
Wormhole: Wisely Predicting Multidimensional Branches

Jorge Albericio, Joshua San Miguel, Natalie Enright Jerger, and Andreas Moshovos
Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto
Toronto, ON, Canada

Email: {jorge, sanmigu2, enright, moshovos}@eecg.toronto.edu

Abstract—Improving branch prediction accuracy is essential
in enabling high-performance processors to find more concur-
rency and to improve energy efficiency by reducing wrong
path instruction execution, a paramount concern in today’s
power-constrained computing landscape. Branch prediction
traditionally considers past branch outcomes as a linear,
continuous bit stream through which it searches for patterns
and correlations. The state-of-the-art TAGE predictor and its
variants follow this approach while varying the length of the
global history fragments they consider.

This work identifies a construct, inherent to several appli-
cations that challenges existing, linear history based branch
prediction strategies. It finds that applications have branches
that exhibit multi-dimensional correlations. These are branches
with the following two attributes: 1) they are enclosed within
nested loops, and 2) they exhibit correlation across iterations
of the outer loops. Folding the branch history and interpreting
it as a multidimensional piece of information, exposes these
cross-iteration correlations allowing predictors to search for
more complex correlations in the history space with lower cost.
We present wormhole, a new side-predictor that exploits these
multidimensional histories. Wormhole is integrated alongside
ISL-TAGE and leverages information from its existing side-
predictors. Experiments show that the wormhole predictor
improves accuracy more than existing side-predictors, some
of which are commercially available, with a similar hardware
cost. Considering 40 diverse application traces, the wormhole
predictor reduces MPKI by an average of 2.53% and 3.15%
on top of 4KB and 32KB ISL-TAGE predictors respectively.
When considering the top four workloads that exhibit multi-
dimensional history correlations, Wormhole achieves 22% and
20% MPKI average reductions over 4KB and 32KB ISL-TAGE.

I. INTRODUCTION

Branch prediction has long been a cornerstone of high-
performance microarchitectures; even modest improvements
in branch prediction accuracy can reap large performance
improvements in modern processors [17]. Originally branch
prediction was driven by the need for higher performance in
deeply pipelined processors with large instruction windows.
Today, branch prediction also serves to greatly reduce energy
waste from wrong path instructions, a major concern in
today’s power-limited designs. Starting from Smith’s work
on branch prediction [24], several innovations including Yeh
and Patt’s work on pattern-based prediction [27] have greatly
boosted branch prediction accuracy. Significant research
activity in the 1990s increased predictor sophistication [4],

[5], [13], [14], [16], [25]. More recently, additional im-
provements have been spurred by the branch prediction
championship workshops [2], [8], [10], [12], [15], [18], [20],
[22].

State-of-the-art branch predictors such as TAGE [21]
and Perceptron [11], achieve high accuracy by intelligently
identifying highly-correlated patterns in the branch direction
stream, or branch history as it is commonly referred to.
TAGE targets continuous patterns of varying length while
Perceptron can, in principle, correlate with discontinuous
patterns. Barring a major breakthrough in the way branches
are predicted and given the accuracy achieved with state-of-
the-art predictors, a fruitful path forward to further improve
branch prediction accuracy is by targeting more specialized
behaviors with small side-predictors [7], [19], [21]. One of
the best predictors to-date, ISL-TAGE follows this approach
by incorporating a loop predictor and a statistical corrector,
each of which targets special cases.

This work identifies a branch direction pattern that a state-
of-the-art predictor is practically unable to accurately capture
and advocates devoting a small amount of extra hardware to
boost accuracy. Although the specific pattern does not exist
in all applications, the modest hardware cost coupled with
the large gains in the applications where the pattern appears
justify the introduction of this wormhole side-predictor.

Specifically, the wormhole side-predictor targets certain
hard-to-predict branches that appear within nested loops.
Targeting branches within nested loops is worthwhile since
many applications spend considerable execution time in such
loops. This work observes that these loops often contain
branches whose direction stream is correlated with outcomes
from previous iterations of the outer loop rather than recent
outcomes of the inner loop. The direction stream of such a
branch appears irregular and hard-to-predict when viewed as
a continuous stream. However, folding the direction stream
at the granularity of the outer loop reveals the existing strong
correlations. To capture this behavior in a traditional manner,
large local histories and many entries would be required.

This cross-iteration behavior motivates a rethinking of
how branch predictors manage local histories: We propose
representing histories as multidimensional matrices instead
of linear vectors. We propose the wormhole branch predictor
which is able to uniquely capture patterns in a multidi-

mensional local history space. Built on top of an ISL-
TAGE baseline, the wormhole-enhanced WISL-TAGE1 can
better predict branches that exhibit multidimensional history
correlations.

In summary, this work makes the following contributions:
(1) It identifies a branch behavior inherent to several appli-
cations whose regularity can be exposed when branch out-
comes are viewed as multi-dimensional matrices. (2) It pro-
poses a novel low-cost specialized branch side-predictor that
can accurately capture this behavior. Experiments demon-
strate that for a modest 3.29% and 4.4% increase in hardware
relative to a baseline 4KB and 32KB ISL-TAGE branch
predictor, the proposed WISL-TAGE predictor can effec-
tively predict these branches. For the subset of workloads
studied (4 out of 40 applications) with the targeted behavior,
WISL-TAGE reduces MPKI by 22% and 20% over the
4KB and 32KB ISL-TAGE baseline, respectively. Across all
applications, the average MPKI reductions are 2.53% and
3.15%, respectively.

The rest of the paper is organized as follows. Section II
discusses the application behavior that motivates the use of
multidimensional histories for branch prediction. Section III
explains the wormhole prediction concept using examples.
Section IV reviews the baseline ISL-TAGE predictor while
Section V presents the wormhole predictor. Section VI
presents the experimental evaluation. Finally, Section VII
concludes the paper.

II. MOTIVATION

The wormhole predictor targets branches in inner loops
whose direction stream is strongly correlated across iter-
ations of the outer loop. The example pseudo code of
Figure 1(a) shows such a branch, Branch 1 (B1). The code
scans repeatedly over a set of objects in a 3D scene using
the induction variable j. For each object, it uses the distance
from the current position p to the positions of the objects
stored in array X to decide whether further processing should
take place per object. The direction stream of B1 is data
dependent.

Branch predictors have traditionally considered history
as a one-dimensional string of bits, where each bit repre-
sents the outcome of a previous instance of a branch. The
branch predictor searches for repeating patterns among these
history bits. Accordingly, existing branch predictors would
try to find correlations within the continuous stream of B1
outcomes. Whether such correlations exist depends on the
actual distance values. Any correlations so found would be
the result of happenstance. However, as long as the distance
values do not change much so as to exceed the specific
threshold, the directions B1 will follow will be identical to
those last time the inner loop executed in full.

1Pronounced “Wisely” TAGE.

Figure 1(b) shows an example direction stream for B1
where 1 and 0 represent taken and not taken branch out-
comes. The direction stream is folded over a matrix such that
each row represents an iteration of the outer loop, and each
square of a row represents one iteration of the inner loop.
As the example shows, B1 is highly predictable in terms
of the outer loop iterations (columns). Thus, a mechanism
that considers the branch history in a multidimensional
fashion would successfully predict B1. Moreover, depending
on the pattern, it will do so with fewer resources than a
conventional predictor working over the continuous history.

