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CONTRIBUTIONS
• Identify branches that exhibit multidimensional correlations. These are branches that (1) are enclosed within nested loops and (2) exhibit correlation across iterations of the outer loops.
• Present wormhole, a novel low-cost side-predictor that is specialized for multidimensional branches.

WORMHOLE PREDICTOR

the local branch history, and 4) Learn patterns in the
multidimensional local history space. The rest of this section
describes these stages.

A. Identifying Problematic Branches

Wormhole specifically targets branch instructions that are
problematic for the base ISL-TAGE predictor. To identify
such branches, wormhole leverages information in the sta-
tistical corrector and the loop predictor. It uses Seznec’s
original statistical corrector (SC), to identify problematic
branches. The existing SC tracks whether TAGE often
fails to predict a branch. The SC then overrides TAGE’s
prediction with the branch’s bias if any exists. Wormhole
uses only the first part, so that a branch becomes a candidate
for wormhole prediction even if it does not exhibit a bias.
However, this is not sufficient, the branch must also appear
inside a loop. This information is readily available via the
loop predictor. If there is an active entry and LPTOTAL is
non-zero, the branch is inside a loop.

Once a candidate branch is identified, wormhole allocates
an entry in its wormhole prediction table (WPT). WPT
entries are ranked; if the WPT is full, the entry with the
lowest ranking is selected for replacement. Whenever the
statistical corrector deems a branch to be problematic, its
entry moves up one spot in the ranking and the statistical
corrector continues to identify it as problematic. In this way,
the WPT identifies branch instructions that are frequently
mispredicted by the base predictor.

B. Detecting Loop Dimensionality

To detect loop dimensionality, that is the expected number
of iterations, wormhole leverages information in the loop
predictor of ISL-TAGE. As Section IV-B discussed, when-
ever a branch hits in the loop predictor, a global register
(LPTOTAL) is updated. If the loop is currently in progress,
then LPTOTAL stores the total number of iterations in
the loop. When the loop terminates, LPTOTAL is reset
to zero. Thus, at any point in time, LPTOTAL stores the
total expected number of iterations for the current innermost
loop. The wormhole predictor uses this information to record
and fold the history for candidate branches. In general,
this mechanism can represent local history bit vectors as
multidimensional bit matrices. The current implementation
utilizes only two dimensions.

C. Recording the Local History

Once a candidate branch and the loop’s dimensionality are
identified, wormhole records the local history of the branch.
Figure 4 shows the format of the wormhole predictor entry.
The length of the local history field determines the maximum
history that wormhole can record. Larger predictors use
additional history bits to correlate with older iterations.
A confidence counter tracks wormhole success and thus
whether it should override any other predictors.
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Figure 4: Wormhole predictor entry.
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Figure 5: Bits considered by the wormhole predictor

D. Learning 2D Patterns

Wormhole next identifies patterns in the 2D history space
comprising both past and current iterations recorded in the
entry history for the branch. A history string containing local
branch outcomes from the previous iterations of both the
inner (horizontal) and outer (vertical) loops is constructed.
Figure 5 shows the specific history bits used in this work.
The darkest square, labelled as “?”, represents the instance
of the branch that is being predicted. Depending on the
resources dedicated to wormhole, the number of bits used
to make a prediction differs. We consider two different con-
figurations: 4KB and 32KB. Section VI-A details these two
predictor configurations. In Figure 5, dark grey squares show
the history bits the 4KB predictor uses. These bits corre-
spond to locations 0 (most recent), LPTOTAL, LPTOTAL−1
and LPTOTAL − 2 in the local history vector. Light grey
squares show the bits that are additionally considered to
make a prediction in the 32KB predictor. In this case, these
additional bits correspond to the bits 1, 2 × LPTOTAL,
2× LPTOTAL − 1 and 2× LPTOTAL − 2.

