
Wormhole Branch Prediction using Multi-dimensional Histories

Jorge Albericio, Joshua San Miguel, Natalie Enright Jerger, and Andreas Moshovos

Department of Electrical and Computer Engineering, University of Toronto
{jorge, sanmigu2, enright, moshovos}@eecg.toronto.edu

Abstract

Analyzing the competition traces, we observe two im-
portant facts: 1) branches that require large local his-
tories are typically enclosed within nested loops, and
2) many of these branches exhibit correlations with
previous iterations of not only the inner loops but also
the outer loops. In this work, we present the worm-
hole branch predictor, a mechanism that is able to pre-
dict and exploit these types of patterns by using multi-
dimensional local histories.

Our proposal is integrated on top of a base ISL-
TAGE predictor. The designs submitted to the 4KB,
32KB and unlimited tracks of the 4th Branch Pre-
diction Championship achieve 3.995, 2.498, and 2.014
MPKI, respectively.

1 Introduction

State-of-the-art branch predictors commonly rely on
the use of long global histories. Though powerful and
accurate, these predictors are not able to deal with
branches that require large local histories. Unfortu-
nately, storing large local histories is impractical in
most cases.

In the competition traces, we observe that some of
the most difficult branches to predict exhibit consis-
tent behavior across iterations of not only the inner
loops but also the outer loops. This behavior leads
us to rethink the way we traditionally manage local
histories. Thus, we propose representing histories as
multi-dimensional matrices as opposed to linear vec-
tors. In this work, we present the wormhole branch pre-
dictor, which is able to capture patterns in the multi-
dimensional local history space.

The wormhole predictor is integrated along a base
ISL-TAGE predictor [3], which consists of the TAGE
predictor itself[1], a loop predictor and a statistical
corrector. Our complete prediction framework is com-
posed of four different predictors (Figure 1): 1) a loop
predictor, 2) a statistical corrector, 3) a TAGE predic-

Wormhole
pred.

bimodal
pred.

tagged
comp.

Loop
pred.

Stat.
corr.

ISL-TAGE

predictions

Figure 1: Design overview.

tor that includes a bimodal predictor and many tagged
components, and 4) a wormhole predictor. The first
three aforementioned components are directly inherited
from the original ISL-TAGE. Their parameters have
been adjusted depending on the competition track.

The rest of the paper is organized as follows. Sec-
tion 2 briefly explains the components of the ISL-
TAGE predictor. Section 3 motivates the use of multi-
dimensional histories. Section 4 explains the wormhole
predictor. Section 5 presents the mispredictions per
kilo-instruction (MPKI) for the competition traces as
well as the storage budgets of the different configura-
tions. Finally, Section 6 concludes the paper.

2 ISL-TAGE Base Predictor

2.1 TAGE Predictor

The TAGE predictor is composed of a bimodal predic-
tor and many tagged tables, each of which are indexed
by varying global history lengths. These lengths form
a geometric series. Our submission to the 4KB track
considers the u field of each TAGE entry to be 3 bits.
The reset of such field is triggered by the same mecha-
nism as in the original ISL-TAGE, but instead of being
a true reset, the value of u is decremented by one. Also,
when the outcome predicted by the alternative compo-
nent is different than that by the chosen component,
the field u of the former is decremented by one.

2.2 Loop Predictor

The loop predictor aims to identify loops that have a
constant number of iterations. An entry in the loop pre-
dictor is activated when a loop has appeared 7 times
with the same number of iterations. Each entry re-
quires 47 bits of storage.

In our predictor, the loop predictor is used to 1) de-
termine whether a branch is inside a loop or not, and
2) determine the total number of iterations in the loop.
This information is used to form a multi-dimensional
representation of the local history (Section 4).

The storage required by the loop predictor for the
different tracks of the competition are shown in table 2.

2.3 Statistical Corrector

The TAGE predictor is not able to predict branches
that are not correlated to the global history path. How-
ever, some of these branches are statistically biased to-
wards a certain direction. The statistical corrector aims
to identify these kinds of branches.