B1 is hard to predict for existing global history-based
predictors. Specifically, a global history-based predictor will
have to contend not only with B1 but also with the inter-
vening branches as well. Unless the intervening branches
exhibit regular behavior, there will be numerous history
patterns that would need to be observed. These will contain a
large fraction of don’t care values (values irrelevant to B1’s
outcome) obscuring the underlying pattern, making training
difficult and time consuming. Would this situation improve
if only B1’s local history was considered? The answer is not
necessarily. If B1’s behavior is irregular within the loop, it
would foil a typical local history based predictor using a
limited amount of resources. Such a predictor would have
to record a sufficiently long history pattern for every iteration
of the inner loop.

A comparison of two local-history based predictors, one
using a traditional uni-dimensional (1D) history and another
folding history into a two-dimensional (2D) matrix can
illustrate the difficulties of existing branch predictors and
the potential of history folding. For simplicity the number
of iterations of the inner-loop is assumed to be 100 and
the predictors are allowed to track an unlimited number of
branches. Each branch is limited to 216 entries, so when
necessary the 1D predictor xor-folds the pattern into a 16-
bit index per branch. The misprediction ratio for B1 is 1%
for the 2D predictor, while it is 15% and 14% for the 1D
predictor that uses 8 and 64 bits of history respectively. It
is not until 128 history bits are used that the 1D predictor
accuracy improves with the misprediction ratio dropping to
2%.

In the example in Figure 1(a), B1’s behavior is iden-
tical across iterations of the outer loop. The example in
Figure 1(c) demonstrates that further opportunities exist
for correlation even if the target branch’s behavior is not
identical across iterations of the outer loops. Figure 1(c)
shows the calculation of one step of the Jacobi algorithm [3].
Focusing on Branch 2 (B2) of this algorithm, Figure 1(d)
shows an example of a typical direction stream for B2.
Its local history forms a diagonal pattern across the two-
dimensional local history space. When the size of the matrix
is large, the number of mispredictions for B2 using a
traditional, local history based predictor is O(N), where N2

is the size of the matrix. Using a predictor with a two-

 Program 1
// X is a vector with the position of objects
// randomly placed in a 3D space
// p is a point in the 3D space
while(true) // Loop 1
 for(j=0; j<NumObjects; j++) // Loop 2
 if(distance(X[j], p) < threshold) // Branch 1
 { /* do something */ }

Program 2: Jacobi1 algorithm
// A is the matrix
// B is the right hand side
// X is the current solution estimate
// X0 is the partial solution
 for (i = 0; i < N; i++) { // Loop 3
 X0[i] = B[i];
 for (j = 0; j < N; j++) // Loop 4
 if (j != i) // Branch 2
 X0[i] = X0[i] - A[i + j*n] * X[j];
 X0[i] = X0[i] /A[i + i*n];
 }

1 0 000

1 0 000

1 0

Inner loop iterations

outer
loop

iterations

(b)

000

1 0 00 0000

0 00 0000

0 0

Inner loop iterations

outer
loop

iterations

(d)

00000

i=0

j=0

j=0

to j=NumObjects-1

to i=N-1

to j=N-1

1

1

1

1

1

1

1

1

1

1

1

(a)

(c)

Branch 1 iteration space

Branch 2 iteration space

Figure 1: Example programs. a) Program 1; b) Outcome of Branch 1 in Program 1; c) Program 2; d) Outcome of Branch
1 in Program 2.

dimensional, folded history reveals the diagonal which can
be predicted accurately (as Section III explains), thereby
reducing the number of mispredictions to O(1).

These are only two simple examples where traditional
branch predictors that consider one-dimensional branch his-
tories would either fail or would need a large number of
entries and resources to accurately predict them. However,
folding these histories at appropriate points yields a multi-
dimensional history that readily exposes the inherent repeat-
ing patterns.

III. WORMHOLE CONCEPT

In this section, we describe the wormhole predictor
concept by means of examples. For the purposes of this
discussion assume that: 1) somehow we have identified a
branch inside an inner loop that is a candidate for wormhole
prediction, and 2) we can predict with high confidence how
many times this inner loop will iterate (LPTOTAL), and
3) we know how many iterations we have currently seen
(LPCURR). As the next section explains, ISL-TAGE can be
extended to provide this information with little cost.

Let us first consider the example in Figures 1(a) and
1(b) where the target branch, B1, exhibits identical behavior
every time the inner loop executes. Once such a branch
is identified, predicting it is straightforward. During the
first execution of the inner loop we record the directions
of the branch yielding a vector of LPTOTAL bits. This
recording stops once the loop exits, that is when LPCURR =
LPTOTAL. Next time we encounter the branch, we simply
replay the recorded history using LPCURR as the index.

1 0 00 0000

0 1

1 0 00 0000

0 00 0000

0 0

1

1

sat. counters

...
index=0010

update=1
pred=X

...

pred=1
update=1

index=0010

prev. L3 iter.

current L3 iter.

(a)

(b)

prev. L3 iter.

current L3 iter.

Figure 2: Diagonals Example.

While simple, this prediction method is appropriate only
when the branch exhibits almost identical behavior every
time the inner loop executes. In practice, we found this
predictor unsatisfactory.

Let us next consider the example in Figures 1(c) and 1(d)
where the target branch, B2, exhibits a diagonal pattern
instead. As with the previous example, wormhole records
the complete outcome stream the first time we encounter
the candidate branch. The next time the inner loop is
encountered, however, wormhole does not simply replay the

recorded history. Instead, it attempts to identify correlations
using a history fragment comprising bits from the past
iteration and the current iteration streams. This is shown
in Figure 2(a), where the top row represents the recorded
loop history from the previous inner loop invocation, and
the second, shorter row shows the history for the current
inner loop invocation. The darkened outcome refers to the
current execution we are trying to predict. Using LPCURR,
wormhole indexes the past iteration history to select a few
bits, three in our example, “100”. In addition, wormhole
can take a few bits from the current iteration history, one
in our example, “0”, and form the resulting history “0100”
upon which to build a correlation with the next outcome.
In this case, wormhole learns that the history “0100” leads
to outcome “1”. This is recorded in a table which uses
saturating counters to assign confidence to this prediction.

Figure 2(b) shows how wormhole now correctly predicts
the diagonal the next time the inner loop executes. Again
it uses three bits from the past inner loop history and one
from the current forming again the pattern “0100”. This has
been found to correlate with a “1” outcome which is correct
in this case. Similarly, wormhole can predict all instances
of the branch in this case.

Besides diagonals, the wormhole mechanism finds corre-
lations using past iteration history, patterns from the current
loop history and the current loop count. For example, it
will correctly predict branches that exhibit partial diagonals,
or multiple ones. This scheme also predicts correctly those
branches that exhibit identical behavior across iterations of
the outer loop as in the first example of this section.

IV. ISL-TAGE BASE PREDICTOR

Wormhole is implemented on top of the state-of-the-
art ISL-TAGE predictor [20] while re-using some of ISL-
TAGE’s components to selectively activate the wormhole
predictor. As Figure 3 shows, the complete prediction
framework comprises four different predictors: 1) a TAGE
predictor comprising a bimodal predictor and several tagged
components [18], 2) a loop predictor, 3) a statistical correc-
tor, and 4) a wormhole predictor. The first three components
comprise the baseline ISL-TAGE. This section reviews the
baseline ISL-TAGE predictor [20], while Section V de-
scribes the wormhole component and its integration on top
of ISL-TAGE.

A. TAGE Predictor

The TAGE predictor consists of a bimodal predictor and
several global history indexed tagged tables. Each tagged
table uses a different history length and these lengths form
a geometric series. The bimodal table captures well-behaved
biased branches, whereas the rest of the tables capture
exceptions, that is history patterns for events that foil the
bimodal component. By using different history lengths and

Wormhole
pred.

bimodal
pred.

tagged
comp.