The selected local history bits index into a table of
saturating counters, which is embedded within the entry as
Figure 4 shows; these counters provide the prediction for the
branch (the sizes of these counters are shown in Table II).
The wormhole prediction is prioritized above the base ISL-
TAGE prediction as long as the confidence counter of the
entry is positive and the saturating counter for the pattern
matches the equation:

abs(2× sat value+ 1) >= threshold

Where sat value is the value of the 5-bit saturating counter.
A threshold of 16 worked well for the specific workloads.
The confidence counter of the corresponding wormhole
predictor entry is only updated when its prediction differs
from the TAGE prediction. It is increased if the wormhole
prediction matched the last outcome of the branch, and
decreased otherwise.

Entry in wormhole prediction table.

 Program 1
// X is a vector with the position of objects 
//     randomly placed in a 3D space
// p is a point in the 3D space
while(true)                            // Loop 1
   for( j=0; j<NumObjects; j++)     // Loop 2 
      if(  distance(X[j], p) < threshold  )     // Branch 1 
       { /* do something */ }

Program 2:   Jacobi1 algorithm
// A is the matrix 
// B is the right hand side
// X is the current solution estimate
// X0 is the partial solution
 for ( i = 0; i < N; i++ ) {    // Loop 3
     X0[i] = B[i];
     for ( j = 0; j < N; j++ )          // Loop 4
        if ( j != i )                                // Branch 2
           X0[i] = X0[i] - A[i + j*n] * X[j];
     X0[i] = X0[i] /A[i + i*n];
  }
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Figure 1: Example programs. a) Program 1; b) Outcome of Branch 1 in Program 1; c) Program 2; d) Outcome of Branch
1 in Program 2.

dimensional, folded history reveals the diagonal which can
be predicted accurately (as Section III explains), thereby
reducing the number of mispredictions to O(1).

These are only two simple examples where traditional
branch predictors that consider one-dimensional branch his-
tories would either fail or would need a large number of
entries and resources to accurately predict them. However,
folding these histories at appropriate points yields a multi-
dimensional history that readily exposes the inherent repeat-
ing patterns.

III. WORMHOLE CONCEPT

In this section, we describe the wormhole predictor
concept by means of examples. For the purposes of this
discussion assume that: 1) somehow we have identified a
branch inside an inner loop that is a candidate for wormhole
prediction, and 2) we can predict with high confidence how
many times this inner loop will iterate (LPTOTAL), and
3) we know how many iterations we have currently seen
(LPCURR). As the next section explains, ISL-TAGE can be
extended to provide this information with little cost.

Let us first consider the example in Figures 1(a) and
1(b) where the target branch, B1, exhibits identical behavior
every time the inner loop executes. Once such a branch
is identified, predicting it is straightforward. During the
first execution of the inner loop we record the directions
of the branch yielding a vector of LPTOTAL bits. This
recording stops once the loop exits, that is when LPCURR =
LPTOTAL. Next time we encounter the branch, we simply
replay the recorded history using LPCURR as the index.
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Figure 2: Diagonals Example.

While simple, this prediction method is appropriate only
when the branch exhibits almost identical behavior every
time the inner loop executes. In practice, we found this
predictor unsatisfactory.

Let us next consider the example in Figures 1(c) and 1(d)
where the target branch, B2, exhibits a diagonal pattern
instead. As with the previous example, wormhole records
the complete outcome stream the first time we encounter
the candidate branch. The next time the inner loop is
encountered, however, wormhole does not simply replay the

Wormhole prediction example. (a) First encounter diagonal branch
pattern; (b) Correctly predict diagonal branch pattern on second en-
counter.

