problem of memory disambiguation and mitigate
performance deterioration due to it [14, 19, 30, 36]. For instance, [45]
renamed the memory location of a load instruction in the rename
stage of the pipeline by using a memory dependence prediction
table and a value !le. This work tries to mitigate the performance

9Active period = Cycles between power failures during which an intermittent system
wakes up, executes a given program and backs up data
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Figure 13: Energy saved with di#erent map table cache and map table con"gurations and capacitor sizes

Figure 14: Energy saved in NvMR with and without reclaim

degradation due to RAW dependency between a store and a load in
an out-of-order processor. In contrast, NvMR eliminates WAR and
WAW persist dependencies in an intermittent system.

7.2 Intermittent Computing
[7, 22] put the onus of correct intermittent execution on the pro-
grammer. It is the duty of the programmer to ensure correctness
by breaking down the program statically into small tasks that
are atomic and potentially maintain idempotency [25]. Backups
are allowed only at the boundary between two tasks. In contrast,
NvMR does not require a programmer to modify the application
code. NvMR also detects idempotent violations in hardware similar
to [16], but it bypasses the backups deemed necessary in that work
by renaming NVM addresses. [48] also has a write-back cache to
take advantage of data locality. However, it needs on-chip non-
volatile storage (e.g. NVFF) to log dirty data and has to do a backup
when there is a register spill. In NvMR, if the map table gets full,
NvMR can reclaim mappings to continue renaming.

8 CONCLUSION
Although prior works have proposed e"cient backup schemes
so that much of the energy harvested is used to do useful work
in intermittent systems, most of these works need to do backups
due to idempotency violations in order to maintain consistent sys-
tem state. We argue that backups in energy harvesting systems
should be due to energy or hardware constraints and not because of
idempotency violations. We characterize the unique persist depen-
dencies in intermittent program execution and show that backups
due to idempotency violations can be eliminated by renaming the
program addresses of the violating read-dominated stores. Based
on these insights, we present a hardware architecture, NvMR, that
implements renaming in an energy-e"cient manner. As a result,

NvMR gets more useful work done with the harvested energy than
state-of-the-art intermittent architectures and decouples the correct
execution of a program from the backup scheme.
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