Loop
pred.

Stat.
corr.

ISL-TAGE

predictions

Figure 3: Design overview.

an adaptive table selection mechanism, TAGE effectively
identifies correlations in the global history.

B. Loop Predictor

The loop predictor targets loops that execute a constant
number of iterations. It tracks how many times a branch
had the same outcome before having the contrary outcome,
an indication that the loop exit has been reached. The
loop predictor overrides the other components of the branch
predictor when the loop has appeared seven consecutive
times with the same number of iterations. When a branch
finds its corresponding entry in the loop predictor enabled,
a global register, LPTOTAL, starts tracking the number of
iterations for the loop. As Section V explains, wormhole
uses this count to determine: 1) whether a branch is inside
a loop, and 2) if so, the expected total iteration count for
the loop. Using this information, wormhole decides when to
fold the local history into a multidimensional representation.

C. Statistical Corrector

The statistical corrector (SC) targets those branches that
TAGE fails to predict accurately but that are statistically
biased towards a certain direction. The statistical correc-
tor monitors TAGE’s predictions and dynamically decides
whether to invert them. SC estimates TAGE’s accuracy for
the current branch using a set of saturating counter tables.
These tables are indexed with the TAGE prediction and a
fragment of the global history. The lengths of the fragments
are the same as those used in the tagged components
of TAGE. Seznec describes the decision and the update
processes [21]. As Section V explains, wormhole multi-
purposes the same statistical corrector to identify candidate
branches for wormhole prediction.

V. WORMHOLE PREDICTOR

The wormhole predictor treats local history bit vectors as
multidimensional bit matrices, folding them over iterations
of the outer loop(s). This enables wormhole to correlate with
previous iterations of both the inner and the outer loops.
Wormhole prediction proceeds in four stages: 1) Identify
branches that are frequently mispredicted by the base TAGE
predictor. 2) Detect the dimensionality of the current loop
nest, that is how many times the loop iterates. 3) Record

the local branch history, and 4) Learn patterns in the
multidimensional local history space. The rest of this section
describes these stages.

A. Identifying Problematic Branches

Wormhole specifically targets branch instructions that are
problematic for the base ISL-TAGE predictor. To identify
such branches, wormhole leverages information in the sta-
tistical corrector and the loop predictor. It uses Seznec’s
original statistical corrector (SC), to identify problematic
branches. The existing SC tracks whether TAGE often
fails to predict a branch. The SC then overrides TAGE’s
prediction with the branch’s bias if any exists. Wormhole
uses only the first part, so that a branch becomes a candidate
for wormhole prediction even if it does not exhibit a bias.
However, this is not sufficient, the branch must also appear
inside a loop. This information is readily available via the
loop predictor. If there is an active entry and LPTOTAL is
non-zero, the branch is inside a loop.

Once a candidate branch is identified, wormhole allocates
an entry in its wormhole prediction table (WPT). WPT
entries are ranked; if the WPT is full, the entry with the
lowest ranking is selected for replacement. Whenever the
statistical corrector deems a branch to be problematic, its
entry moves up one spot in the ranking and the statistical
corrector continues to identify it as problematic. In this way,
the WPT identifies branch instructions that are frequently
mispredicted by the base predictor.

B. Detecting Loop Dimensionality

To detect loop dimensionality, that is the expected number
of iterations, wormhole leverages information in the loop
predictor of ISL-TAGE. As Section IV-B discussed, when-
ever a branch hits in the loop predictor, a global register
(LPTOTAL) is updated. If the loop is currently in progress,
then LPTOTAL stores the total number of iterations in
the loop. When the loop terminates, LPTOTAL is reset
to zero. Thus, at any point in time, LPTOTAL stores the
total expected number of iterations for the current innermost
loop. The wormhole predictor uses this information to record
and fold the history for candidate branches. In general,
this mechanism can represent local history bit vectors as
multidimensional bit matrices. The current implementation
utilizes only two dimensions.

C. Recording the Local History

Once a candidate branch and the loop’s dimensionality are
identified, wormhole records the local history of the branch.
Figure 4 shows the format of the wormhole predictor entry.
The length of the local history field determines the maximum
history that wormhole can record. Larger predictors use
additional history bits to correlate with older iterations.
A confidence counter tracks wormhole success and thus
whether it should override any other predictors.

1 00Tag Conf. 11 ???

Local history bits

...1

Saturating counters

... ...Ranking ...Length

Figure 4: Wormhole predictor entry.

1 0 00 0000

0 00 0000

0 0

outer
loop

iterations
1

?

Instance being predicted

Bits considered in 4KB

Bits considered in 32KB

inner loop iterations

Figure 5: Bits considered by the wormhole predictor

D. Learning 2D Patterns

Wormhole next identifies patterns in the 2D history space
comprising both past and current iterations recorded in the
entry history for the branch. A history string containing local
branch outcomes from the previous iterations of both the
inner (horizontal) and outer (vertical) loops is constructed.
Figure 5 shows the specific history bits used in this work.
The darkest square, labelled as “?”, represents the instance
of the branch that is being predicted. Depending on the
resources dedicated to wormhole, the number of bits used
to make a prediction differs. We consider two different con-
figurations: 4KB and 32KB. Section VI-A details these two
predictor configurations. In Figure 5, dark grey squares show
the history bits the 4KB predictor uses. These bits corre-
spond to locations 0 (most recent), LPTOTAL, LPTOTAL−1
and LPTOTAL − 2 in the local history vector. Light grey
squares show the bits that are additionally considered to
make a prediction in the 32KB predictor. In this case, these
additional bits correspond to the bits 1, 2 × LPTOTAL,
2× LPTOTAL − 1 and 2× LPTOTAL − 2.

The selected local history bits index into a table of
saturating counters, which is embedded within the entry as
Figure 4 shows; these counters provide the prediction for the
branch (the sizes of these counters are shown in Table II).
The wormhole prediction is prioritized above the base ISL-
TAGE prediction as long as the confidence counter of the
entry is positive and the saturating counter for the pattern
matches the equation:

abs(2× sat value+ 1) >= threshold

Where sat value is the value of the 5-bit saturating counter.
A threshold of 16 worked well for the specific workloads.
The confidence counter of the corresponding wormhole
predictor entry is only updated when its prediction differs
from the TAGE prediction. It is increased if the wormhole
prediction matched the last outcome of the branch, and
decreased otherwise.

Trace Total CBr. Diff. CBr. ISL-TAGE 4KB ISL-TAGE 32KB Trace Total CBr. Diff. CBr. ISL-TAGE 4KB ISL-TAGE 32KB
name (dynamic) (static) MPKI MPKI name (dynamic) (static) MPKI MPKI