WISL-TAGE

recorded history. Instead, it attempts to identify correlations
using a history fragment comprising bits from the past
iteration and the current iteration streams. This is shown
in Figure 2(a), where the top row represents the recorded
loop history from the previous inner loop invocation, and
the second, shorter row shows the history for the current
inner loop invocation. The darkened outcome refers to the
current execution we are trying to predict. Using LPCURR,
wormhole indexes the past iteration history to select a few
bits, three in our example, “100”. In addition, wormhole
can take a few bits from the current iteration history, one
in our example, “0”, and form the resulting history “0100”
upon which to build a correlation with the next outcome.
In this case, wormhole learns that the history “0100” leads
to outcome “1”. This is recorded in a table which uses
saturating counters to assign confidence to this prediction.

Figure 2(b) shows how wormhole now correctly predicts
the diagonal the next time the inner loop executes. Again
it uses three bits from the past inner loop history and one
from the current forming again the pattern “0100”. This has
been found to correlate with a “1” outcome which is correct
in this case. Similarly, wormhole can predict all instances
of the branch in this case.

Besides diagonals, the wormhole mechanism finds corre-
lations using past iteration history, patterns from the current
loop history and the current loop count. For example, it
will correctly predict branches that exhibit partial diagonals,
or multiple ones. This scheme also predicts correctly those
branches that exhibit identical behavior across iterations of
the outer loop as in the first example of this section.

IV. ISL-TAGE BASE PREDICTOR

Wormhole is implemented on top of the state-of-the-
art ISL-TAGE predictor [20] while re-using some of ISL-
TAGE’s components to selectively activate the wormhole
predictor. As Figure 3 shows, the complete prediction
framework comprises four different predictors: 1) a TAGE
predictor comprising a bimodal predictor and several tagged
components [18], 2) a loop predictor, 3) a statistical correc-
tor, and 4) a wormhole predictor. The first three components
comprise the baseline ISL-TAGE. This section reviews the
baseline ISL-TAGE predictor [20], while Section V de-
scribes the wormhole component and its integration on top
of ISL-TAGE.

A. TAGE Predictor

The TAGE predictor consists of a bimodal predictor and
several global history indexed tagged tables. Each tagged
table uses a different history length and these lengths form
a geometric series. The bimodal table captures well-behaved
biased branches, whereas the rest of the tables capture
exceptions, that is history patterns for events that foil the
bimodal component. By using different history lengths and
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Figure 3: Design overview.

an adaptive table selection mechanism, TAGE effectively
identifies correlations in the global history.

B. Loop Predictor

The loop predictor targets loops that execute a constant
number of iterations. It tracks how many times a branch
had the same outcome before having the contrary outcome,
an indication that the loop exit has been reached. The
loop predictor overrides the other components of the branch
predictor when the loop has appeared seven consecutive
times with the same number of iterations. When a branch
finds its corresponding entry in the loop predictor enabled,
a global register, LPTOTAL, starts tracking the number of
iterations for the loop. As Section V explains, wormhole
uses this count to determine: 1) whether a branch is inside
a loop, and 2) if so, the expected total iteration count for
the loop. Using this information, wormhole decides when to
fold the local history into a multidimensional representation.

C. Statistical Corrector

The statistical corrector (SC) targets those branches that
TAGE fails to predict accurately but that are statistically
biased towards a certain direction. The statistical correc-
tor monitors TAGE’s predictions and dynamically decides
whether to invert them. SC estimates TAGE’s accuracy for
the current branch using a set of saturating counter tables.
These tables are indexed with the TAGE prediction and a
fragment of the global history. The lengths of the fragments
are the same as those used in the tagged components
of TAGE. Seznec describes the decision and the update
processes [21]. As Section V explains, wormhole multi-
purposes the same statistical corrector to identify candidate
branches for wormhole prediction.

V. WORMHOLE PREDICTOR

The wormhole predictor treats local history bit vectors as
multidimensional bit matrices, folding them over iterations
of the outer loop(s). This enables wormhole to correlate with
previous iterations of both the inner and the outer loops.
Wormhole prediction proceeds in four stages: 1) Identify
branches that are frequently mispredicted by the base TAGE
predictor. 2) Detect the dimensionality of the current loop
nest, that is how many times the loop iterates. 3) Record

Wormhole is implemented on top of ISL-TAGE.