The statistical corrector monitors the outputs of the
TAGE predictor and dynamically decides whether or
not to invert its prediction. To do this, the statistical
corrector estimates the accuracy of the TAGE predictor
for the current branch using a set of saturating counter
tables. These tables are indexed with the TAGE pre-
diction as well as a fragment of the global history. The
lengths of the fragments are the same as those used in
the tagged components of TAGE. The details about the
decision and the update processes can be found in [3].

In our work, we use the statistical corrector to select
branches that TAGE frequently mispredicts, making
them candidates for our wormhole predictor. The de-
tails of this selection process are explained in Section 4.

3 Multi-Dimensional Histories

Traditional branch predictors search for patterns and
correlations in the local history bits, where each bit rep-
resents the outcome of a previous instance of a branch
(which is typically enclosed in a loop). Unfortunately,
local history is often represented as a one-dimensional
bit vector, where predictions are based solely on the
most recent outcomes. Though this works for many
branches, it does not capture nested loop behavior.
From studying the championship traces, we observe
that many problematic branches occur within nested
loops and that correlations exist not only across inner
loops but also across outer loops.

Consider the example code of Program 1 in Figure 2.
If we assume that array X is initialized with random
values, then predicting Branch 1 is very difficult using

only the most recent local history bits, since its out-
come on each iteration of the inner loop is independent
of the other iterations. However, as shown in Figure 2a,
Branch 1 is highly predictable in terms of the outer
loop iterations (columns). Program 2 is similar, except
the local history bits form a diagonal pattern across
the two-dimensional local history space. This suggests
that more accuracy can be gained by representing the
local history as a multi-dimensional matrix as opposed
to a one-dimensional vector. As a result, predictions
can be based on not only the most recent outcomes in
the inner loop, but also the most recent outcomes in
the outer loop. Our wormhole predictor exploits this
notion of multi-dimensional branch histories to improve
prediction accuracy.

4 Wormhole Predictor

We propose a new mechanism that identifies the di-
mensionality of branches in nested loops. Our worm-
hole predictor effectively treats local history bit vectors
as multi-dimensional bit matrices. This enables us to
make predictions based on previous iterations of both
the inner and outer loops. THe wormhole predictor can
be divided into three stages: 1) Identify branches that
are frequently mispredicted by the base TAGE predic-
tor. 2) Detect the dimensionality of the current loop
nest. 3) Learn patterns in the multi-dimensional local
history space.

4.1 Identifying Problematic Branches

Since we are using ISL-TAGE as a base, naturally, our
wormhole implementation specifically targets branch
instructions that are problematic for the base predic-
tor. To identify such branches, we leverage informa-
tion in the statistical corrector. Recall that on every
branch, the statistical corrector computes the accuracy
(SC Acc) of the current TAGE prediction. We say that
a branch instruction is problematic if its accuracy (cen-
tered) is within a threshold: abs(SC Acc × 2) + 1) ≤
SC THRES. When a new problematic branch is en-
countered, an entry is allocated in the wormhole pre-
diction table (WPT). WPT entries are ranked; if the
WPT is full, the entry with the lowest ranking is se-
lected for replacement. Whenever a branch is deemed
problematic by the statistical corrector, its entry moves
up one spot in the ranking. In this way, the WPT is
able to identify branch instructions that are frequently
mispredicted by the base predictor.

2

1 0 1111 11000

1 0 111 11000

1 0 11 ?

Inner loop iterations

outer
loop

iterations

1 0 1111 11000

0 1 110 1100

1 0 0 ?

1 0 111 11000

1 0 111 11000

1 0 11 ?

1 0 1111 11000

0 1 110 1100

1 0 0 ?