LONG-00 25.2M 5130 2.521 1.43 FP-1 2.23M 460 1.654 1.192
LONG-01 25.3M 89 7.864 7.059 FP-2 3.81M 2523 0.869 0.459
LONG-02 22.7M 544 2.058 0.311 FP-3 3M 1091 0.015 0.014
LONG-03 16.7M 209 1.339 0.628 FP-4 4.87M 2256 0.015 0.014
LONG-04 31.5M 72 9.388 8.746 FP-5 2.56M 4536 0.008 0.007
LONG-05 9.4M 129 5.307 4.692 INT-1 2.21M 444 6.94 0.137
LONG-06 27.1M 377 0.68 0.606 INT-2 1.79M 452 8.577 4.552
LONG-07 23.5M 4080 17.667 8.41 INT-3 1.55M 810 11.201 7.307
LONG-08 14.6M 1184 0.718 0.593 INT-4 0.89M 556 1.417 0.555
LONG-09 20.5M 810 4.118 3.399 INT-5 2.42M 243 0.074 0.059
LONG-10 14.3M 734 2.318 0.632 MM-1 4.18M 424 7.585 6.809
LONG-11 16.1M 168 0.815 0.513 MM-2 2.87M 1585 10.065 8.739
LONG-12 19.7M 209 11.302 10.939 MM-3 3.77M 989 0.066 0.057
LONG-13 27.9M 862 12.611 5.33 MM-4 2.07M 681 0.992 0.916
LONG-14 29.5M 25 0.001 0.001 MM-5 3.75M 441 5.052 3.518
LONG-15 16.8M 880 1.027 0.274 SERV-1 3.66M 10910 5.569 0.783
LONG-16 22M 732 3.227 2.986 SERV-2 3.54M 10560 5.97 0.755
LONG-17 14.8M 388 3.351 2.361 SERV-3 3.81M 16604 4.596 2.742
LONG-18 19.7M 128 0.005 0.003 SERV-4 4.27M 16890 5.344 1.903
LONG-19 14.4M 684 1.349 1.002 SERV-5 4.29M 13017 5.513 1.531

Table I: Total number of conditional branches, number of unique conditional branches, MPKI for ISL-TAGE 4KB, and
32KB, for the 40 traces.

E. Wormhole Predictor Table Entry Format

Figure 4 shows a wormhole predictor table entry. The
size of each field depends on the predictor configuration.
The fields are as follows:
Tag: Identifies the target branch via its PC.
Conf: A saturating counter that tracks how well wormhole

is predicting the corresponding branch.
Ranking: Used by the replacement policy.
Length: Expected number of iterations of the inner loop

containing the target branch.
History: Local history of the branch.
Saturating counters: A table of counters that provide the

direction prediction.

VI. EVALUATION

This section demonstrates the potential of wormhole pre-
diction. Section VI-A details the experimental methodology.
Section VI-B shows that WISL-TAGE improves accuracy
over ISL-TAGE [20]. Section VI-C demonstrates that worm-
hole offers similar if not better benefits compared to existing
side-predictors. Section VI-D considers the interaction of
wormhole with the most recently proposed TAGE-SC-L [22]
showing that wormhole can improve overall accuracy while
complementing TAGE-SC-L’s Local History Based Statisti-
cal Correctors.

To illustrate how wormhole improves accuracy, Sec-
tion VI-E takes a closer look at hmmer, the workload
that benefits the most. This analysis considers the effects
of the data input and of the compiler and shows that:
1) the phenomenon wormhole exploits persists across data
inputs, and 2) the compiler could convert the branch into a

conditional move thus eliminating the need for prediction.
The latter observation motivates the analysis of Section VI-F
that shows the overall impact the compiler has on branch
prediction accuracy reaffirming that using optimizations
such as conditional moves is not free of trade offs. Finally,
Section VI-G shows the storage requirements of the various
previously considered predictors.

A. Methodology
For the sake of reproducibility, we use the experimental

framework from the 4th Branch Prediction Competition [1].
The framework is trace-driven and includes 40 different
traces. The first 20 traces are from the SPEC CPU 2006
benchmarks [9] and are each 150 million instructions long,
while the next 20 are 30 million instructions long and are
from four different application domains, namely: floating
point, integer, multimedia, and server. These traces include
system and user activity; Table I presents some of their
characteristics. In order, the table’s columns report the
name of the trace, the total number of dynamic conditional
branches, the number of unique conditional branches (static),
and the number of mispredictions per kilo instruction for the
4KB and 32KB ISL-TAGE baseline predictors.

1) Predictor configurations: The storage dedicated to the
branch predictor in an aggressive out-of-order processor is
on the order of 32KB [23]. At the same time, a smaller size
of 4KB is closer to what is found in less-aggressive and
power/area-constrained modern processors. To capture both
these target applications, we consider two different sizes for
our base predictors throughout the paper: 32KB and 4KB.

The base predictor, ISL-TAGE comprises several compo-
nents: 1) the bimodal predictor features 213 and 214 entries

4KB 32KB
Tag 18 18
Confidence 4 4
Sat. counters 5 (x 16) 5 (x 256)
Ranking 3 3
History vector 101 257
History length 7 9

Table II: Components of each wormhole predictor entry (all
sizes in bits).

for the 4KB and 32KB designs, with 2 bits per entry. 2)
There are 15 TAGE components whose number of entries is
assigned from the best performing design in prior work [20].
3) The loop predictor has 64 entries, is 4-way skewed
associative and can track loops with up to 210 iterations.
4) The statistical corrector features 64 and 256 entries for
the 4KB and 32KB designs respectively. Each entry is 5 bits.

Table II shows the wormhole predictor configurations.
Each entry has a table with 16 or 256 5-bit saturating
counters to predict the different patterns, a 4-bit confidence
counter, a 3-bit ranking counter, a 101- or 257-bit vector to
store the local history within loop iterations, and a 7- or 9-
bit counter to store iteration count that is considered for the
corresponding branch. Section VI-G analyzes the hardware
storage needed to implement the predictors.

B. Comparison with ISL-TAGE

Figure 6 shows the reduction in MPKI for WISL-TAGE
with respect to 4KB and 32KB base ISL-TAGE predictors.
WISL-TAGE improves the misprediction rate of 16 and 35
out of 40 traces for the 4KB and the 32KB base predictors,
respectively. On average, WISL-TAGE reduces the MPKI
by 2.53% and 3.15% for the 4KB and 32KB ISL-TAGE
base predictors. Considering only the four top benchmarks,
WISL-TAGE reduces the MPKI of the ISL-TAGE base
predictors by 22% and 20%, respectively for the 4KB and
32KB configurations.

C. Putting Wormhole Accuracy in Perspective: A Compari-
son With Other Side-Predictors

This section analyzes the contribution of two existing
side-predictors: the loop predictor and the statistical cor-
rector, to the overall accuracy of ISL-TAGE. Figures 7a
and 7b show the reduction in mispredictions with respect
to a 4KB and 32KB TAGE predictor. The first three bars
show reductions in mispredictions when a loop predictor,
a statistical corrector predictor, and both side-predictors are
added on top of the base predictor. The fourth bar shows
reductions when the wormhole predictor is added on top of
the base predictor and the other two side-predictors.

In the 4KB case (Figure 7a), the loop predictor reduces
MPKI by over 10% in four benchmarks (LONG-18, LONG-
19, FP-5, INT-5, and MM-4), while the statistical corrector
achieves a significant reduction in MPKI for only one

benchmark (LONG-18). The wormhole predictor signifi-
cantly improves the accuracy of the predictions in four of
the benchmarks (LONG-12,2 LONG-18, FP-1, and MM-4),
and slightly improves the misprediction ratio of almost all
other applications. On average, MPKI reductions are 5.8%,
1.1%, 6.9%, and 9.6% for the loop, statistical corrector,
ISL-TAGE, and WISL-TAGE. For the four top benchmarks,
WISL-TAGE reduces the MPKI by 40% over the TAGE base
predictor. The results in the 32KB case are similar with
average MPKI reductions 4.9%, 1.5%, 6.4%, and 8.31%
for the loop, statistical corrector, ISL-TAGE, and WISL-
TAGE. For the four top benchmarks, WISL-TAGE reduces
the MPKI by 38% over the TAGE base predictor. The
benefits brought by the wormhole predictor are comparable
to those brought by the loop predictor. As Section VI-G
shows, all three side-predictors have similar hardware costs.