• Statistical corrector identifies branches that are frequently
mispredicted by the base TAGE predictor; these branches are
fed to wormhole.

• Loop predictor detects the number of iterations in the current
inner loop; used by wormhole to determine dimensionality.

MULTIDIMENSIONAL BRANCHES

 Program 1
// X is a vector with the position of objects 
//     randomly placed in a 3D space
// p is a point in the 3D space
while(true)                            // Loop 1
   for( j=0; j<NumObjects; j++)     // Loop 2 
      if(  distance(X[j], p) < threshold  )     // Branch 1 
       { /* do something */ }

Program 2:   Jacobi1 algorithm
// A is the matrix 
// B is the right hand side
// X is the current solution estimate
// X0 is the partial solution
 for ( i = 0; i < N; i++ ) {    // Loop 3
     X0[i] = B[i];
     for ( j = 0; j < N; j++ )          // Loop 4
        if ( j != i )                                // Branch 2
           X0[i] = X0[i] - A[i + j*n] * X[j];
     X0[i] = X0[i] /A[i + i*n];
  }
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Figure 1: Example programs. a) Program 1; b) Outcome of Branch 1 in Program 1; c) Program 2; d) Outcome of Branch
1 in Program 2.

dimensional, folded history reveals the diagonal which can
be predicted accurately (as Section III explains), thereby
reducing the number of mispredictions to O(1).

These are only two simple examples where traditional
branch predictors that consider one-dimensional branch his-
tories would either fail or would need a large number of
entries and resources to accurately predict them. However,
folding these histories at appropriate points yields a multi-
dimensional history that readily exposes the inherent repeat-
ing patterns.

III. WORMHOLE CONCEPT

In this section, we describe the wormhole predictor
concept by means of examples. For the purposes of this
discussion assume that: 1) somehow we have identified a
branch inside an inner loop that is a candidate for wormhole
prediction, and 2) we can predict with high confidence how
many times this inner loop will iterate (LPTOTAL), and
3) we know how many iterations we have currently seen
(LPCURR). As the next section explains, ISL-TAGE can be
extended to provide this information with little cost.

Let us first consider the example in Figures 1(a) and
1(b) where the target branch, B1, exhibits identical behavior
every time the inner loop executes. Once such a branch
is identified, predicting it is straightforward. During the
first execution of the inner loop we record the directions
of the branch yielding a vector of LPTOTAL bits. This
recording stops once the loop exits, that is when LPCURR =
LPTOTAL. Next time we encounter the branch, we simply
replay the recorded history using LPCURR as the index.
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Figure 2: Diagonals Example.

While simple, this prediction method is appropriate only
when the branch exhibits almost identical behavior every
time the inner loop executes. In practice, we found this
predictor unsatisfactory.

Let us next consider the example in Figures 1(c) and 1(d)
where the target branch, B2, exhibits a diagonal pattern
instead. As with the previous example, wormhole records
the complete outcome stream the first time we encounter
the candidate branch. The next time the inner loop is
encountered, however, wormhole does not simply replay the

Example multidimensional branches. (a) Program 1; (b) Branch 1 outcome in Program 1; (c) Program 2; (d) Branch 2 outcome in Program 2.
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Figure 6: MPKI reductions with respect to ISL-TAGE for the 40 traces, for 4KB and 32KB base predictors.

base predictor of 2.77%. Both types of local predictors
can be combined (fourth bar, SC-L-32KB-original+WH) and
their individual benefits mostly remain, reducing the average
MPKI by 5.93% compared to TAGE-SC-L without LHCs.