Program 1
// X is a vector with random values
// between 0 and 10
for(int i=0; i<5000; i++) // Loop 1
 for(int j=0; j<100; j++) // Loop 2
 if(X[j] < 5) // Branch 1
 { /* do something */ }

Program 2
// X is a vector with random values
// between 0 and 10
for(int i=0; i<5000; i++) // Loop 1
 for(int j=0; j<100; j++) // Loop 2
 if(X[i+j] < 5) // Branch 1
 { /* do something */ }

Bits considered in the 32KB
and unlimited tracks designs

Bits considered in the
4KB track design

(a) (b)

(d)(c)

Figure 2: Example programs.

4.2 Detecting Loop Dimensionality

To detect loop dimensionality, we leverage information
in the loop predictor of ISL-TAGE. Whenever a branch
hits in the loop predictor, a global register (LP Iters)
is updated. If the loop is currently in progress, then
LP Iters stores the total number of iterations in the
loop. When the loop terminates, LP Iters is reset
to zero. Thus, at any point in time, LP Iters stores
the size of the current innermost loop. Our wormhole
predictor then uses this information to represent local
history bit vectors as multi-dimensional bit matrices.
Our current implementation only utilizes two dimen-
sions, but it is simple to incorporate more dimensions
by adding registers to track the sizes of the outer loops.

4.3 Learning Multi-Dimensional Patterns

Table 1 lists the contents of each entry in the WPT.
When making a prediction, we select specific bits that
are spatially local to the current branch instance in the
two-dimensional local history space, as shown in Fig-
ure 2. These bits represent the local branch outcomes
from previous iterations of both the inner (horizon-
tal) and outer (vertical) loops. To identify iterations
of the outer loop, we use LP Iters. For example, in
Figure 2a, we select the bits at locations 0 (most re-
cent), LP Iters−2, LP Iters−1 and LP Iters in the
local history vector. The selected local history bits are
then used to index into a table of saturating counters,
as shown in Figure 3. The wormhole prediction is pri-
oritized above the base ISL-TAGE prediction. A pre-
diction is only made if both the confidence is high. By
exploring the local history in terms of multiple dimen-
sions, our wormhole predictor is able to learn patterns

1 00PC Conf 11 ???

Local history bits

... ...1

Saturating counters

... ...

Figure 3: Wormhole predictor entry..

Track 4KB 32KB Un.
Tag 18 18 18
Confidence 4 4 4
Sat. counters 4 (x 16) 5 (x 256) 5 (x 256)
Ranking 3 3 6
History vector 101 301 301
Vector length 7 9 9
Num. entries 5 7 64

Table 1: Wormhole prediction table configurations (all
sizes in bits).

across inner and outer loops.

5 Evaluation and storage

5.1 Results

Figure 4 shows the mispredictions per kilo-instruction
(MPKI) for the 40 traces distributed in the competi-
tion framework. These results are grouped in 5 different
segments: the first group of 20 bars (LONG) represent
the MPKI of traces from the SPEC CPU 2006 bench-
marks suite. These traces contain 150 million instruc-
tions each. The next group of 20 bars are applications
from 4 different domains: floating point (FP), integer
(INT), multimedia (MM), and server (SERV). There
are 5 traces from each of these domains, and each trace
contains 30 million instructions. First four bars of each
group of five, represent the MPKI of the original ISL-