D. TAGE-SC-L

This section considers the interaction of wormhole with
the recently proposed TAGE-SC-L [22], winner of the 4th
Branch Prediction Championship [1]. TAGE-SC-L is an
improvement of ISL-TAGE. It simplifies the loop predictor
and the statistical corrector of its predecesor; they use a
smaller fraction of the hardware budget so more resources
can be devoted to the TAGE components. We analyze two
aspects of the TAGE-SC-L predictor: 1) The accuracy of
its components that use local branch histories compared to
the wormhole predictor. 2) The accuracy of the wormhole
predictor when it is incorporated into TAGE-SC-L.

1) Accuracy of the Local History Based Components:
The 32KB version of TAGE-SC-L [22] includes local history
based components (LHCs). These components, similar to
those previously presented by Seznec [21], capture branches
whose behavior is correlated with their own local history
but that could not be properly predicted by global history
based predictors. Branches targeted by wormhole fall into
this category.

Figure 8 shows the accuracy of four predictors for each
workload. From left to right the bars are for 1) the TAGE-
SC-L without the LHCs, 2) TAGE-SC-L without the LHCs
but with a wormhole component, 3) the original 32KB
TAGE-SC-L, and TAGE-SC-L with a wormhole component.
All results are relative to the MPKI of the ISL-TAGE
base predictor. For readability, the graph omits seven of
the benchmarks that have less than 0.1 MPKI and whose
MPKI variation is minimal. Comparing the first and third
bars shows that the LHCs result in small improvements in
several workloads. The use of the LHCs reduces the MPKI
of TAGE-SC-L by 3.44% on average. Comparing the second
and third bars shows that the benefit of wormhole is more
concentrated, with significant improvements for LONG-12
and MM-4, leading to an improvement in MPKI over the

2LONG-12 corresponds to hmmer.

0%	
2%	
4%	
6%	
8%	

10%	
12%	
14%	
16%	
18%	
20%	

LO
N
G-‐
00
	

LO
N
G-‐
01
	

LO
N
G-‐
02
	

LO
N
G-‐
03
	

LO
N
G-‐
04
	

LO
N
G-‐
05
	

LO
N
G-‐
06
	

LO
N
G-‐
07
	

LO
N
G-‐
08
	

LO
N
G-‐
09
	

LO
N
G-‐
10
	

LO
N
G-‐
11
	

LO
N
G-‐
12
	

LO
N
G-‐
13
	

LO
N
G-‐
14
	

LO
N
G-‐
15
	

LO
N
G-‐
16
	

LO
N
G-‐
17
	

LO
N
G-‐
18
	

LO
N
G-‐
19
	

FP
-‐1
	

FP
-‐2
	

FP
-‐3
	

FP
-‐4
	

FP
-‐5
	

IN
T-‐
1	

IN
T-‐
2	

IN
T-‐
3	

IN
T-‐
4	

IN
T-‐
5	

M
M
-‐1
	

M
M
-‐2
	

M
M
-‐3
	

M
M
-‐4
	

M
M
-‐5
	

SE
RV

-‐1
	

SE
RV

-‐2
	

SE
RV

-‐3
	

SE
RV

-‐4
	

SE
RV

-‐5
	

AM
EA

N
	

M
PK

I	 r
ed

uc
+o

n	
WISL-‐32KB	
WISL-‐4KB	

41.8%	 41.3%	 40.0%	

Figure 6: MPKI reductions with respect to ISL-TAGE for the 40 traces, for 4KB and 32KB base predictors.

base predictor of 2.77%. Both types of local predictors
can be combined (fourth bar, SC-L-32KB-original+WH) and
their individual benefits mostly remain, reducing the average
MPKI by 5.93% compared to TAGE-SC-L without LHCs.

2) Accuracy of the Wormhole Predictor on Top of TAGE-
SC-L: The last two bars of each group in Figure 8 show
reduction in mispredictions of TAGE-SC-L with and without
a wormhole predictor (SCL-WH in the figure), with respect
to ISL-TAGE. For some workloads the TAGE-SC-L-based is
less accurate than ISL-TAGE as it devotes less storage to the
statistical corrector. However, the differences are small in ab-
solute terms (see Table I). The wormhole predictor improves
the misprediction rate of eight out of 40 traces for the 32KB
base predictor. On average, the wormhole predictor reduces
the MPKI of the 32KB TAGE-SC-L predictor by 2.6%.

E. A Real World Example: hmmer

The code in Fig. 9(a) shows a fragment of hmmer [6]
from SPEC CPU 2006 [9]. More precisely, it shows a
fragment of the P7Viterbi function (some auxiliary variables
used as aliases in the orginal code are omitted for clarity).
This function is responsible for 95% of the application’s
execution time. Branch 1 represents 10.5% of the total
dynamically executed branches, and causes 42% of the
mispredictions when a 32KB ISL-TAGE branch predictor
is used.

Analyzing the code in Figure 9(a) shows that the outcome
of Branch 1 depends on the values of imx[i-1][k] and
imx[i][k], where the imx[i][k] value depends on the value
of mmx from the previous iteration of the outer loop. The
remainder of the code is immaterial to this discussion; the
important point to note is that the outcome of Branch 1
depends on data carried across iterations of the outer loop.

Figures 9(b) and (c) show correct predictions of Branch 1
for a subset of iterations of Loops 1 and 2, made by ISL-
TAGE and WISL-TAGE, both 4KB. The elements in each
row represent iterations of Loop 2, from k=1 to k=79 (for
clarity the figure omits the remaining iterations). Each row
represents a different iteration of Loop 1 and the figure

shows ithe terations from i=927 to i=942. Blank spaces
indicate mispredicted branches. Figure 9(c) highlights in
grey the outcomes of Branch 1 that are correctly predicted by
WISL-TAGE but not by ISL-TAGE. WISL-TAGE is able to
detect most of the columns in the pattern and some diagonals
that ISL-TAGE is unable to predict. Section VI-E2 shows
that this behavior persists even with different inputs.

1) Conditional Moves: The code of Hmmer in Figure 9(a)
shows that the body of Branch 1 consists only of an assign-
ment operation. Although this branch is present in the traces
used in the 4th Branch Prediction Competition [1], when a
more modern compiler is used this type of branch will likely
be converted to a Conditional Move (CMOV) instruction.
Figure 10 shows the assembler code (x86) generated by two
different versions of GCC. GCC 4.0 (Figure 10(a)) generates
a conditional branch while GCC 4.6 (Figure 10(b)) generates
instead a conditional move instruction cmovge.

2) Sensitivity to the Input Dataset for hmmer: This sec-
tion shows that behavior the wormhole predictor exploits is
not happenstance but persists with other input datasets for
hmmer. The hmmer application in SPEC CPU 2006 uses
the (nph3) query in the (swiss41) database. This section
reports the results of running hmmer using two other queries,
globins4 and fn3 and with a newer and bigger protein
database Swiss-Prot [26]. Figure 11 shows the MPKI for
4KB and 32KB ISL-TAGE and WISL-TAGE predictors. In
the case of globins4, the wormhole predictor reduces MPKI
by around 45% and 33% for the 32KB and 4KB predic-
tors. While, in the case of fn3, the corresponding MPKI
reductions with the wormhole predictor are 32% and 25%.
Although the key branch in hmmer is data dependent, the
patterns repeat across iterations of the outer-loops enabling
wormhole to remain effective across different inputs.