2) Accuracy of the Wormhole Predictor on Top of TAGE-
SC-L: The last two bars of each group in Figure 8 show
reduction in mispredictions of TAGE-SC-L with and without
a wormhole predictor (SCL-WH in the figure), with respect
to ISL-TAGE. For some workloads the TAGE-SC-L-based is
less accurate than ISL-TAGE as it devotes less storage to the
statistical corrector. However, the differences are small in ab-
solute terms (see Table I). The wormhole predictor improves
the misprediction rate of eight out of 40 traces for the 32KB
base predictor. On average, the wormhole predictor reduces
the MPKI of the 32KB TAGE-SC-L predictor by 2.6%.

E. A Real World Example: hmmer

The code in Fig. 9(a) shows a fragment of hmmer [6]
from SPEC CPU 2006 [9]. More precisely, it shows a
fragment of the P7Viterbi function (some auxiliary variables
used as aliases in the orginal code are omitted for clarity).
This function is responsible for 95% of the application’s
execution time. Branch 1 represents 10.5% of the total
dynamically executed branches, and causes 42% of the
mispredictions when a 32KB ISL-TAGE branch predictor
is used.

Analyzing the code in Figure 9(a) shows that the outcome
of Branch 1 depends on the values of imx[i-1][k] and
imx[i][k], where the imx[i][k] value depends on the value
of mmx from the previous iteration of the outer loop. The
remainder of the code is immaterial to this discussion; the
important point to note is that the outcome of Branch 1
depends on data carried across iterations of the outer loop.

Figures 9(b) and (c) show correct predictions of Branch 1
for a subset of iterations of Loops 1 and 2, made by ISL-
TAGE and WISL-TAGE, both 4KB. The elements in each
row represent iterations of Loop 2, from k=1 to k=79 (for
clarity the figure omits the remaining iterations). Each row
represents a different iteration of Loop 1 and the figure

shows ithe terations from i=927 to i=942. Blank spaces
indicate mispredicted branches. Figure 9(c) highlights in
grey the outcomes of Branch 1 that are correctly predicted by
WISL-TAGE but not by ISL-TAGE. WISL-TAGE is able to
detect most of the columns in the pattern and some diagonals
that ISL-TAGE is unable to predict. Section VI-E2 shows
that this behavior persists even with different inputs.

1) Conditional Moves: The code of Hmmer in Figure 9(a)
shows that the body of Branch 1 consists only of an assign-
ment operation. Although this branch is present in the traces
used in the 4th Branch Prediction Competition [1], when a
more modern compiler is used this type of branch will likely
be converted to a Conditional Move (CMOV) instruction.
Figure 10 shows the assembler code (x86) generated by two
different versions of GCC. GCC 4.0 (Figure 10(a)) generates
a conditional branch while GCC 4.6 (Figure 10(b)) generates
instead a conditional move instruction cmovge.

2) Sensitivity to the Input Dataset for hmmer: This sec-
tion shows that behavior the wormhole predictor exploits is
not happenstance but persists with other input datasets for
hmmer. The hmmer application in SPEC CPU 2006 uses
the (nph3) query in the (swiss41) database. This section
reports the results of running hmmer using two other queries,
globins4 and fn3 and with a newer and bigger protein
database Swiss-Prot [26]. Figure 11 shows the MPKI for
4KB and 32KB ISL-TAGE and WISL-TAGE predictors. In
the case of globins4, the wormhole predictor reduces MPKI
by around 45% and 33% for the 32KB and 4KB predic-
tors. While, in the case of fn3, the corresponding MPKI
reductions with the wormhole predictor are 32% and 25%.
Although the key branch in hmmer is data dependent, the
patterns repeat across iterations of the outer-loops enabling
wormhole to remain effective across different inputs.

F. Interaction with the Compiler

Leveraging the traces from the 4th Branch Prediction
Championship does not afford us the ability to recompile
the applications, which are not publicly released. To study
the impact of the compiler on the performance of the

MPKI reduction with respect to ISL-TAGE, for 4KB and 32KB base predictors.