3

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

LO
N
G-­‐
00
	

LO
N
G-­‐
01
	

LO
N
G-­‐
02
	

LO
N
G-­‐
03
	

LO
N
G-­‐
04
	

LO
N
G-­‐
05
	

LO
N
G-­‐
06
	

LO
N
G-­‐
07
	

LO
N
G-­‐
08
	

LO
N
G-­‐
09
	

LO
N
G-­‐
10
	

LO
N
G-­‐
11
	

LO
N
G-­‐
12
	

LO
N
G-­‐
13
	

LO
N
G-­‐
14
	

LO
N
G-­‐
15
	

LO
N
G-­‐
16
	

LO
N
G-­‐
17
	

LO
N
G-­‐
18
	

LO
N
G-­‐
19
	

FP
-­‐1
	

FP
-­‐2
	

FP
-­‐3
	

FP
-­‐4
	

FP
-­‐5
	

IN
T-­‐
1	

IN
T-­‐
2	

IN
T-­‐
3	

IN
T-­‐
4	

IN
T-­‐
5	

M
M
-­‐1
	

M
M
-­‐2
	

M
M
-­‐3
	

M
M
-­‐4
	

M
M
-­‐5
	

SE
RV

-­‐1
	

SE
RV

-­‐2
	

SE
RV

-­‐3
	

SE
RV

-­‐4
	

SE
RV

-­‐5
	

AM
EA

N
	

M
PK

I	
 	

ISL-­‐TAGE-­‐4KB	

WH-­‐4KB	

ISL-­‐TAGE-­‐32KB	

WH-­‐32KB	

WH-­‐UNLIM.	

Figure 4: Misspredictions for the 40 traces.

TAGE and our design configured to target the 4KB
and 32KB competition tracks. The last bar of each
group represents the MPKI of our design to target the
unlimited competition track.

In the first group (LONG), the average MPKI is
dominated by 6 of the 20 traces, which suffer 5 MPKI
or more. The MPKI decrease is constant when larger
components are used, with the exception of workloads 8
and 14 (corresponding to traces LONG-07 and LONG-
13). The MPKI of these two traces drastically increases
(from 8.3 to 16.2, and from 5.2 to 9.5) when the ta-
bles of the predictors are shrunk from the 32KB to the
4KB budget. This is likely provoked by the high num-
ber of different branches present in that traces (4080
and 862, respectively). If a high number of branches
are present along the whole trace, the small tables are
not able to retain the cases learned because entries
for new branches have to be allocated. SHORT-INT-2
and SHORT-INT-3, and all the traces from the SERV
group also suffer drastic increases in their MPKI when
the 4KB budget is considered. In the SERV case, all
the traces contain between 10,000 and 16,000 different
branches. Applications rich in floating-point operations
present low MPKIs even with small tables.

Our design achieves 3.995, 2.498, and 2.014 for the
4KB, 32KB, and unlimited budgets, respectively.

5.2 Storage

We only show here the configurations of our design tar-
geting the 4KB and 32KB budgets. Table 2 shows the
storage used by the different components of our design.
Notice that the ISL-TAGE extra space is lower than
in the original proposal; this is because in this com-
petition framework, there is no need to have separate
storage for fetch and retire histories.

Our design employs 4,195 and 32,649 bytes when it
targets the 4KB and 32KB budget tracks, respectively.

4KB 32KB

Statistical corrector, size (bytes) 96 384
Loop predictor, size (bytes) 376 376
TAGE predictor, size (bytes) 3048 29952
ISL-TAGE extra, size (bytes) 524 524
Wormhole predictor, size (bits) 1065 11305

Total size (bytes) 4195 32649

Table 2: Storage of the different predictors.

6 Conclusions

In this work, we present the wormhole branch predic-
tor, a mechanism that is able to predict branches that
exhibit correlations with previous iterations of not only
the inner loops but also the outer loops by using multi-
dimensional local histories.

Our proposal is integrated on top of a base ISL-
TAGE predictor. The designs submitted to the 4KB,
32KB and unlimited tracks of the 4th Branch Pre-
diction Championship achieve 3.995, 2.498, and 2.014
MPKI, respectively.

References

[1] A. Seznec and P. Michaud. A case for (partially)
tagged geometric history length branch prediction.
Journal of Instruction Level Parallelism, 2006.

[2] André Seznec. A 64 kbytes isl-tage branch predic-
tor. JWAC-2 : Championship Branch Prediction,
2011.

[3] André Seznec. A New Case for the TAGE Branch
Predictor. In ACM, editor, MICRO 2011 : The
44th Annual IEEE/ACM International Symposium
on Microarchitecture, 2011, December 2011.

4