F. Interaction with the Compiler

Leveraging the traces from the 4th Branch Prediction
Championship does not afford us the ability to recompile
the applications, which are not publicly released. To study
the impact of the compiler on the performance of the

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	
LO

N
G-‐
00
	

LO
N
G-‐
01
	

LO
N
G-‐
02
	

LO
N
G-‐
03
	

LO
N
G-‐
04
	

LO
N
G-‐
05
	

LO
N
G-‐
06
	

LO
N
G-‐
07
	

LO
N
G-‐
08
	

LO
N
G-‐
09
	

LO
N
G-‐
10
	

LO
N
G-‐
11
	

LO
N
G-‐
12
	

LO
N
G-‐
13
	

LO
N
G-‐
14
	

LO
N
G-‐
15
	

LO
N
G-‐
16
	

LO
N
G-‐
17
	

LO
N
G-‐
18
	

LO
N
G-‐
19
	

FP
-‐1
	

FP
-‐2
	

FP
-‐3
	

FP
-‐4
	

FP
-‐5
	

IN
T-‐
1	

IN
T-‐
2	

IN
T-‐
3	

IN
T-‐
4	

IN
T-‐
5	

M
M
-‐1
	

M
M
-‐2
	

M
M
-‐3
	

M
M
-‐4
	

M
M
-‐5
	

SE
RV

-‐1
	

SE
RV

-‐2
	

SE
RV

-‐3
	

SE
RV

-‐4
	

SE
RV

-‐5
	

AM
EA

N
	

M
PK

I	 r
ed

uc
+o

n	
	

Loop	
Sta@s.	 Correc.	
ISL-‐TAGE-‐4KB	
WISL-‐TAGE-‐4KB	

(a) 4KB base predictors

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

LO
N
G-‐
00
	

LO
N
G-‐
01
	

LO
N
G-‐
02
	

LO
N
G-‐
03
	

LO
N
G-‐
04
	

LO
N
G-‐
05
	

LO
N
G-‐
06
	

LO
N
G-‐
07
	

LO
N
G-‐
08
	

LO
N
G-‐
09
	

LO
N
G-‐
10
	

LO
N
G-‐
11
	

LO
N
G-‐
12
	

LO
N
G-‐
13
	

LO
N
G-‐
14
	

LO
N
G-‐
15
	

LO
N
G-‐
16
	

LO
N
G-‐
17
	

LO
N
G-‐
18
	

LO
N
G-‐
19
	

FP
-‐1
	

FP
-‐2
	

FP
-‐3
	

FP
-‐4
	

FP
-‐5
	

IN
T-‐
1	

IN
T-‐
2	

IN
T-‐
3	

IN
T-‐
4	

IN
T-‐
5	

M
M
-‐1
	

M
M
-‐2
	

M
M
-‐3
	

M
M
-‐4
	

M
M
-‐5
	

SE
RV

-‐1
	

SE
RV

-‐2
	

SE
RV

-‐3
	

SE
RV

-‐4
	

SE
RV

-‐5
	

AM
EA

N
	

M
PK

I	 r
ed

uc
+o

n	

Loop	
Sta@s.	 Correc.	
ISL-‐TAGE-‐32KB	
WISL-‐TAGE-‐32KB	

(b) 32KB base predictors

Figure 7: MPKI reductions for each side-predictor: Loop predictor, statistical corrector, ISL-TAGE (Loop+SC), and WISL-
TAGE (Loop+SC+WH).

-‐20%	

-‐10%	

0%	

10%	

20%	

30%	

40%	

50%	

LO
N
G-‐
00
	

LO
N
G-‐
01
	

LO
N
G-‐
02
	

LO
N
G-‐
03
	

LO
N
G-‐
04
	

LO
N
G-‐
05
	

LO
N
G-‐
06
	

LO
N
G-‐
07
	

LO
N
G-‐
08
	

LO
N
G-‐
09
	

LO
N
G-‐
10
	

LO
N
G-‐
11
	

LO
N
G-‐
12
	

LO
N
G-‐
13
	

LO
N
G-‐
15
	

LO
N
G-‐
16
	

LO
N
G-‐
17
	

LO
N
G-‐
19
	

FP
-‐1
	

FP
-‐2
	

IN
T-‐
1	

IN
T-‐
2	

IN
T-‐
3	

IN
T-‐
4	

M
M
-‐1
	

M
M
-‐2
	

M
M
-‐4
	

M
M
-‐5
	

SE
RV

-‐1
	

SE
RV

-‐2
	

SE
RV

-‐3
	

SE
RV

-‐4
	

SE
RV

-‐5
	

AM
EA

N
	

M
PK

I	 r
ed

uc
+o

n	

TAGE-‐SC-‐L-‐32KB-‐noLocal	
TAGE-‐SC-‐L-‐32KB-‐noLocal+WH	
TAGE-‐SC-‐L-‐32KB-‐original	
TAGE-‐SC-‐L-‐32KB-‐original+WH	

~-‐30.8%	 ~-‐38%	

Figure 8: MPKI variation for TAGE-SC-L with and without wormhole compared to the 32KB ISL-TAGE baseline for 33
traces.

fast_algorithms.c
P7Viterbi()
 ...
 for (i = 1; i <= L; i++) { // Loop 1
 ...

 for (k = 1; k <= M; k++) { // Loop 2
 mmx[i][k] = mmx[i-1][k-1] + tpmm[k-1];
 if ((sc = imx[i-1][k-1] + tpim[k-1]) > mmx[i][k])
 mmx[i][k] = sc;
 if ((sc = dmx[i-1][k-1] + tpdm[k-1]) > mmx[i][k])
 mmx[i][k] = sc;
 if ((sc = xmb + bp[k]) > mmx[i][k])
 mmx[i][k] = sc;
 mmx[i][k] += ms[k];
 ...

 if (k < M) {
 imx[i][k] = mmx[i-1][k] + tpmi[k];
 if ((sc = imx[i-1][k] + tpii[k]) > imx[i][k]) //Branch 1
 imx[i][k] = sc;
 ...
 } (a)

(c)

927 X X X X XXXXXXXXX XX XX X X X X X XX X X XX XXXXXXXXXX X X X
928 X X XXX X XXXXXXXXXXX X X XXXX X XXX X XXX XXX X XX X XX X XXXX X X
929 XX XX XX XXXX XXX XX XXX XXX XXXX XXXX X X XX X XX XXXXX XXX
930 X X XXXXXXXXXXXXXX X X XXX X XXX X X X XXX XX XX X XXXXX XXXX X
931 X X XXXX XXXXXXXXX XX XX XXXXX XXX X XXX XXX XX XXX X X XXXXX X XX X
932 X XXXXX XXXXXXXXX XX X XXXXXX X XXXX X XXX X X XX XXXXXXXXXXXX X XX X
933 X X X XXX XXXXXXXXXX XX X XXXXXX XXXX X XXX XXX XXX XXXXX XXXXXXX X XX X
934 X XXX XX XXXXXX X X XXXXXX X X XX X X X X XXXX XXXXXXX XX X
935 X XX XX XX X XXXX XXX X XXXXXX XXXX XX X X XXX X X XXXXXXXXXXXX X X
936 X X X X X XXXXXX XX X XXXXX XXXXXXX X X XXXXXXXXXXXXXXXXXXX X X
937 XX XX X XX XXXXXX XX X XX XX XXX XX X XX X XX XXX XXXXXXXXXX X
938 XXX XX XX XX XXXXXXX XX X X XXXX XX XX X X X X XXXXXXXXXXXXXXXXX X
939 XXX XX X X X X X XX XX X X XXXXXXX XX XX XXXXXX XXXXXXXXXXXXXXX X X
940 XXX XX XXX X XXXXXXXX X XXXXXX XXXXXXX X X XXXXXXX XXXXXXXXXX XX X
941 XX XX XX X XX XXXX X X X XXXXXXXX XXX XXX XXX XX XXXXXXXXXXX XX X
942 XXX XXX X XX XXX XXXXX XX X X XXXXXXXXX XX X XX XXXXXXXXXXXXXXXXX

927 XXX XX XXXXXXXXXXXXXXX XXX X X X XXX XXXXX XXX XX XXX X XXXXX XXXXXXXXXX
928 XXX X XXXXXXXXXXXXXXXXX X XX X XXXXXXXXXXXXXX XXXXXXXXXX X XXX XXXXXXXXXX
929 XXXXXXXXXXXXXXXX XXXXXX XXXXXXX XX XXXXXXX XX XXX X XXXX XXXX XXXXXXXXXX
930 XXXX XXXXXX X XX XXXXXXXX XXX XXXXXX XXXXXX X XXX XX XXX X XXX XXXXXXXXXXX XX
931 XXXX X XXXXX XXXXXXXXXXXX XXX XXXX XXXXXXXXXX XXXXX X X XXXXXX XXXXXXXXXXXXX
932 XXXXXX XXXXXXXXXXXXXXXXXXXXX XXXXXX XX X XXXXXXX XX XXXX XXXX XXXXXXXXXXXXXX
933 XXX XX XXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXX XXXXX XXXXXXXXXXXXXX
934 X XXX X XXXXX XX XXXXXXXXXXXXXXXXXXXXX XX XXXXX X X XXXXXXXXXXXXX XXXXX
935 XXXXXXXXXXXXX X X XXXXXXXXXXX XXXXX X XXXXXXXX XXXX X XXXXXXXX XXXXXXXXXXXXXX
936 X XX XXX XXXX X XXXXXXXXXX XXXXXXXXXXXX XXXXXX X XXX X XXXXXXXXXXXXXXXXXXXXX
937 XX X XXXXXX X XXXXXXXXXXXXX XXXX XXXX XXX XXXXX X X XX XXX XXXXXXXXXXXXXXXX
938 XXXXXXXX XXXXX X XXXXXXXXXXXXX XXXXX XXX XXXXXXX X X XX XXX XXXXXXXXXXXXXXXXX
939 XXXXXXXX XXXX X X XXX X X X X XXXXXXXXXXXX X XX X XX XXXXXXXXXXXXXXXXXXXXXXX
940 XXXXXXX X XX X X XXX XXXXXXXXXXXXX XX XXXXXX XXXXXX XXXXX XXXXXXXXXXXXX XX
941 XXXXXXXX XXXX XXXXXX XXXXXXXXX X XXXXXXXXX X X XXXXX XXX XXXXXXXXXXXXX XXX
942 XXXX XXXX XXXXXXXXX XXXXXXXX X X XXXXXXXXXXXXXXX XXXXXXX XXXXXXXXXXXXXXXXX X

(b)

Figure 9: (a) Fragment of the P7Viterbi() function. (b) ISL-TAGE 4KB correct predictions of Branch 1. (c) WISL-TAGE
4KB correct predictions of Branch 1.

456.hmmer/run/build-gcc40/fast_algorithms.c:147
 mov -0x34(%ebp),%edi
 mov -0x4(%edi),%eax
 mov -0x48(%ebp),%edi
 add -0x4(%edi,%ecx,1),%eax
 cmp %eax,%edx
 jge 80515e5 <P7Viterbi+0x285>
 mov %eax,-0x4(%ebx)

456.hmmer/run/build-gcc46/fast_algorithms.c:147
 mov (%edi,%eax,4),%esi
 mov 0x78(%esp),%ebp
 add 0x0(%ebp,%eax,4),%esi
 cmp %ecx,%esi
 cmovge %esi,%ecx
 mov 0x3c(%esp),%ebp
 mov %ecx,0x0(%ebp,%eax,4)

(a)

(b)

Figure 10: Assembler code (x86) generated for Branch 1.
(a) Using GCC 4.0. (b) Using GCC 4.6.

wormhole predictor, we have compiled applications from the
SPEC CPU 2006 suite using the GCC versions 4.0 and 4.6.
Figures 12a and 12b compare the MPKI of ISL-TAGE and
WISL-TAGE for 4KB and 32KB predictors. The MPKI is
on average ∼10% lower when a modern compiler is used
and the relative differences between ISL- and WISL-TAGE
are smaller for both storage budgets.

0	
2	
4	
6	
8	
10	
12	

globins4	 fn3	

M
PK

I	

ISL-‐TAGE-‐32KB	
WISL-‐TAGE-‐32KB	
ISL-‐TAGE-‐4KB	
WISL-‐TAGE-‐4KB	

Figure 11: MPKI for ISL- and WISL-TAGE with alternative
dataset inputs for hmmer.

The MPKI reduction observed with GCC 4.6 is primarily
due to calculix and hmmer. These MPKI reductions are 4.8%
and 0.5% for GCC 4.0 and 4.6 with 32KB predictors and
3.6% and 1.0% for GCC 4.0 and 4.6 with 4KB predictors.
Besides these two programs, using a more recent com-
piler does not always improve accuracy. However, applying
wormhole yielded significant benefits for some workloads
without hurting accuracy for the remaining ones.

Finally, the compiler chose to use a conditional move
because the body of the if statement is a simple assignment
operation. A more complex if clause could not be optimized
away by the compiler and it would still benefit from worm-
hole prediction.

G. Storage

Section IV presented all the components of the predictors
used in this work and their corresponding configurations.
Table III shows the storage used by the different components

0	

1	

2	

3	

4	

5	

6	
pe

rlb
en

ch
	

bz
ip
2	

gc
c	
	 	 	

m
cf
	 	

ze
us
m
p	
	

gr
om

ac
s	 	

na
m
d	
	

so
pl
ex
	

po
vr
ay
	 	 	

ca
lc
ul
ix
	

hm
m
er
	

sje
ng
	 	 	
	

h2
64
re
f	

lb
m
	

om
ne

tp
p	

as
ta
r	 	
	

sp
hi
nx
3	

AM
EA

N
	

M
PK

I	

ISL-‐TAGE-‐4KB	 gcc40	
WISL-‐TAGE-‐4KB	 gcc40	
ISL-‐TAGE-‐4KB	 gcc46	
WISL-‐TAGE-‐4KB	 gcc46	

(a) 4KB predictors.

0	

1	

2	

3	

4	

5	

pe
rlb

en
ch
	

bz
ip
2	

gc
c	
	 	 	

m
cf
	 	

ze
us
m
p	
	

gr
om

ac
s	 	

na
m
d	
	

so
pl
ex
	

po
vr
ay
	 	 	

ca
lc
ul
ix
	

hm
m
er
	

sje
ng
	 	 	
	

h2
64
re
f	

lb
m
	

om
ne

tp
p	

as
ta
r	 	
	

sp
hi
nx
3	

AM
EA

N
	

M
PK

I	

ISL-‐TAGE-‐32KB	 gcc40	
WISL-‐TAGE-‐32KB	 gcc40	
ISL-‐TAGE-‐32KB	 gcc46	
WISL-‐TAGE-‐32KB	 gcc46	

(b) 32KB predictors.

Figure 12: MPKI comparison using GCC 4.0 and GCC 4.6.

4KB 32KB
Statistical corrector, size (bytes) 96 384
Loop predictor, size (bytes) 376 376
TAGE predictor, size (bytes) 3048 29952
ISL-TAGE extra, size (bytes) 524 524
Wormhole predictor, size (bytes) 134 1375
Total size (bytes) 4178 32611

Table III: Storage of the different predictors.

of our design. The total storage employed by the WISL-
TAGE design is 4,178 and 32,611 bytes for the 4KB and
32KB budgets. The wormhole predictor requires 1065 and
10997 bits, yielding an overhead of 3.29% and 4.4%, for the
4KB and 32KB configurations. The wormhole predictor is a
simple hardware structure with modest overhead that yields
a substantial reduction in MPKI for several key workloads
and performance improvements across all workloads.

VII. CONCLUSIONS

Commercial architectures continue to strive for increased
branch prediction accuracy. Not only does branch prediction
accuracy can greatly improve performance, it is imperative
for energy-efficient design; fetching and executing wrong-
path instructions wastes significant energy. Recent advances
in branch prediction research were possible by introducing
small side predictors that capture certain branch behaviors
that larger, general-purpose structures fail to predict ac-
curately. In this vein, this work proposed the wormhole
predictor. Wormhole can predict, using multidimensional
local histories, inner-loop branches that exhibit correlations
across iterations of the outer loops. Wormhole essentially
folds the inter-iteration history into a matrix enabling it
to easily observe cross-iteration patterns. By doing so,
wormhole yielded MPKI reductions of 20% to 22% for
four of the applications studied compared to a state-of-the-
art 4KB and 32KB ISL-TAGE predictor. Side-predictors are
not intended to improve all branches; on average wormhole
reduces MPKI by 2.53% and 3.15% for the 40 applications
considered. Yet, we believe that substantial gains on 10%
of the applications studied warrant dedicating the small
amount of silicon (3.3% and 4.4% increase over the baseline
predictor) to the wormhole predictor.

VIII. ACKNOWLEDGMENTS

The authors would like to thank the anonymous review-
ers for their feedback and the members of the computer
architecture research group in the University of Toronto.
This work was supported by the Natural Sciences and
Engineering Research Council of Canada via Discovery,
Discovery Accelerator Supplement, and Strategic grants,
Qualcomm, the Canadian Foundation for Innovation, the
Ontario Research Fund and a Bell Graduate Scholarship.

REFERENCES

[1] “JWAC-4: Championship branch prediction,” 2014. [Online].
Available: http://www.jilp.org/cbp2014/

[2] J. Albericio, J. San Miguel, N. Enright Jerger, and
A. Moshovos, “Wormhole branch prediction using multi-
dimensional histories,” JWAC-4: Championship Branch Pre-
diction, 2014.

[3] J. Burkardt, “Implementation of the Jacobi method.” http://
people.sc.fsu.edu/∼jburkardt/cpp src/jacobi/jacobi.cpp. [On-
line]. Available: http://people.sc.fsu.edu/∼jburkardt/cpp src/
jacobi/jacobi.cpp

[4] A. N. Eden and T. Mudge, “The YAGS branch predictor,” in
Proceedings of the 31st Annual International Symposium on
Microarchitecture, 1998.

[5] M. Evers, P.-Y. Chang, and Y. Patt, “Using hybrid branch
predictors to improve branch prediction accuracy in the
presence of context switches,” in Proceedings of the 23rd
Annual International Symposium on Computer Architecture,
1996.

[6] R. D. Finn, J. Clements, and S. R. Eddy, “Hmmer web
server: interactive sequence similarity searching.” Nucleic
Acids Research, vol. 39, no. Web-Server-Issue, pp. 29–37,
2011. [Online]. Available: http://dblp.uni-trier.de/db/journals/
nar/nar39.html#FinnCE11

[7] H. Gao, Y. Ma, M. Dimitrov, and H. Zhou, “Address-branch
correlation: A novel locality for long-latency hard-to-predict
branches,” in Proceedings of the International Symposium on
High Performance Computer Architecture, 2008, pp. 74–85.

[8] H. Gao and H. Zhou, “Adaptive information processing: An
effective way to improve perceptron predictors,” Journal of
Instruction Level Parallelism, vol. 7, April 2005.

[9] J. L. Henning, “SPEC CPU2006 benchmark descriptions,”
SIGARCH Comput. Archit. News, vol. 34, no. 4, pp. 1–17,
Sep. 2006. [Online]. Available: http://doi.acm.org/10.1145/
1186736.1186737

[10] Y. Ishii, K. Kuroyanagia, T. Sawada, M. Inaba, and K. Hiraki,
“Revisiting local history for improving fused two-level branch
predictor,” in Proceedings of the 3rd Championship on Branch
Prediction, 2011.

[11] D. Jiménez and C. Lin, “Dynamic branch prediction with
perceptrons,” in Proceedings of the Seventh International
Symposium on High Performance Computer Architecture,
2001.

[12] D. A. Jiménez, “Oh-snap: Optimized hybrid scaled neural
analog predictor,” in Proceedings of the 3rd Championship
on Branch Prediction, 2011.

[13] S. McFarling, “Combining branch predictors,” TN 36, DEC
WRL, Tech. Rep., June 1993.

[14] P. Michaud, A. Seznec, and R. Uhlig, “Trading conflict
and capacity aliasing in conditional branch predictors,” in
Proceedings of the 24th Annual International Symposium on
Computer Architecture, 1997.

[15] P. Michaud and A. Seznec, “Pushing the branch predictability
limits with the multi-potage+sc predictor,” JWAC-4: Champi-
onship Branch Prediction, 2014.

[16] S. Pan, K. So, and J. Rahmeh, “Improving the accuracy of
dynamic branch prediction using branch correlation,” in Pro-
ceedings of the 5th International Conference on Architectural

Support for Programming Languages and Operating Systems,
1992.

[17] S. M. F. Rahman, Z. Wang, and D. A. Jiménez, “Studying
microarchitectural structures with object code reordering,” in
Proceedings of the 2009 Workshop on Binary Instrumentation
and Applications (WBIA), 2009.

[18] A. Seznec and P. Michaud, “A case for (partially) tagged
geometric history length branch prediction,” Journal of In-
struction Level Parallelism, 2006.

[19] A. Seznec, “The L-TAGE branch predictor,” Journal of In-
struction Level Parallelism, vol. 9, May 2007.

[20] ——, “A 64 Kbytes ISL-TAGE branch predictor,” JWAC-2 :
Championship Branch Prediction, 2011.

[21] ——, “A New Case for the TAGE Branch Predictor,”
in The 44th Annual IEEE/ACM International Symposium
on Microarchitecture, ACM, Ed., Dec. 2011. [Online].
Available: http://hal.inria.fr/hal-00639193

[22] ——, “TAGE-SC-L branch predictors,” JWAC-4 : Champi-
onship Branch Prediction, 2014.

[23] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides,
“Design tradeoffs for the Alpha EV8 conditional branch
predictor,” in Proceedings of the 29th Annual International
Symposium on Computer Architecture. IEEE Computer
Society, 2002, pp. 295–306. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=545215.545249

[24] J. Smith, “A study of branch prediction strategies,” in Pro-
ceedings of the International Symposium on Computer Archi-
tecture, 1981.

[25] E. Sprangle, R. Chappell, M. Alsup, and Y. Patt, “The agree
predictor: A mechanism for reducing negative branch history
interference,” in Proc. of the 24th Annual International Sym-
posium on Computer Architecture, 1995.

[26] The UniProt Consortium, “Activities at the universal protein
resource (uniprot),” Nucleic Acids Res, vol. 42, pp. D191–
D198, 2014.

[27] T.-Y. Yeh and Y. Patt, “Two-level adaptive branch prediction,”
in Proceedings of the 24th International Symposium on Mi-
croarchitecture, 1991.

